On the complexity of partial derivatives

Abstract : The method of partial derivatives is one of the most successful lower bound methods for arithmetic circuits. It uses as a complexity measure the dimension of the span of the partial derivatives of a polynomial. In this paper, we consider this complexity measure as a computational problem: for an input polynomial given as the sum of its nonzero monomials, what is the complexity of computing the dimension of its space of partial derivatives? We show that this problem is ♯P-hard and we ask whether it belongs to ♯P. We analyze the " trace method " , recently used in combinatorics and in algebraic complexity to lower bound the rank of certain matrices. We show that this method provides a polynomial-time computable lower bound on the dimension of the span of partial derivatives, and from this method we derive closed-form lower bounds. We leave as an open problem the existence of an approximation algorithm with reasonable performance guarantees. A slightly shorter version of this paper was presented at STACS'17. In this new version we have corrected a typo in Section 4.1, and added a reference to Shitov's work on tensor rank.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [21 references]  Display  Hide  Download

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01345746
Contributor : Pascal Koiran <>
Submitted on : Tuesday, May 30, 2017 - 2:35:55 PM
Last modification on : Friday, January 25, 2019 - 3:34:10 PM

Files

partials2.arxiv.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : ensl-01345746, version 2
  • ARXIV : 1607.05494

Collections

Citation

Ignacio Garcia-Marco, Pascal Koiran, Timothée Pecatte, Stéphan Thomassé. On the complexity of partial derivatives. 2016. ⟨ensl-01345746v2⟩

Share

Metrics

Record views

340

Files downloads

50