N. Alon, Perturbed Identity Matrices Have High Rank: Proof and Applications, Combinatorics, Probability and Computing, vol.82, issue.1-2, pp.3-15, 2009.
DOI : 10.1016/S0304-3975(99)00185-1

X. Chen, N. Kayal, and A. Wigderson, Partial Derivatives in Arithmetic Complexity and Beyond, Foundations and Trends?? in Theoretical Computer Science, vol.6, issue.1-2, pp.1-138, 2011.
DOI : 10.1561/0400000043

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Dyer, A. Frieze, and M. Jerrum, On Counting Independent Sets in Sparse Graphs, SIAM Journal on Computing, vol.31, issue.5, pp.1527-1541, 2002.
DOI : 10.1137/S0097539701383844

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Dyer and C. Greenhill, On Markov Chains for Independent Sets, Journal of Algorithms, vol.35, issue.1, pp.17-49, 2000.
DOI : 10.1006/jagm.1999.1071

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Fournier, N. Limaye, M. Mahajan, and S. Srinivasan, The Shifted Partial Derivative Complexity of Elementary Symmetric Polynomials, International Symposium on Mathematical Foundations of Computer Science, pp.324-335, 2015.
DOI : 10.1007/978-3-662-48054-0_27

D. H. Gottlieb, A certain class of incidence matrices, Proc. Amer, pp.1233-1237, 1966.
DOI : 10.1090/S0002-9939-1966-0204305-9

C. Greenhill, The complexity of counting colourings and independent sets in sparse graphs and hypergraphs, Computational Complexity, vol.9, issue.1, pp.52-72, 2000.
DOI : 10.1007/PL00001601

J. Christopher, L. Hillar, and . Lim, Most tensor problems are NP-hard, Journal of the ACM, vol.60, issue.6, p.45, 2013.

N. Kayal, Affine projections of polynomials, Proceedings of the 44th symposium on Theory of Computing, STOC '12, pp.643-662, 2012.
DOI : 10.1145/2213977.2214036

N. Kayal, N. Limaye, C. Saha, and S. Srinivasan, An exponential lower bound for homogeneous depth four arithmetic formulas, Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pp.61-70, 2014.
DOI : 10.1137/151002423

N. Kayal and C. Saha, Lower Bounds for Depth-Three Arithmetic Circuits with small bottom fanin, Proceedings of the 30th Conference on Computational Complexity, pp.158-182, 2015.
DOI : 10.1007/s00037-016-0132-0

E. Kushilevitz and N. Nisan, Communication Complexity, 1997.

M. Luby and E. Vigoda, Approximately counting up to four, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pp.682-687, 1997.

N. Nisan and A. Wigderson, Lower bounds on arithmetic circuits via partial derivatives, Conference version in FOCS'95, pp.217-234, 1996.
DOI : 10.1007/BF01294256

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Scott-provan, O. Michael, and . Ball, The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected, SIAM Journal on Computing, vol.12, issue.4, pp.777-788, 1983.
DOI : 10.1137/0212053

B. Hammersholt-roune and E. Sáenz-de-cabezón, Complexity and algorithms for Euler characteristic of simplicial complexes, Journal of Symbolic Computation, vol.50, pp.170-196, 2013.
DOI : 10.1016/j.jsc.2012.07.003

R. Saptharishi, A survey of lower bounds in arithmetic circuit complexity. github.com/dasarpmar/lowerbounds-survey/releases

Y. Shitov, How hard is the tensor rank? arXiv preprint, 2016.

A. Shpilka and A. Yehudayoff, Arithmetic Circuits: A survey of recent results and open questions, Foundations and Trends?? in Theoretical Computer Science, vol.5, issue.3-4, 2010.
DOI : 10.1561/0400000039

S. Vadhan, The Complexity of Counting in Sparse, Regular, and Planar Graphs, SIAM Journal on Computing, vol.31, issue.2, pp.398-427, 2001.
DOI : 10.1137/S0097539797321602

L. G. Valiant, The complexity of computing the permanent, Theoretical Computer Science, vol.8, issue.2, pp.181-201, 1979.
DOI : 10.1016/0304-3975(79)90044-6