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Abstract

For a proper choice of the analysis window, a short-time Fourier transform is known to be completely char-
acterized by its zeros, which coincide with those of the associated spectrogram. A simplified representation
of the time-frequency structure of a signal can therefore be given by the Delaunay triangulation attached to
spectrogram zeros. In the case of multicomponent AM-FM signals embedded in white Gaussian noise, it turns
out that each time-frequency domain attached to a given component can ve viewed as the union of adjacent
Delaunay triangles whose edge length is an outlier as compared to the distribution in noise-only regions.
Identifying such domains offers a new way of disentangling the different components in the time-frequency
plane, as well as of reconstructing the corresponding waveforms.
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1 Introduction

Spectrograms—i.e., squared magnitudes of Short-Time Fourier Transforms (STFTs)—are among the simplest
and most natural tools for performing a time-frequency analysis of signals [8]. In the case of AM-FM-type signals
with a limited number of components, spectrograms are relatively sparse representations, with a few energy
ribbons localized along the time-frequency trajectories of the different components1. Filtering those components
is generally achieved by identifying the time-frequency domains defining the ribbons, and then reconstructing
waveforms by inverting the transform after masking. This long-standing question has recently received a renewned
interest, either because of the development of specific techniques such as synchrosqueezing [1, 6, 22] for which
isolating domains of influence is a pre-requisite to reconstruction [20], or because of new proposals such as
“contours” [19] for defining basins of attraction attached to components.

In most cases, the rationale for identifying “signal regions” is based on local energy considerations and/or
curves such as ridges [7] which are supposed to capture local energy concentration. In contrast with such
approaches based on large values of the representation, we will propose here to make use of zeros as characteristic
points.

1Sparser representations can even be achieved by means of techniques such as reassignment [10, 13], synchrosqueezing [1, 6, 22]
or `1-minimization [11], but this is not the main point of this paper.
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The paper is organized as follows. Section 2 is devoted to STFT/spectrogram, with basics recalled in Section
2.1 and elementary facts on the white Gaussian noise case in Section 2.2. Section 3 then discusses more specifically
the role played by zeros in a STFT/spectrogram: Section 3.1 justifies the complete representation they offer for a
proper choice of the short-time window, whereas Section 3.2 suggests the Delaunay triangulation based on zeros
as a way of getting a simplified description. This paves the way for the new filtering approach that is discussed
and illustrated in Section 4.

2 STFT and spectrogram

2.1 Definitions and basics

Given a signal x(t) and a window h(t), the Short-Time Fourier Transform (STFT) F
(h)
x (t, ω) is classically defined

as the inner product between x(t) and shifted versions (in time and frequency) of h(t):

F (h)
x (t, ω) = 〈x,Ttωh〉, (1)

where Ttω stands for some joint time-frequency shift operator. Since individual time and frequency shifts do
not commute, this operator is not unique and the transform is defined up to a pure phase term. For a sake of
simplicity and symmetry, we will choose here this phase term by identifying Ttω with the Weyl operator [4, 5]:

(Ttωh) (s) = h(s− t) exp

{
iω

(
s− t

2

)}
, (2)

thus ending up with the explicit definition:

F (h)
x (t, ω) =

∫ +∞

−∞
x(s)h(s− t) exp

{
−iω

(
s− t

2

)}
ds. (3)

The corresponding spectrogram (which does not depend upon the choice of the phase term) simply follows as:

S(h)
x (t, ω) =

∣∣∣F (h)
x (t, ω)

∣∣∣2 . (4)

If both the signal and the window belong to L2(R)—i.e., are of finite energy—, the (complex-valued) STFT
is an isometry from L2(R) to L2(R2):∫∫ +∞

−∞
F (h)
x (t, ω)F

(h)
y (t, ω) dt

dω

2π
= ‖h‖22 〈x, y〉, (5)

from which it follows that the associated (real-valued) spectrogram can be seen as an energy distribution in the
time-frequency plane, since

1

‖h‖22

∫∫ +∞

−∞
S(h)
x (t, ω) dt

dω

2π
= ‖x‖22. (6)

It is well-known that F
(h)
x (t, ω) and S

(h)
x (t, ω) are not any 2D functions in the sense that, by construction,

they inherit some structure from their definition (1) as inner product between the analyzed signal x(t) and the
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family of analyzing waveforms that are all derived from the window h(t) by shifts in both time and frequency.
More precisely, the STFT (3) satisfies the reproducing identity:

F (h)
x (t′, ω′) =

∫∫ +∞

−∞
K(t′, ω′; t, ω)F (h)

x (t, ω) dt
dω

2π
, (7)

in which the reproducing kernel K(t′, ω′; t, ω) is (up to a complex-valued multiplicative term) nothing but the
STFT of the analyzing window:

K(t′, ω′; t, ω) =
1

‖h‖22
exp

{
i

2
(ωt′ − ω′t)

}
F

(h)
h (t′ − t, ω′ − ω). (8)

An equivalent formulation amounts to rewriting F
(h)
h (t, ω) as Ah(ω, t), with

Ax(ξ, τ) =

∫ +∞

−∞
x
(
θ +

τ

2

)
x
(
θ − τ

2

)
exp{−iξθ} dθ (9)

the so-called ambiguity function [8]. Doing so, it is easy to justify that any STFT (or spectrogram) has necessarily
some local redundancy since the reproducing kernel (8) cannot be arbitrarily peaked in both time and frequency.
This follows from general uncertainty relations attached to ambiguity functions in terms of support and/or
volume. In their most elaborate forms, these relations involve Lp norms and lead to inequalities such as [18]{

‖Ax‖p ≥ Bp‖x‖22 for p < 2
‖Ax‖p ≤ Bp‖x‖22 for p > 2

(10)

with Bp = (2/p)1/p, whereas ‖Ax‖2 = ‖x‖22. In all cases, inequalities are sharp, with the bound attained
by Gaussians. Following Gabor’s terminology [12], those functions that correspond to maximally concentrated
spectrograms are referred to as “logons”.

In contrast with these volume inequalities, a complementary form of uncertainty can be obtained regarding
support [14]. Indeed, it is known that a signal cannot be compactly supported in both time and frequency, which
prevents the squared magnitude of an ambiguity function to concentrate all of the signal energy (as in (6), with
h = x) in a domain Ω of finite area. Therefore, if we remark that applying the Cauchy-Schwarz inequality to (9)
guarantees that |Ax(ξ, τ)| ≤ ‖x‖22, we can conclude that, if∫∫

Ω

|Ax(ξ, τ)|2 dτ dξ
2π
≥ (1− ε)‖x‖22 (11)

for some ε > 0, then we have necessarily
supp(Ω) ≥ 1− ε. (12)

The consequence of these inequalities (volume and support) is that the reproducing kernel (8) has necessarily
some non-zero extension that controls the local redundancy of the STFT and of the corresponding spectrogram.
In the particular case of the (unit energy) Gaussian window2

g(t) = π−1/4 exp{−t2/2}, (13)

which is referred to as “circular” since

Ag(ξ, τ) = exp

{
−1

4
(ξ2 + τ2)

}
, (14)

the reproducing kernel is maximally concentrated and defines an “influence domain” which is circular and whose
radius is given by some effective area attached to the 2D Gaussian function of variance 2.

2In the Physics literature (see, e.g., [16]), the corresponding spectrogram is referred to as the “Husimi distribution function” [15].
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2.2 Spectrogram of white Gaussian noise

Whereas the spectrogram is classically defined for finite energy, deterministic signals, it can also be used for the
analysis of finite power, harmonizable random processes [8]3. More specifically, we will restrict to the idealized
case of zero-mean, analytic, white Gaussian noise n(t) such that:

E{n(t)n(t′)} = γ0 δ(t− t′) ; E{n(t)n(t′)} = 0. (15)

It readily follows from (4) and (15) that the expected value of the spectrogram is in this case constant:

E
{
S(h)
n (t, ω)

}
= γ2

0 , (16)

whereas the covariance between spectrogram values at two different locations in the time-frequency plane only
depends on the corresponding lags in both time and frequency, according to the relation:

cov
{
S(h)
n (t, ω), S(h)

n (t′, ω′)
}

= γ2
0 S

(h)
h (t′ − t, ω − ω′). (17)

In the specific case of the circular Gaussian window (13), this covariance takes on the simple form

cov
{
S(g)
n (t, ω), S(g)

n (t′, ω′)
}

= γ2
0 exp

{
−1

2
d2((t, ω), (t′, ω′))

}
(18)

where
d((t, ω), (t′, ω′)) =

√
(t− t′)2 + (ω − ω′)2 (19)

measures the Euclidian distance in the plane between the two considered points.
As a function of this only distance, the spectrogram of white Gaussian noise can then be considered as a

second-order homogeneous (or stationary) field. This homogeneity property carries over to characteristic points
of the surface (such as extrema, be they local maxima or zeros). However, due to the reproducing kernel structure
recalled above, the distribution of those characteristics points is expected to be constrained as well.

3 Spectrogram zeros

3.1 The Bargmann connection

Time and frequency are usually considered either independently or jointly, but it might be interesting to see them
as coordinates of a complex-valued variable, thus identifying the time-frequency plane with the complex plane.
Doing so by introducing z = ω + it, a direct calculation shows that, when evaluated with the circular Gaussian
window g(t) defined in (13), the STFT (3) can be re-written as:

F (g)
x (t, ω) = exp

{
−1

4
|z|2
}
Fx(z), (20)

where

Fx(z) =

∫ +∞

−∞
A(z, s)x(s) ds (21)

3We will here formally apply the definition (4) to finite duration realizations of such stochastic processes, looking at statistical
properties of the corresponding spectrogram characteristics.
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and

A(z, s) := π−
1
4 exp

{
−1

2
s2 − isz +

1

4
z2

}
. (22)

This corresponds to the Bargmann factorization of the STFT, with (21) the Bargmann transform [2], whose
kernel is given by (22). One interest of such a companion formulation for the STFT is that (21) is an entire
function, with consequences on the structure of the STFT and the associated spectrogram. More specifically,
since the circular Gaussian window (13) is normalized so as to be of unit energy, this immediately results in the

upper bound |F (g)
x (t, ω)| ≤ ‖x‖. Together with the factorization (20), this leads to

|Fx(z)| ≤ ‖x‖ exp

{
1

4
|z|2
}
, (23)

i.e., to the fact that Fx(z) is an entire function of order 2 [3]. As a consequence, it admits a Weierstrass-Hadamard
factorization of the form [3, 13, 16, 23]

Fx(z) = zm exp{C0 + C1z + C2z
2}

∞∏
n=1

(
1− z

zn

)
exp

{
z

zn
+

1

2

(
z

zn

)2
}
, (24)

where the variables zn = ωn + itn stand for the (infinitely many) zeros of the Bargmann transform which,
by construction, also correspond to the zeros of the STFT and of the spectrogram. As commented in ([23],
Appendix B), the quadratic polynomial that enters the exponential in front of the infinite product allows for
simple geometrical transformations such as normalization (C0), translation/rotation (C1) and squeezing (C2),
while the integer m is an extra degree of freedom corresponding to a possible m-fold zero at the origin of the
plane (this is, e.g., the case for Hermite functions whose order is strictly positive). Although (24) is unlikely
to be used as such for a possible reconstruction, its meaning is that the Bargmann transform (and, hence, the
associated STFT/spectrogram) is nevertheless completely characterized by the distribution of its zeros.

3.2 Delaunay triangulation

Since zeros completely characterize a STFT, it is natural to consider them as a 2D point process in the time-
frequency plane, with distinctive properties attached to the specific nature of the analyzed signal. We can
therefore get a simplified, geometrical description of the time-frequency structure of a signal by looking at
diagrams connecting STFT/spectrogram zeros—the so-called “stellar representation” in Quantum Mechanics
[17] (see also [13] for a related time-frequency perspective)—, the simplest one being the Delaunay triangulation
[21]4. An example of a Delaunay triangulation attached to the collection of STFT/spectrogram zeros in the
case of white Gaussian noise is given in Figure 1 (left diagram). Since the stationarity of the analyzed white
Gaussian noise results in the homogeneity of the 2D random field defined by the STFT/spectrogram (see Section
2.2), the distribution of zeros is itself homogeneous all over the plane, a situation that is expected to be broken
whenever some signal—with a coherent time-frequency structure, such as a frequency modulation—happens to
be superimposed. As evidenced in the same Figure 1 (right diagram), this is exactly what happens: when an
AM-FM chirp is added to the noise of the left diagram, the noise-only regions remain unaffected whereas the
“signal domain” is characterized not only by large spectrogram values but also by Delaunay triangles that are
more elongated than in noise-only regions.

4Let us recall that a Delaunay triangulation is dual of a Voronoi tessellation in which each cell attached to a given point considered
as a center, consists in all points that are closer to this center than to any other one.
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4 Time-frequency filtering

4.1 Rationale

Both the theoretical considerations of the previous sections and the evidences of Figure 1 suggest that signal
domains can be identified by looking at Delaunay triangles that depart from the expected behavior attached
to noise, thus calling for a characterization of this reference situation. In this respect, Figure 2 displays the
distribution of edge lengths of Delaunay triangles constructed upon STFT/spectrogram zeros in the nominal case
of white Gaussian noise. What is evidenced is that such a length is essentially bounded above by a maximum
value Lmax ∼ 2.16, with a very low probability to exceed 2 (referring as |emn| the distance d(zm, zn) between any
two zeros zm and zn, a numerical evaluation shows that Prob {|emn| > 2} ∼ 10−3). Selecting Delaunay triangles
on the basis of thresholding their maximum edge length is therefore a simple way of identifying elementary signal
domains whose concatenation defines supports—delineated by zeros—for time-frequency 1/0 masks to be applied
to STFT prior reconstruction of the corresponding signal components.

4.2 Algorithm

Based on the elements obtained above, the time-frequency filtering algorithm is quite straightforward and can
be summarized as follows:

1. Perform Delaunay triangulation over STFT zeros zm;

2. Identify outlier edges such that |emn| = d(zm, zn) > η = 2;

3. Keep triangles with at least one outlier edge;

4. Group adjacent such triangles in connected, disjoint domains Dj ;

5. Multiply STFT with labeled 1/0 masks 1Dj (t, ω);

6. Reconstruct the disentangled components, domain by domain.

The last (reconstruction) step can be achieved by using either the standard formula

xj(t) =

∫ ∫
(t,ω)∈Dj

F (h)
x (t, ω)h(s− t) exp

{
iω(s− t

2
)

}
dt
dω

2π
(25)

or the simplified form

xj(t) =
1

h(0)

∫
(t,ω)∈Dj

F (h)
x (t, ω)

dω

2π
(26)

that is preferred in the synchrosqueezing framework [22].
Some remarks can be made about this approach and how to use it. The first point is that, whatever the

level that may be very weak, noise contributions are supposed to actually exist all over the plane. In the case
where truely zero values would be encountered in the signal under study (e.g., due to zero-padding introduced
so as to limit end-point effects), some very small quantity of noise has to be added. From a different perspective,
the outlier selection (Point 2. of the algorithm) relies on some threshold η whose value determines a trade-
off between true detection and false positives: choosing η = 2 for this threshold proved quite effective on the
considered examples, but this could be studied further. Incidentally, one can remark that the identified outliers
also comprise the very long edges that are at the periphery of the domain and that close the convex hull of all
zeros. A simple recipe is not to consider those edges such that |emn| � Lmax, where Lmax ∼ 2.16 corresponds
to the observed upper bound for edge length (see Figure 2).
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4.3 Examples

The first example consists in a Hermite function whose time-frequency “trajectory” is known to be a circle [9].
The overall filtering procedure (triangulation, selection of outliers, grouping and masking) is summarized in
Figure 3, with the corresponding reconstruction result in Figure 4.

The second example corresponds to the classical benchmark “bat signal”5, whose spectrogram and reassigned
spectrogram are plotted in Figure 5. The Delaunay selection of the domains corresponding to the different
components is presented in Figure 6, with individual reconstructions of the 3 main ones plotted in Figure 7,
together with their recombination to be compared to the complete waveform.
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Figure 1: Delaunay triangulation. Left diagram: In the case of white Gaussian noise, the Delaunay tri-
angulation (white lines) constructed upon the zeros of the spectrogram (white dots) reveals an homogeneous
distribution of random triangles. Right diagram: when a signal is superimposed to noise, the distribution of
the Delaunay triangles remains unaffected in noise-only regions, whereas the “signal domain” is characterized by
more elongated triangles.
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Figure 2: Delaunay triangulation — Distribution of edge lengths. In the case of white Gaussian noise,
the distribution of edge lengths in Delaunay triangles constructed upon STFT/spectrogram zeros (top diagram:
linear scale; bottom diagram: logarithmic scale) is essentially bounded above by a maximum length Lmax ∼ 2.16
(full line). Moreover, the probability that the edge length exceeds the value 2 (dotted line) is about 10−3.
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Figure 3: Time-frequency filtering — Synthetic signal example (1/2). Top left: spectrogram of a Hermite
function embedded in white Gaussian noise (SNR = 10 dB). Bottom left: Delaunay triangulation constructed
on the zeros of the spectrogram, with outlier edges (see text) highlighted in red. Bottom right: time-frequency
domains obtained by concatenating adjacent Delaunay triangles with outlier edges, each domain being labeled
by a color. Top right: masked spectrogram when retaining as domain the blue ribbon.
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Figure 4: Time-frequency filtering — Synthetic signal example (2/2). Top diagram: noisy observation.
Bottom diagram: reconstructed waveform obtained by inverting the masked STFT of Figure 3 (top right),
together with the noise-free Hermite function for a sake of comparison.
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Figure 5: Time-frequency filtering — Real data example (1/3). Left diagram: spectrogram of the
benchmark “bat signal”. Right diagram: reassigned spectrogram.
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Figure 6: Time-frequency filtering — Real data example (2/3). Left diagram: Delaunay triangulation
constructed on the zeros of the spectrogram, with outlier edges (see text) highlighted in red. Right diagram:
time-frequency domains obtained by concatenating adjacent Delaunay triangles with outlier edges, each domain
being labeled by a color.

14



time

fre
qu

en
cy

time

fre
qu

en
cy

time

fre
qu

en
cy

time
 

 
original
reconstructed

Figure 7: Time-frequency filtering — Real data example (3/3). Top row: masked reassigned spectrograms
of the 3 main components. Middle row: the corresponding waveforms obtained by inverting the respective masked
STFTs. Bottom row: superimposition of the above 3 components, together with the original signal for a sake of
comparison.
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