M. Abért and B. Weiss, Bernoulli actions are weakly contained in any free action, Ergodic Theory Dynam, Systems, vol.33, issue.2, pp.323-333, 2013.

R. L. Adler, A. G. Konheim, and M. H. Mcandrew, Topological entropy, Transactions of the American Mathematical Society, vol.114, issue.2, pp.309-319, 1965.
DOI : 10.1090/S0002-9947-1965-0175106-9

A. Alpeev and B. Seward, Krieger's finite generator theorem for ergodic actions of countable groups III

K. Ball, Factors of independent and identically distributed processes with non-amenable group actions, Ergodic Theory and Dynamical Systems, pp.711-730, 2005.

L. Bartholdi, Amenability of groups is characterized by Myhill's theorem, preprint. https

L. Bartholdi, Linear cellular automata and duality, preprint. https

N. Bergeron and D. Gaboriau, Asymptotique des nombres de Betti, invariants $l^2$ et laminations, Commentarii Mathematici Helvetici, vol.79, issue.2, pp.362-395, 2004.
DOI : 10.1007/s00014-003-0798-1

M. Björklund and R. Miles, Entropy range problems and actions of locally normal groups, Discrete Contin, Dyn. Syst, vol.25, issue.3, pp.981-989, 2009.

L. Bowen, A measure-conjugacy invariant for free group actions, Annals of Mathematics, vol.171, issue.2, pp.1387-1400, 2010.
DOI : 10.4007/annals.2010.171.1387

URL : http://arxiv.org/abs/0802.4294

L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, Journal of the American Mathematical Society, vol.23, issue.1, pp.217-245, 2010.
DOI : 10.1090/S0894-0347-09-00637-7

L. Bowen, Weak isomorphisms between Bernoulli shifts, Israel Journal of Mathematics, vol.11, issue.1, pp.93-102, 2011.
DOI : 10.1007/978-1-4684-9488-4

URL : http://arxiv.org/abs/0812.2718

L. Bowen, Entropy for expansive algebraic actions of residually finite groups, Ergodic Theory and Dynamical Systems, pp.703-718, 2011.

L. Bowen, Sofic entropy and amenable groups, Ergodic Theory and Dynamical Systems, vol.1, issue.02
DOI : 10.1007/BFb0101575

L. Bowen, Entropy theory for sofic groupoids I: The foundations, Journal d'Analyse Math??matique, vol.262, issue.1
DOI : 10.1016/j.jfa.2011.11.029

URL : http://arxiv.org/abs/1210.1992

L. Bowen and Y. Gutman, A Juzvinskii addition theorem for finitely generated free group actions, Ergodic Theory and Dynamical Systems, pp.95-109, 2014.

L. Bowen and H. Li, Harmonic models and spanning forests of residually finite groups, Journal of Functional Analysis, vol.263, issue.7, pp.1769-1808, 2012.
DOI : 10.1016/j.jfa.2012.06.015

URL : http://arxiv.org/abs/1108.4192

J. Cheeger and M. Gromov, L2-Cohomology and group cohomology, Topology, vol.25, issue.2, pp.189-215, 1986.
DOI : 10.1016/0040-9383(86)90039-X

URL : http://doi.org/10.1016/0040-9383(86)90039-x

N. Chung and H. Li, Homoclinic groups, IE groups, and expansive algebraic actions, Inventiones mathematicae, vol.78, issue.5, pp.805-858, 2015.
DOI : 10.2307/30044198

URL : http://arxiv.org/abs/1103.1567

C. Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, Journal of the American Mathematical Society, vol.19, issue.03, pp.737-758, 2006.
DOI : 10.1090/S0894-0347-06-00519-4

W. Dicks and P. A. , L 2-Betti numbers of one-relator groups, Mathematische Annalen, vol.12, issue.4, pp.855-874, 2007.
DOI : 10.5565/PUBLMAT_44200_13

URL : http://arxiv.org/abs/math/0508370

T. Downarowicz, Entropy in Dynamical Systems, 2011.
DOI : 10.1017/CBO9780511976155

G. Elek, The Euler Characteristic of Discrete Groups and Yuzvinskii's Entropy Addition Formula, Bulletin of the London Mathematical Society, vol.31, issue.6, pp.661-664, 1999.
DOI : 10.1112/S0024609399006104

G. Elek, Amenable groups, topological entropy and Betti numbers, Israel Journal of Mathematics, vol.114, issue.33, pp.315-336, 2002.
DOI : 10.1007/978-1-4612-4314-4

URL : http://arxiv.org/abs/math/9911202

G. Elek and E. Szabó, Hyperlinearity, essentially free actions and L2-invariants. The sofic property, Mathematische Annalen, vol.62, issue.2, pp.421-441, 2005.
DOI : 10.1007/s00208-005-0640-8

URL : http://arxiv.org/abs/math/0408400

M. Ershov and W. Lück, The first L 2 -Betti number and approximation in arbitrary characteristic, Documenta Mathematica, issue.19, pp.313-331, 2014.

M. Farber, Geometry of growth: approximation theorems for $L^2$ invariants, Mathematische Annalen, vol.311, issue.2, pp.311-335, 1998.
DOI : 10.1007/s002080050190

J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Transactions of the American Mathematical Society, vol.234, issue.2, pp.289-324, 1977.
DOI : 10.1090/S0002-9947-1977-0578656-4

D. Gaboriau, Co?t des relations d??quivalence et des groupes, Inventiones mathematicae, vol.139, issue.1, pp.41-98, 2000.
DOI : 10.1007/s002229900019

D. Gaboriau, Invariants ???2 de relations d?????quivalence et de groupes, Publications math??matiques de l'IH??S, vol.95, issue.1, pp.93-150, 2002.
DOI : 10.1007/s102400200002

URL : http://www.numdam.org/article/PMIHES_2002__95__93_0.pdf

D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann?s problem, Inventiones mathematicae, vol.99, issue.1, pp.533-540, 2009.
DOI : 10.1016/S0764-4442(00)00211-1

URL : http://arxiv.org/abs/0711.1643

E. Glasner, Ergodic theory via joinings Mathematical Surveys and Monographs, 101, 2003.

B. Hayes, Fuglede-Kadison determinants and sofic entropy, preprint
DOI : 10.1007/s00039-016-0370-y

URL : http://arxiv.org/abs/1402.1135

D. Kerr, Sofic measure entropy via finite partitions, Groups Geom, Dyn, vol.7, pp.617-632, 2013.
DOI : 10.4171/ggd/200

URL : http://arxiv.org/abs/1111.1345

D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Inventiones mathematicae, vol.124, issue.3, pp.501-558, 2011.
DOI : 10.1007/BF01231517

D. Kerr and H. Li, Soficity, amenability, and dynamical entropy, to appear in Amer, J. Math
DOI : 10.1353/ajm.2013.0024

URL : http://arxiv.org/abs/1008.1429

J. C. Keiffer, A Generalized Shannon-McMillan Theorem for the Action of an Amenable Group on a Probability Space, The Annals of Probability, vol.3, issue.6, pp.1031-1037, 1975.
DOI : 10.1214/aop/1176996230

A. N. Kolmogorov, New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces, Russian) Doklady of Russian Academy of Sciences, pp.861-864, 1958.

A. N. Kolmogorov, Entropy per unit time as a metric invariant for automorphisms, Russian) Doklady of Russian Academy of Sciences, pp.754-755, 1959.

G. Levitt, On the cost of generating an equivalence relation. Ergodic Theory Dynam, Systems, vol.15, issue.6, pp.1173-1181, 1995.

H. Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, preprint
DOI : 10.4007/annals.2012.176.1.5

URL : http://arxiv.org/abs/1001.0419

D. Lind, A survey of algebraic actions of the discrete Heisenberg group, to appear in Russian Mathematical Surveys

D. Lind, K. Schmidt, and T. Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Inventiones Mathematicae, vol.8, issue.1, pp.593-629, 1990.
DOI : 10.1007/BF01231517

W. Lück, ApproximatingL 2-invariants by their finite-dimensional analogues, Geometric and Functional Analysis, vol.73, issue.4, pp.455-481, 1994.
DOI : 10.1007/BF01896404

W. Lück, L 2 -Invariants: Theory and Applications to Geometry and K-theory, 2002.
DOI : 10.1007/978-3-662-04687-6

W. Lück and D. Osin, -BETTI NUMBER OF RESIDUALLY FINITE GROUPS, Journal of Topology and Analysis, vol.81, issue.02, pp.153-160, 2011.
DOI : 10.1112/blms/bdq075

N. Meesschaert, S. Raum, and S. Vaes, Stable orbit equivalence of Bernoulli actions of free groups and isomorphism of some of their factor actions, Positive sofic entropy implies finite stabilizer, pp.31-274, 2013.
DOI : 10.1016/j.exmath.2012.08.012

R. Miles, The entropy of algebraic actions of countable torsion-free abelian groups, Fundamenta Mathematicae, vol.201, issue.3, pp.261-282, 2008.
DOI : 10.4064/fm201-3-4

D. Ornstein and B. Weiss, Ergodic theory of amenable group actions. I: The Rohlin lemma, Bulletin of the American Mathematical Society, vol.2, issue.1, pp.161-164, 1980.
DOI : 10.1090/S0273-0979-1980-14702-3

D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, Journal d'Analyse Math?matique, vol.109, issue.1, pp.1-141, 1987.
DOI : 10.1007/978-1-4684-9488-4

V. Pestov, Abstract, Bulletin of Symbolic Logic, vol.21, issue.04, pp.449-480, 2008.
DOI : 10.1142/S0129167X04002417

J. Peterson and A. Thom, Group cocycles and the ring of affiliated operators, Inventiones mathematicae, vol.36, issue.1, pp.561-592, 2011.
DOI : 10.1112/S0024609303002674

S. Popa, SOME COMPUTATIONS OF 1-COHOMOLOGY GROUPS AND CONSTRUCTION OF NON-ORBIT-EQUIVALENT ACTIONS, Journal of the Institute of Mathematics of Jussieu, vol.5, issue.02, pp.309-332, 2006.
DOI : 10.1017/S1474748006000016

V. A. Rokhlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat, Nauk, vol.22, issue.5, pp.3-56, 1967.

B. Seward, Ergodic actions of countable groups and finite generating partitions, to appear in Groups

B. Seward, Every action of a non-amenable group is the factor of a small action, preprint

B. Seward, Krieger's finite generator theorem for ergodic actions of countable groups I, preprint

B. Seward, Krieger's finite generator theorem for ergodic actions of countable groups II, preprint

B. Seward and R. D. Tucker-drob, Borel structurability on the 2-shift of a countable groups, preprint

A. Thom, Sofic groups and diophantine approximation, Communications on Pure and Applied Mathematics, vol.62, issue.8, pp.1155-1171, 2008.
DOI : 10.1007/978-3-662-10451-4

URL : http://arxiv.org/abs/math/0701294

R. D. Tucker-drob, Invariant means and the structure of inner amenable groups, preprint

M. Unité-de, . Pures, . Appliquées, C. Ens-lyon, and . Université-de-lyon, 46 allée d'Italie, 69007 Lyon, France E-mail address: damien.gaboriau@ens-lyon