Generalisation of the Eyring-Kramers transition rate formula to irreversible diffusion processes

Abstract : In the small noise regime, the average transition time between metastable states of a reversible diffusion process is described at the logarithmic scale by Arrhenius' law. The Eyring-Kramers formula classically provides a subexponential prefactor to this large deviation estimate. For irreversible diffusion processes, the equivalent of Arrhenius' law is given by the Freidlin-Wentzell theory. In this paper, we compute the associated prefactor and thereby generalise the Eyring-Kramers formula to irreversible diffusion processes. In our formula, the role of the potential is played by Freidlin-Wentzell's quasipotential, and a correction depending on the non-Gibbsianness of the system along the instanton is highlighted. Our analysis relies on a WKB analysis of the quasistationary distribution of the process in metastable regions, and on a probabilistic study of the process in the neighbourhood of saddle-points of the quasipotential.
Type de document :
Article dans une revue
Annales Henri Poincaré, Springer Verlag, 2016, 17 (12), pp.3499-3532. 〈10.1007/s00023-016-0507-4〉
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-01174112
Contributeur : Julien Reygner <>
Soumis le : mercredi 8 juillet 2015 - 13:14:01
Dernière modification le : jeudi 19 avril 2018 - 14:54:04
Document(s) archivé(s) le : vendredi 9 octobre 2015 - 10:46:51

Fichiers

eyrkra.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Freddy Bouchet, Julien Reygner. Generalisation of the Eyring-Kramers transition rate formula to irreversible diffusion processes. Annales Henri Poincaré, Springer Verlag, 2016, 17 (12), pp.3499-3532. 〈10.1007/s00023-016-0507-4〉. 〈ensl-01174112〉

Partager

Métriques

Consultations de la notice

159

Téléchargements de fichiers

205