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Abstract

In this paper we investigate the λr-calculus, a λ-calculus enriched with

resource control. Explicit control of resources is enabled by the presence

of erasure and duplication operators, which correspond to thinning and con-

traction rules in the type assignment system. We introduce directly the class

of λr-terms and we provide a new treatment of substitution by its decompo-

sition into atomic steps. We propose an intersection type assignment system

for λr-calculus which makes a clear correspondence between three roles

of variables and three kinds of intersection types. Finally, we provide the

characterisation of strong normalisation in λr-calculus by means of an in-

tersection type assignment system. This process uses typeability of normal

forms, redex subject expansion and reducibility method.

Keywords: lambda calculus resource control intersection types strong

normalisation typeability

Introduction

The notion of resource awareness and control has gained an important role both

in theoretical and applicative domains: in logic and lambda calculus as well as
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in programming langugages and compiler design.The idea to control the use of

formulae is present in Gentzen’s structural rules ([23]), whereas the idea to con-

trol the use of variables can be traced back to Church’s λI-calculus (e.g. [4]).

The augmented ability to control the number and order of uses of operations and

objects has a wide range of applications which enables, among others, compiler

optimisations and memory management that prevents memory leaking (e.g. [55]).

In this paper, we investigate the control of resources in the λ-calculus. We pro-

pose the λr-calculus, a λ-calculus enriched with resource control operators. The

explicit control of resources is enabled by the presence of erasure and duplication

operators, which correspond to thinning and contraction rules in the type assign-

ment system. Erasure is the operation that indicates that a variable is not present

in the term anymore, whereas duplication indicates that a variable will have two

occurrences in the term which receive specific names to preserve the “linearity” of

the term. Indeed, in order to control all resources, in the spirit of the λI-calculus

(see e.g. [4]), void lambda abstractions are not acceptable, so in order to have

λx.M well-formed the variable x has to occur in M. But if x is not used in the

term M, one must perform an erasure by using the expression x⊙M. In this way,

the term M does not contain the variable x, but the term x⊙M does. Similarly,

a variable should not occur twice. If nevertheless, we want to have two positions

for the same variable, we have to duplicate it explicitly, using fresh names. This

is done by using the operator x <x1
x2 M, called duplication which creates two fresh

variables x1 and x2.

Outline of the paper We first introduce the syntax and reduction rules of the

λr-calculus (Section 1). We then introduce intersection types into the λr-calculus

(Section 2). Finally, by means of intersection types, we completely caracterise

strong normalisation in λr (Section 3).

Section 1 We first introduce the syntax and reduction rules of the λr-calculus.

Explicit control of erasure and duplication leads to decomposition of reduction

steps into more atomic steps, thus revealing the details of computation which

are usually left implicit. Since erasing and duplicating of (sub)terms essentially

changes the structure of a program, it is important to see how this mechanism re-

ally works and to be able to control this part of computation. We chose a direct

approach to term calculi rather than taking a more common path through linear

logic [1, 7].

Although the design of our calculus has been motivated by theoretical con-
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siderations, it may have practical implications as well. Indeed, for instance in the

description of compilers by rules with binders [45, 46], the implementation of sub-

stitutions of linear variables by inlining1 is simple and efficient when substitution

of duplicated variables requires the cumbersome and time consuming mechanism

of pointers and it is therefore important to tightly control duplication. On the other

hand, a precise control of erasing does not require a garbage collector and prevents

memory leaking.

Section 2 Intersection types were introduced in [13, 14, 44, 48] to overcome

the limitations of the simple type discipline in which the only forming operator

is an arrow →. The newly obtained intersection type assignment systems enable

a complete characterisation of termination of term calculi [53, 21, 24]. Later on,

intersection types became a powerful tool for characterising strong normalisation

in different calculi [18, 34, 39, 42].

We propose an intersection type assignment system λr∩ that integrates in-

tersection into logical rules, thus preserving syntax-directedness of the system.

We assign a restricted form of intersection types to terms, namely strict types,

therefore minimizing the need for pre-order on types.

Intersection types in the presence of resource control operators were firstly

introduced in [26], where two systems with idempotent intersection were pro-

posed. Later, non-idempotent intersection types for contraction and weakening

are treated in [8]. In this paper, we treat a general form of intersection without any

assumptions about idempotence. As a consequence, our intersection type system

can be considered both as idempotent or as non-idempotent, both options having

their benefits depending on the motivation.

Intersection types fit naturally with resource control. Indeed, the control al-

lows us to consider three roles of variables: variables as placeholders (the tradi-

tional view of λ-calculus), variables to be duplicated and variables to be erased

because they are irrelevant. For each kind of a variable, there is a kind of type

associated to it, namely a strict type for a placeholder, an intersection type for a

variable to-be-duplicated, and a specific type ⊤ for an erased variable.

Section 3 By the means of the introduced intersection type assignment system

λr∩, we manage to completely characterise strong normalisation in λr, i.e. we

prove that terms in the λr-calculus enjoy strong normalisation if and only if they

1Inlining is the technique which consists in copying at compile time the text of a function

instead of implementing a call to that function.
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are typeable in λr∩. First, we prove that all strongly normalising terms are ty-

peable in the λr-calculus by using typeability of normal forms and redex subject

expansion. We then prove that terms typeable in λr-calculus are strongly normal-

ising by adapting the reducibility method for explicit resource control operators.

Main contributions The main contributions of this paper are:

(i) an improved presentation of resource control lambda calculus syntax with a

direct definition of the syntax of resource control terms. Other presentations

define first an unconstrainted syntax of terms with duplication and erasure

which is later restricted to linear terms;

(ii) a new treatment of substitution and its decomposition into more atomic

steps;

(iii) an intersection type assignment system for resource control lambda calculus

which makes explicit the intrinsic correspondence between three kinds of

variables and three kinds of intersection types;

(iv) a characterisation of strong normalisation in λr-calculus by means of an

intersection type assignment system, by using typeability of normal forms,

redex subject expansion and reducibility.
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1 Resource control lambda calculus λr

The resource control lambda calculus, λr, is an extension of the λ-calculus with

explicit erasure and duplication.

1.1 Syntax

Terms and lists, respectively sets, of free variables in λr are mutually recursively

defined.

Definition 1.

(i) The set of λr-terms, denoted by Λr, is defined by inference rules given in

Figure 1.

(ii) The list of free variables of a term M, denoted by Fv[M], is defined by

inference rules given in Figure 2.

(iii) The set of free variables of a term M, denoted by Fv(M), is obtained from

the list Fv[M] by unordering.

x ∈ Λr
(var)

M ∈ Λr x ∈ Fv(M)

λx.M ∈ Λr
(abs)

M ∈ Λr N ∈ Λr Fv(M)∩Fv(N) = /0

MN ∈ Λr
(app)

M ∈ Λr x /∈ Fv(M)

x⊙M ∈ Λr
(era)

M ∈ Λr x1,x2 ∈ Fv(M) x1 6= x2 x /∈ Fv(M)\{x1,x2}

x <x1
x2 M ∈ Λr

(dup)

Figure 1: Λr: the set of λr-terms

A λr-term, ranged over by M,N,P, ...,M1, ..., can be a variable from an enu-

merable set Λr (ranged over by x,y,z,x1, . . .), an abstraction, an application, an
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Fv[x] = [x]

Fv[M] = [x1,x2, ...,xm]

Fv[λxi.M] = [x1,x2, ...xi−1,xi+1, ...,xm]

Fv[M] = [x1, ...,xm] Fv[N] = [y1, ...,yn]

Fv[MN] = [x1, ...,xm,y1, ...,yn]

Fv[M] = [x1, ...,xm]

Fv[x⊙M] = [x,x1, ...,xm]

Fv[M] = [x1, ...,xm]

Fv[x <xi
x j

M] = [x,x1, ...xi−1,xi+1, ......x j−1,x j+1, ...,xm]

Figure 2: List of free variables of a λr-term

erasure or a duplication. The duplication x <x1
x2

M binds the variables x1 and x2

in M and introduces a free variable x. The erasure x⊙M introduces also a free

variable x. In order to avoid parentheses, we let the scope of all binders extend to

the right as much as possible.

Informally, we say that a term is an expression in which every free variable

occurs exactly once, and every binder binds (exactly one occurrence of) a free

variable. Our notion of terms corresponds to the notion of linear terms in [30]. In

that sense, only linear expressions are in the focus of our investigation. In other

words, a term is well-formed in λr if and only if bound variables appear actually

in the term and variables occur at most once. This assumption is not a restriction,

since every pure λ-term has a corresponding λr-term and vice versa, due to the

embeddings given in Definition 2 and 3 and illustrated by Example 5.

Definition 2. The mapping [ ]rc : Λ → Λr is defined in the following way:

[x]rc = x

[λx.t]rc =

{

λx.[t]rc, x ∈ Fv(t)
λx.x⊙ [t]rc, x /∈ Fv(t)

[MN]rc =

{

[t]rc[s]rc, Fv(t)∩Fv(s) = /0

x <x1
x2 [t[x1/x]s[x2/x]]rc, x ∈ Fv(t)∩Fv(s)

Reciprocally, a λr-term has a corresponding λ-term.
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Definition 3. The mapping [ ]r : Λr → Λ is defined in the following way:

[x]r = x

[λx.M]r = λx.[M]r

[M N]r = [M]r [N]r

[x <x1
x2

M]r = [M]r[x/x1][x/x2]

[x⊙M]r = [M]r

Proposition 4.

(i) For each pure lambda term t ∈Λ there is a term M ∈Λr such that [t]rc =M.

(ii) For each resource lambda term M ∈ Λr there is a term t ∈ Λ such that

[M]r = t.

Example 5. Pure λ-terms λx.y and λx.xx are not λr-terms, whereas [λx.y]rc =
λx.(x⊙ y) and [λx.xx]rc = λx.x <x1

x2
(x1x2) are both λr-terms.

(var)
y ∈ Λr x /∈ Fv(y)

(era)
x⊙ y ∈ Λr x ∈ Fv(x⊙ y)

(abs)
λx.x⊙ y ∈ Λr

...

x1x2 ∈ Λr x /∈ Fv(x1x2)\{x1,x2} x1,x2 ∈ Fv(x1x2)
(dup)

x <x1
x2
(x1x2) ∈ Λr x ∈ Fv(x <x1

x2
(x1x2))

(abs)
λx.x <x1

x2
(x1x2) ∈ Λr

In the sequel, we use the following abbreviations:

• x1 ⊙ ... xn ⊙M is abbreviated to X ⊙M, when X is the list [x1,x2, ...,xn];

• x1 <
y1
z1
... xn <

yn
zn M is abbreviated to X <Y

Z M if X is the list [x1,x2, ...,xn],
Y is the list [y1,y2, ...,yn] and Z is the list [z1,z2, ...,zn].

7



Notice that X , Y and Z are lists of equal length. If n = 0, i.e. if X , Y and Z

are the empty lists, then X ⊙M = X <Y
Z M = M. Note that later on due to the

equivalence relation defined in Figure 7, in X ⊙M we can take X to be the set

{x1,x2, ...,xn}.

In what follows we use Barendregt’s convention [4] for variables: in the same

context a variable cannot be both free and bound. This applies to binders like

λx.M which binds x in M and x <x1
x2

M which binds x1 and x2 in M.

1.2 Substitution

At this point, we chose to introduce a substitution operator to define substitution

in Λr. Due to its interference with the linearity of terms and its slight difference

with the standard substitution of the λ-calculus, the concept of substitution has

to be carefully defined in the λr-calculus. For that reason, in Definition 6 we

first make precise the syntax of λ�

r, i.e. the language λr extended with a substi-

tution operator, by providing mutually recursive definitions of λ�

r-terms and lists

(respectively sets) of free variables (see Figures 3 and 4).

Definition 6.

(i) The set of λ�

r-terms, denoted by Λ�

r, is defined by inference rules given in

Figure 3.

(ii) The list of free variables of a λ�

r-term M, denoted by Fv�[M], is defined by

inference rules given in Figure 4.

(iii) The set of free variables of a λ�

r-term M, denoted by Fv�(M), is obtained

from the list Fv�[M] by unordering.

Notice that the set Λr is a strict subset of the set Λ�

r, Λr ⊂ Λ�

r, and that N in

M[N/x] is substitution free, therefore we can write both Fv�(N) and Fv(N) for N

in M[N/x]. Also, notice that if a term M is substitution free, then Fv�(M) =
Fv(M). Barendregt’s convention applies to the substitution operator as well,

where M[N/x] can be seen as a binder for x in M.

Definition 7.
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x ∈ Λ�

r

(var)

M ∈ Λ�

r x ∈ Fv�(M)

λx.M ∈ Λ�

r

(abs)
M ∈ Λ�

r N ∈ Λ�

r Fv�(M)∩Fv�(N) = /0

MN ∈ Λ�

r

(app)

M ∈ Λ�

r x /∈ Fv�(M)

x⊙M ∈ Λ�

r

(era)

M ∈ Λ�

r x /∈ Fv�(M)\{x1,x2} x1,x2 ∈ Fv�(M) x1 6= x2

x <x1
x2

M ∈ Λ�

r

(dup)

M ∈ Λ�

r x ∈ Fv�(M) N ∈ Λr Fv�(M)\{x} ∩Fv(N) = /0

M[N/x] ∈ Λ�

r

(sub)

Figure 3: Λ�

r: the set of λ�

r-terms

Fv�[x] = [x]

Fv�[M] = [x1,x2, ...,xm]

Fv�[λxi.M] = [x1,x2, ...xi−1,xi+1, ...,xm]

Fv�[M] = [x1, ...,xm] Fv�[N] = [y1, ...,yn]

Fv�[MN] = [x1, ...,xm,y1, ...,yn]

Fv�[M] = [x1, ...,xm]

Fv�[x⊙M] = [x,x1, ...,xm]

Fv�[M] = [x1, ...,xm]

Fv�[x <xi
x j

M] = [x,x1, ...xi−1,xi+1, ......x j−1,x j+1, ...,xm]

Fv�[M] = [x1, ...,xm] Fv[N] = [y1, ...,yn]

Fv�[M[N/xi]] = [x1,x2, ...xi−1,xi+1, ...,xm,y1, ...,yn]

Figure 4: List of free variables of a λ�

r-term
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(i) The evaluation of the substitution operator in the λ�

r-term M[N/x], denoted

by �−−−→, is defined by the rules given in Figure 5. As usual, it is closed

under α-equivalence and regular contexts. In the last row in Figure 5, terms

N1 and N2 are obtained from the term N by renaming of its free variables,

i.e. by substitution of all free variables of N by fresh variables, respectively.

(ii)
�

−−−−→→ is the reflexive, transitive closure of �−−−→.

x[N/x] �−−−→ N

(λy.M)[N/x] �−−−→ λy.M[N/x], x 6= y

(MP)[N/x] �−−−→ M[N/x]P, x ∈ Fv�(M)

(MP)[N/x] �−−−→ MP[N/x], x ∈ Fv�(P)

(y⊙M)[N/x] �−−−→ y⊙M[N/x], x 6= y

(x⊙M)[N/x] �−−−→ Fv(N)⊙M

(y <
y1
y2 M)[N/x] �−−−→ y <

y1
y2 M[N/x], x 6= y

(x <x1
x2

M)[N/x] �−−−→ Fv[N]<
Fv[N1]
Fv[N2]

M[N1/x1][N2/x2]

Figure 5: Evaluation of the substitution operator in the λ�

r-calculus

For a full understanding of the role of λ�

r, we would like to stress two facts:

• �−−−→ is the operational definition of the substitution in Λr.

• �−−−→ is used with a higher priority than the reductions of λr given in

Figure 6 (because it is used to define substitution in Λr).

To summarise, we have added a new operator to the syntax of λr called substi-

tution operator and denoted by [ / ], and defined the evaluation of the substitution

operator, which brings us to λ�

r-calculus.

We prove the following safety property.

Proposition 8.

(i) If Q
�

−−−−→→ R and Q ∈ Λ�

r, then R ∈ Λ�

r.
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(ii) If Q
�

−−−−→→ R then Fv�(Q) = Fv�(R).

Proof. These properties are preserved by context. Therefore we can restrict our

proof to the case where Q is the instance of the left-hand side of a rule in Figure 5

and consider only one-step reduction �−−−→. We consider only two paradigmatic

rules.

• (M P)[N/x] �−−−→ M[N/x] P with x ∈ Fv�(M).

– We know that x ∈ Fv�(M). Then (M P)[N/x] ∈ Λ�

r means

that M ∈ Λ�

r, P ∈ Λ�

r, Fv�(M) ∩ Fv�(P)= /0, N ∈ Λr and

(Fv�(M)∪Fv�(P))\{x} ∩ Fv(N) = /0. On the other hand,

M[N/x] P ∈ Λ�

r means M ∈ Λ�

r, N ∈ Λr, P ∈ Λ�

r and

Fv�(M[N/x]) ∩ Fv�(P) = /0. Since Fv�(M) ∩ Fv�(P)= /0 and

((Fv�(M)∪Fv�(P))\{x})∩Fv(N) = /0, this implies Fv�(M[N/x])∩
Fv�(P) = /0, hence the condition on free variables for M[N/x] P is ful-

filled.

– Fv�((M P)[N/x]) = Fv�(M P)\{x} ∪Fv(N) =
(Fv�(M)∪Fv�(P))\{x} ∪Fv(N) =
(Fv�(M)∪Fv(N))\{x} ∪Fv�(P) = Fv�(M[N/x] P).

• (x⊙M)[N/x] �−−−→ Fv(N)⊙M.

– (x ⊙ M)[N/x] ∈ Λ�

r means M ∈ Λ�

r, x /∈ Fv�(M), N ∈ Λr and

Fv�(M)∩Fv(N) = /0. On the other hand, Fv(N)⊙M ∈ Λ�

r means

M ∈ Λ�

r and Fv(N)∩Fv�(M) = /0.

– Fv�((x⊙M)[N/x]) = Fv�(M)∪Fv(N) =
⋃

y∈Fv(N){y}∪Fv�(M) =

Fv�(Fv(N)⊙M).

Figure 5 defines the evaluation of substitution in Λr. Indeed, the reduction
�

−−−−→→ terminates (Proposition 10) and when it terminates it yields actually a

term in Λr, i.e. there is no more substitution operator in the resulting term (Propo-

sition 14). Therefore, there is no need for defining evaluation of M[N/x] in case

of M ≡ Q[P/y], because Propositions 10 and 14 guarantee that Q[P/y] will be
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evaluated to some Q′ ∈ Λr, thus Q[P/y][N/x]
�

−−−−→→ Q′[N/x]
�

−−−−→→ Q′′, for

some Q′′ ∈ Λr.

In order to prove normalisation in Proposition 10, we introduce the following

measure.

Definition 9. The measure || · ||� on λ�

r-terms is defined as follows:

||x||� = 1

||λx.M||� = ||M||�+1

||M N||� = ||M||�+ ||N||�+1

||x⊙M||� = ||M||�+1

||x <y
z M||� = ||M||�+1

||M[N/x]||� = ||M||�.

Proposition 10. The reduction
�

−−−−→→ terminates.

Proof. The proof of the termination of the relation
�

−−−−→→ is based on the mea-

sure || · ||� defined in Definition 9. We associate with each term M a multiset

M ul(M) of natural numbers as follows:

M ul(x) = {{ }}

M ul(λy.M) = M ul(M)

M ul(M P) = M ul(M)∪M ul(P)

M ul(x⊙M) = M ul(M)

M ul(x <y
z M) = M ul(M)

M ul(M[N/x]) = {{||M||�}}∪M ul(M)

Notice that if a term P does not contain any substitution, then M ul(P) = {{ }}.
The multiset order is defined for instance in [3] and is denoted by ≫. The rules in
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Figure 5 yield the following inequalities.

{{||x||�}} ≫ M ul(N)

{{||M||�+ 1}}∪M ul(M) ≫ {{||M||�}}∪M ul(M)

{{||M||�+ ||P||�+ 1}}∪M ul(M)∪M ul(P) ≫ {{||M||�}}∪M ul(M)∪M ul(P)

{{||M||�+ ||P||�+ 1}}∪M ul(M)∪M ul(P) ≫ {{||P||�}}∪M ul(M)∪M ul(P)

{{||M||�+ 1}}∪M ul(M) ≫ {{||M||�}}∪M ul(M)

{{||M||�+ 1}}∪M ul(M) ≫ M ul(M)

{{||M||�+ 1}}∪M ul(M) ≫ {{||M||�}}∪M ul(M)

{{||M||�+ 1}}∪M ul(M) ≫ {{||M||�, ||M||�}}∪M ul(M)∪M ul(M)

Two inequalities require discussion. The first comes from x[N/x] �−−−→ N

and is satisfied because N is substitution free, therefore M ul(N) = {{ }}. The

second comes from (x <x1
x2 M)[N/x] �−−−→ Fv(N) <

Fv(N1)
Fv(N2)

M[N1/x1][N2/x2] and

is satisfied because ||x <x1
x2 M||� = ||M||� + 1 is larger than ||M||� and than any

||P||� for P subterm of M.

This shows that
�

−−−−→→ is well-founded, hence that
�

−−−−→→ terminates.

Proposition 11. The reduction
�

−−−−→→ is confluent.

Proof. There is no superposition between the left-hand sides of the rules of Fig-

ure 5, therefore there is no critical pair. Hence, the rewrite system is locally conflu-

ent. According to Proposition 10 it terminates, hence it is confluent by Newman’s

Lemma [3].

Definition 12 ( �−−−→ Normal forms). Starting from M and reducing by
�

−−−−→→,

the irreducible term we obtain is called the �−−−→-normal form of M and denoted

by M ↓�.

Every λ�

r-term has a unique normal form, the existence is guaranteed by

Proposition 10, whereas the uniqueness is a consequence of confluence (Proposi-

tion 11).

Proposition 13. If Q ∈ Λr then Q[N/x] ↓�∈ Λr.

Proof. Let us look at all the terms of the form Q[N/x] and their evaluation by the

rules in Figure 5.
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• Q is a variable. Due to rule (sub) in Figure 3, x ∈ Fv�(Q), hence Q must

be x. Therefore, all the cases when Q is a variable are exhausted.

• Q is an abstraction, then one rule is enough.

• Q is an application MP, then either x ∈ Fv�(M) or x ∈ Fv�(P), hence the

two rules exhaust this case.

• Q is an erasure y ⊙M, then either y = x or y 6= x and the two cases are

considered.

• Q is a duplication x <x1
x2 M, then again either y = x or y 6= x and the two

cases are considered.

Proposition 14. If M ∈ Λ�

r then M ↓�∈ Λr.

Proof. By induction on the number of substitutions in M, Proposition 13 being

the base case.

The substitution of n different variables in the same term is denoted by

M[N1/x1]...[Nn/xn] ↓
� .

These substitutions are actually performed in “parallel” since we prove that they

commute in the following proposition.

Proposition 15. If M ∈ Λr and xi ∈ Fv(M) for i ∈ {1, ...,n}, n ≥ 1 with xi 6= x j

for i 6= j, then

M[N1/x1]...[Nn/xn] ↓
� = M[Np(1)/xp(1)]...[Np(n)/xp(n)] ↓

�,

where (p(1), ..., p(n)) is a permutation of (1, ...,n).

Proof. We prove the proposition by induction on the structure of M,

• For M = x1 the statement holds since the only permutation is the identity,

namely, p(1) = 1, therefore x1[N1/x1] ↓
�= N1 = x1[Np(1)/xp(1)] ↓

�.

• If M = λy.Q then this works by induction. Notice that y 6= xi, for i ∈
{1, ...,n}.
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• If M = QR then we distinguish two cases:

– some of {x1, ...,xn} belong to Fv(Q), whereas the others belong to

Fv(R). Without loss of generality we can assume that for some k such

that 1 ≤ k < n, {x1, ...,xk} ∈ Fv(Q) and {xk+1, ...,xn} ∈ Fv(R). Then

(QR)[N1/x1]...[Nn/xn] reduces to

Q[N1/x1]...[Nk/xk] ↓
� R[Nk+1/xk+1]...[Nn/xn] ↓

�, and the result fol-

lows by two applications of induction hypothesis.

– If M = QR and {x1, ...,xn} all belong to either Fv(Q) or to Fv(R), the

result follows by induction.

• If M = y⊙Q with y 6= xi for i ∈ {1, ...,n}, then the result follows by induc-

tion.

• If M = x j ⊙Q then (x j ⊙Q)[N1/x1]...[N j/x j]...[Nn/xn] reduces to

Fv(N j)⊙Q[N1/x1]...[N j−1/x j−1][N j+1/x j+1]...[Nn/xn] ↓
�.

On the other hand, given an arbitrary permutation p, let us call k the index

such that p(k)= j. Then, (x j⊙Q)[Np(1)/xp(1)]...[Np(k)/xp(k)]...[Np(n)/xp(n)]
reduces to

Fv(Np(k))⊙Q[Np(1)/xp(1)]...[Np(k)−1/xp(k)−1][Np(k)+1/xp(k)+1]...[Np(n)/xp(n)] ↓
�.

Since N j = Np(k) then Fv(N j) = Fv(Np(k)) and the result follows by induc-

tion.

• If M = y <
y1
y2 Q where y 6= xi for i ∈ {1, ...,n}, then the result follows by

induction.

• If M = x j <
x′j

x′′j
Q then (x j <

x′j

x′′j
Q)[N1/x1]...[N j/x j]...[Nn/xn] reduces to

Fv(N j)<
Fv(N′

j)

Fv(N′′
j )

Q[N1/x1]...[N
′
j/x′j][N

′′
j /x′′j ]...[Nn/xn]≡ M1.

On the other hand, given an arbitrary permutation p, let us call k the index

such that p(k) = j. We have that

(xp(k) <
x′

p(k)

x′′
p(k)

Q)[Np(1)/xp(1)]...[Np(k)/xp(k)]...[Np(n)/xp(n)] reduces to

Fv(Nk) <
Fv(N′

k)

Fv(N′′
k
)

Q[Np(1)/xp(1)]...[N
′
p(k)/x′

p(k)][N
′′
p(k)/x′′

p(k)]...[Np(n)/xp(n)] ≡

M2. By induction hypothesis (recall that j = p(k)),
Q[N1/x1]...[N

′
j/x′j][N

′′
j /x′′j ]...[Nn/xn] and

Q[Np(1)/xp(1)]...[N
′
p(k)/x′

p(k)][N
′′
p(k)/x′′

p(k)]...[Np(n)/xp(n)]

have the same normal forms, therefore M1 ↓
�= M2 ↓

�.
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Finally, we can formally define substitution in Λr and simultaneous substitu-

tion in Λr via λ�

r-normal forms.

Definition 16 (Substitution in Λr ). If M ∈ Λr and N ∈ Λr then

M|||[N///x]|||, M[N/x] ↓� .

Notice that M|||[N///x]||| is well-defined, since M|||[N///x]||| ∈ Λr, due to Proposi-

tion 14. Moreover, Proposition 15 allows us to give simply a meaning to simulta-

neous substitution.

Definition 17 (Simultaneous substitution in Λr ). Simultaneous substitution in

Λr is defined as follows:

M|||[N1///x1, . . . ,Np///xp]|||= M|||[N1///x1]|||...|||[Np///xp]|||.

provided that Fv(Ni)∩Fv(N j) = /0 for i 6= j.

1.3 Operational semantics

The operational semantics of λr is defined by a reduction relation →, given by

the set of reduction rules in Figure 6. In the λr-calculus, one works modulo

the structural equivalence ≡λr
, defined as the smallest equivalence that satisfies

the axioms given in Figure 7 and is closed under α-conversion. The reduction

relation → is closed under ≡λr
and contexts. Its reflexive, transitive closure will

be denoted by →→. As usual, a term is a redex if it has the form of a term on

the left-hand side of a rule in Figure 6, whereas its contractum is the term on the

right-hand side of the same rule.

The reduction rules are divided into four groups. The main computational step

is β-reduction. The group of (γ) reductions perform propagation of duplications

into the expression. Similarly, (ω) reductions extract erasures out of expressions.

This discipline allows us to optimise the computation by delaying duplication of

terms on the one hand, and by performing erasure of terms as soon as possible on

the other. Finally, the rules in the (γω) group explain the interaction between the

explicit resource operators that are of different nature. Notice that in the rule (γω2)
the substitution in Λr is actually a syntactic variable replacement, i.e., renaming.2

2We decided to use the same notation in order to introduce less different notations.
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(β) (λx.M)N → M|||[N///x]|||

(γ1) x <x1
x2 (λy.M) → λy.x <x1

x2 M

(γ2) x <x1
x2
(MN) → (x <x1

x2
M)N, if x1,x2 6∈ Fv(N)

(γ3) x <x1
x2 (MN) → M(x <x1

x2 N), if x1,x2 6∈ Fv(M)

(ω1) λx.(y⊙M) → y⊙ (λx.M), x 6= y

(ω2) (x⊙M)N → x⊙ (MN)
(ω3) M(x⊙N) → x⊙ (MN)

(γω1) x <x1
x2
(y⊙M) → y⊙ (x <x1

x2
M), y 6= x1,x2

(γω2) x <x1
x2 (x1 ⊙M) → M|||[x///x2]|||

Figure 6: Reduction rules

(ε1) x⊙ (y⊙M) ≡λr
y⊙ (x⊙M)

(ε2) x <x1
x2 M ≡λr

x <x2
x1 M

(ε3) x <
y
z (y <u

v M) ≡λr
x <

y
u (y <z

v M)

(ε4) x <x1
x2 (y <

y1
y2 M) ≡λr

y <
y1
y2 (x <

x1
x2 M), x 6= y1,y2, y 6= x1,x2

Figure 7: Structural equivalence

Proposition 18 (Soundness of →→).

• For all terms M and N such that M → N, if M ∈ Λr, then N ∈ Λr.

• For all terms M and N such that M →→ N, if M ∈ Λr, then N ∈ Λr.

In particular, in the case of (β)-reduction if (λx.M)N ∈ Λr, then

M|||[N///x]|||= M[N/x] ↓�∈ Λr

by Proposition 14.

No variable is lost during the computation, which is stated by the following

proposition.

Proposition 19 (Preservation of free variables by →→).

If M →→ N then Fv(M) = Fv(N).

Proof. The proof is by case analysis on the reduction rules and uses Proposi-

tion 8 (ii).
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First, let us observe the structure of the λr-normal forms, given by the fol-

lowing abstract syntax. As usually, a term is a normal for if it does not have any

redex as subterm.

Definition 20 (Set of Normal Forms). The set N F of normals forms is generated

by the following abstract syntax:

Mn f ::= λx.Mn f |λx.x⊙Mn f |xM1
n f . . .M

n
n f |x <

x1
x2

Mn f

in the last case Mn f ≡ Pn f Qn f , x1 ∈ Fv(Pn f ), x2 ∈ Fv(Qn f )

En f ::= x⊙Mn f |x⊙En f

where n ≥ 0. It is necessary to distinguish normal forms En f separately be-

cause the term λx.y⊙Mn f is not a normal form, since λx.y⊙Mn f →ω1
y⊙λx.Mn f .

Also, in the last case the term x <x1
x2 Pn f Qn f ,where x1 ∈ Fv(Pn f ), x2 ∈ Fv(Qn f ) is

not necessarily a normal form since Pn f Qn f can be a redex, in turn Mn f ≡ Pn f Qn f

guarantees that the application is a normal form.

Next we define the set of strongly normalising terms SN .

Definition 21 (Strongly normalising terms). The set of strongly normalising terms

SN is defined as follows:

M ∈ N F

M ∈ SN

∀N ∈ Λr . M →→ N ⇒ N ∈ SN

M ∈ SN

Lemma 22. Every term has one of the following forms, where n ≥ 0:

(Abs) λx.N, (AbsApp) (λx.N)PT1 . . .Tn

(Var) xT1 . . .Tn (DupApp) (x <x1
x2 N)T1 . . .Tn

(Era) x⊙N (EraApp) (x⊙N)PT1 . . .Tn

Proof. These terms are well-formed according to Definition 1 (we did not ex-

plicitly write the conditions, since we work with linear terms). The proof is by

induction on the structure of the term M ∈ Λr.

• If M is a variable, this case is covered by Var for n = 0.

• If M is an abstraction λx.Q, then by induction Q has one of the given forms,

hence λx.Q is covered by Abs.

• If M is an application then M is of the form M ≡ QP1 . . .Pn, for n ≥ 1 and

Q is not an application. We proceed by subinduction on the structure of Q.

Accordingly, Q is one of the following:

18



– Q is a variable, then we have the case Var, with n ≥ 1;

– Q is an abstraction, then we have the case AbsApp;

– Q is an erasure, then we have the case EraApp;

– Q is a duplication, then we have the case DupApp, with n ≥ 1.

• If M is an erasure x⊙Q, then by induction Q has one of the given forms,

hence x⊙Q is covered by Era.

• If M is a duplication x <x1
x2 Q, then by induction Q has one of the given

forms, hence x <x1
x2

Q is covered by DupApp for n = 0.

2 Intersection types for λr

In this section we introduce an intersection type assignment λr∩ system which

assigns strict types to λr-terms. Strict types were proposed in [53] and used

in [20] for characterisation of strong normalisation in λGtz-calculus.

The syntax of types is defined as follows:

Strict types σ ::= p | α → σ

Types α ::= ∩n
i σi

where p ranges over a denumerable set of type atoms and

∩n
i σi =

{

σ1 ∩ . . .∩σn for n > 0

⊤ for n = 0

⊤ being the neutral element for the intersection operator, i.e. σ∩⊤= σ.

We denote types by α,β,γ..., strict types by σ,τ,υ... and the set of all types by

Types. We assume that the intersection operator is commutative and associative.

We also assume that intersection has priority over arrow. Hence, we will omit

parenthesis in expressions like (∩n
i τi)→ σ.

2.1 The type assignment system

Definition 23. (i) A basic type assignment (declaration) is an expression of the

form x : α, where x is a term variable and α is a type.
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(ii) Consider a finite set Dom(Γ) of variables. A basis is a function

Γ : Dom(Γ)→ Types.

A basis extension of Γ is a function Γ,x : α : Dom(Γ)∪{x}→ Types:

y 7→

{

Γ(y) if y ∈ Dom(Γ)
α if y = x

(iii) Given Γ and ∆ such that Dom(Γ) = Dom(∆), the bases intersection of Γ and

∆ is the function Γ⊓∆ : Dom(Γ)→ Types, such that:

Γ⊓∆(x) = Γ(x)∩∆(x).

(iv) Γ⊤ is the constant function Γ⊤ : Dom(Γ)→{⊤}.

In what follows we assume that the bases intersection has priority over the

basis extension, hence the parenthesis in Γ,(∆1 ⊓ . . .⊓∆n) will be omitted. It is

easy to show that Γ⊤⊓∆ = ∆ for arbitrary bases Γ and ∆ that can be intersected,

hence Γ⊤ is the neutral element for the intersection of bases of domain Dom(Γ).

x : σ ⊢ x : σ
(Ax)

Γ,x : α ⊢ M : σ

Γ ⊢ λx.M : α → σ
(→I)

Γ ⊢ M : ∩n
i τi → σ ∆0 ⊢ N : τ0 . . . ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ MN : σ

(→E)

Γ,x : α,y : β ⊢ M : σ

Γ,z : α∩β ⊢ z <x
y M : σ

(Cont) Γ ⊢ M : σ
Γ,x : ⊤ ⊢ x⊙M : σ

(T hin)

Figure 8: λr∩: λr-calculus with intersection types

The type assignment system λr∩ is given in Figure 8. It is syntax directed

and the rules are context-splitting. The axiom (Ax) ensures that void λ-abstraction

cannot be typed, i.e. in a typeable term each free variable appears at least once.

The context-splitting rule (→E) ensures that in a typeable term each free variable

appears not more than once.

Assume that we implement these properties in the type system with (Ax),
(→E) and (→I), then the combinators K = λxy.x and W−1 = λxy.xyy would not
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be typeable. This motivates and justifies the introduction of the operators of era-

sure and duplication and the corresponding typing rules (Thin) and (Cont), which

further maintain the explicit control of resources and enable the typing of K and

W−1, namely of their corresponding λr-terms λxy.y⊙ x and λxy.y <
y1
y2

xy1y2, re-

spectively. Let us mention that on the logical side, structural rules of thinning

and contraction are present in Gentzen’s original formulation of LJ, Intuitionistic

Sequent Calculus, but not in NJ, Intuitionistic Natural Deduction [22, 23]. Here

instead, the presence of the typing rules (Thin) and (Cont) completely maintains

the explicit control of resources in λr.

In the proposed system, intersection types occur only in two inference rules. In

the rule (Cont) the intersection type is created, this being the only place where this

happens. This is justified because it corresponds to the duplication of a variable.

In other words, the control of the duplication of variables entails the control of the

introduction of intersections in building the type of the term in question. In the

rule (→E), intersection appears on the right hand side of the turnstyle ⊢ which

corresponds to the usage of the intersection type after it has been created by the

rule (Cont) or by the rule (T hin) if n = 0.

The role of ∆0 in the rule (→E) should be emphasized. It is needed only when

n = 0 to ensure that N has a type, i.e. that N is strongly normalising as would be

seen below. Then, in the conclusion of the rule, the types of the free variables

of N can be forgotten, hence all the free variables of N receive the type ⊤. All

the free variables of the term must occur in the environment Γ (see Lemma 28),

therefore useless variables occur with the type ⊤. When n > 0, ∆0 can be any

of the other environments and the type of N the associated type. Since ∆⊤ is a

neutral element for ⊓, when n > 0, ∆⊤ disappears in the conclusion of the rule.

The case n = 0 resembles the rules (drop) and/or (K-cup) in [38] and was used to

present the two cases, n = 0 and n 6= 0 in a uniform way. In the rule (T hin) the

choice of the type of x is ⊤, since this corresponds to a variable which does not

occur anywhere in M. The remaining rules, namely (Ax) and (→I) are traditional,

i.e. they are the same as in the simply typed λ-calculus. Notice however that the

type of the variable in (Ax) is a strict type.

Roles of the variables

In the syntax of λr, there are three kinds of variables according to the way they

are introduced, namely as a placeholder (associated with the typing rule (Ax)),

as the result of a duplication (associated with the typing rule (Cont)) or as the

result of an erasure (associated with the typing rule (Thin)). Each kind of variable
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receives a specific type:

• variables as placeholders have a strict type,

• variables resulting from a duplication have an intersection type,

• variables resulting from an erasure have the type ⊤.

In order to emphasize the sensitivity of the system λr∩ w.r.t. the role of a

variable in a term, we provide the following examples in which variables change

their role during the computation process. Our goal is to show that when the role

of a variable changes, its type in the type derivation changes as well, so that the

correspondence between particular roles and types is preserved.

Example 24. A variable as a “placeholder” becomes an “erased” variable: this

is the case with the variable z in (λx.x⊙ y)z, because

(λx.x⊙ y)z →β (x⊙ y)|||[z///x]||| , (x⊙ y)[z/x] ↓�= z⊙ y.

Since z : ⊤,y : σ ⊢ z⊙ y : σ, we want to show that z : ⊤,y : σ ⊢ (λx.x⊙ y)z : σ.

Indeed:
(Ax)

y : σ ⊢ y : σ
(Weak)

x : ⊤,y : σ ⊢ x⊙ y : σ
(→I)

y : σ ⊢ λx.x⊙ y : ⊤→ σ
(Ax)

z : τ ⊢ z : τ
(→E).

z : ⊤,y : σ ⊢ (λx.x⊙ y)z : σ

In the rule (→E), we have n = 0, ∆0 = z : τ and ∆⊤
0 = z : ⊤. Thus, in the previous

derivation, the variable z changed its type from a strict type to ⊤, in accordance

with the change of its role in the bigger term.

Example 25. A variable as a “placeholder” becomes a “duplicated” variable:

this is the case with the variable v in (λx.x <
y
z yz)v, because

(λx.x <
y
z yz)v →β (x <

y
z yz)|||[v///x]||| , (x <

y
z yz)[v/x] ↓�=

= Fv[v]<
Fv[v1]
Fv[v2]

(yz)[v1/y][v2/z] ↓�= v <v1
v2

v1v2.

Since v : (τ → σ)∩ τ ⊢ v <v1
v2 v1v2 : σ, we want to show that

v : (τ → σ)∩ τ ⊢ (λx.x <
y
z yz)v : σ.
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Indeed:

...
(→I)

⊢ λx.x <y
z yz : ((τ → σ)∩ τ)→ σ

(Ax)
v : τ ⊢ v : τ

(Ax)
v : τ → σ ⊢ v : τ → σ

(→E).
v : (τ → σ)∩ τ ⊢ (λx.x <y

z yz)v : σ

In the rule (→E), we have n = 2, therefore ∆0 ⊢ N : τ0 can be one of the two

existing typing judgements, for instance v : τ ⊢ v : τ. In this case ∆⊤
0 disappears in

the conclusion, because

∆⊤
0 ⊓∆1⊓∆2 = v :⊤⊓v : τ→σ⊓v : τ= v :⊤∩(τ→σ)∩τ= v : (τ→σ)∩τ. Again,

we see that the type of the variable v changed from strict type to (intersection) type.

Example 26. A “duplicated” variable becomes an “erased” variable: this is the

case with the variable z in (λx.x⊙ y)(z <u
v uv), because

(λx.x⊙ y)(z <u
v uv) →β (x⊙ y)|||[z <u

v uv///x]||| , (x⊙ y)[z <u
v uv/x] ↓�=

= Fv(z <u
v uv)⊙ y = z⊙ y.

Like in the previous examples, both z : ⊤,y : σ ⊢ z⊙y : σ and z : ⊤,y : σ ⊢ (λx.x⊙
y)(z <u

v uv) : σ can be shown.

Example 27. An “erased” variable becomes a “duplicated” variable: this is the

case with the variable u in (λx.x <
y
z yz)(u⊙ v), because

(λx.x <y
z yz)(u⊙ v) →β (x <y

z yz)|||[u⊙ v///x]|||

, (x <y
z yz)[u⊙ v/x] ↓�

= Fv[u⊙ v]<
Fv[u1⊙v1]
Fv[u2⊙v2]

(yz)[u1 ⊙ v1/y][u2⊙ v2/z] ↓�

= u <u1
u2

v <v1
v2
(u1 ⊙ v1)(u2⊙ v2).

The situation here is slightly different. Fresh variables u1 and u2 are obtained

from u using the substitution in Λr . The variable u is introduced by thinning, so

its type is ⊤. Substitution in Λr does not change the types, therefore both u1 and

u2 have the type ⊤. Finally, u in the resulting term is obtained by contracting u1

and u2, therefore its type is ⊤∩⊤ = ⊤. Thus we have an interesting situation -

the role of the variable u changes from “to be erased” to “to be duplicated”, but

its type remains ⊤.

However, this paradox (if any) is only apparent, as well as the change of the

role. Unlike the previous three examples, in which we obtained normal forms, in
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this case the computation can continue:

u <u1
u2

v <v1
v2
(u1 ⊙ v1)(u2 ⊙ v2) →(ω2+ε4) v <v1

v2
u <u1

u2
u1 ⊙ v1(u2 ⊙ v2)

→γω2
v <v1

v2
v1((u2⊙ v2))|||[u///u2]|||

= v <v1
v2

v1(u⊙ v2).

So, we see that the actual role of the variable u in the obtained normal form, is

“to be erased”, as indicated by its type ⊤.

To conclude the analysis, we point out the following key points:

• The type assignment system λr∩ is constructed in such way that the type of

a variable always indicates its actual role in the term. Due to this, we claim

that the system λr∩ fits naturally to the resource control calculus λr.

• Switching between roles is not reversible: once a variable is meant to be

erased, it cannot be turned back to some other role. Moreover, the informa-

tion about its former role cannot be reconstructed from the type.

A note about idempotence and identity rule

Recall that the typing tree of a term is dictated by the syntax: → is introduced by

(→I), ∩ is introduced by (Cont) and ⊤ is introduced by (Thin). In this context it

would not pertain to remove an intersection by idempotence or identity rule. This

is why they are not considered here.

2.2 Structural properties

Lemma 28 (Domain correspondence for λr∩). Let Γ ⊢ M : σ be a typing judg-

ment. Then x ∈ Dom(Γ) if and only if x ∈ Fv(M).

Proof. The rules of Figure 8 belong to three categories.

1. The rules that introduce a variable. These rules are (Ax), (Cont) and (T hin).
One sees that the variable is introduced in the environment if and only it is

introduced in the term as a free variable.

2. The rules that remove variables. These rules are (→I) and (Cont). One sees

that the variables are removed from the environment if and only if they are

removed from the term as a free variable.
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3. The rule that neither introduces nor removes a variable. This rule is (→E).

Notice that (Cont) introduces and removes variables.

The Generation Lemma makes somewhat more precise the Domain Corre-

spondence Lemma.

Lemma 29 (Generation lemma for λr∩).

(i) Γ ⊢ λx.M : τ iff there exist α and σ such that τ ≡ α → σ and

Γ,x : α ⊢ M : σ.

(ii) Γ ⊢ MN : σ iff and there exist ∆i and τi, i ∈ {0, . . . ,n} such

that Γ′ ⊢ M : ∩n
i τi → σ and for all i ∈ {0, . . . ,n}, ∆i ⊢ N : τi and

Γ = Γ′,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n.

(iii) Γ ⊢ z <x
y M : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩ β and

Γ′,x : α,y : β ⊢ M : σ.

(iv) Γ ⊢ x⊙M : σ iff Γ = Γ′,x : ⊤ and Γ′ ⊢ M : σ.

Proof. The proof is straightforward since all the rules are syntax directed, and

relies on Lemma 28.

In the sequel, we prove that the proposed system satisfies the following prop-

erties: Substitution lemma for λr∩ (Proposition 35) and Subject reduction and

equivalence (Proposition 36).

In order to prove the Substitution lemma we extend the type assignment sys-

tem λr∩ with a new rule for typing the substitution operator, thus obtaining an

auxiliary system λ�

r∩ that assigns types to λ�

r-terms.

Definition 30. (i) The type assignment system λ�

r∩ consists of rules from Fig-

ure 8 plus the following (Subst) rule:

Γ,x : ∩n
i τi ⊢

� M : σ ∆0 ⊢ N : τ0 ... ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢

� M[N/x] : σ
(Subst)

(ii) Typing judgements in the system λ�

r∩ are denoted by Γ ⊢� M : σ.
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The system λ�

r∩ is also syntax-directed, and assigns strict types to λ�

r-terms.

Therefore, it represents a conservative extension of the system λr∩, meaning that

if Γ ⊢� M : σ and M ∈ Λr (i.e. M is substitution-free), then Γ ⊢ M : σ and the two

derivations coincide.

It is easy to adapt Lemma 28 and Lemma 29 to prove the corresponding prop-

erties of the system λ�

r∩.

Lemma 31 (Domain correspondence for λ�

r∩). Let Γ ⊢� M : σ be a typing judg-

ment. Then x ∈ Dom(Γ) if and only if x ∈ Fv�(M).

Proof. The proof is the same as the proof of Lemma 28, having in mind the def-

inition of Fv�(M) and the fact that the rule (Subst) belongs to the category of

rules that remove variables.

Lemma 32 (Generation lemma for λ�

r∩). (i) Γ ⊢� λx.M : τ iff there exist

α and σ such that τ ≡ α → σ and Γ,x : α ⊢� M : σ.

(ii) Γ ⊢� MN : σ iff there exist ∆i and τi, i = 0, . . . ,n such that Γ′ ⊢� M :

∩n
i τi → σ and for all i ∈ {0, . . . ,n}, ∆i ⊢

� N : τi and Γ = Γ′,∆⊤
0 ⊓∆1⊓ . . .⊓

∆n.

(iii) Γ ⊢� z <x
y M : σ iff there exist Γ′,α,β such that Γ = Γ′,z : α∩β

and Γ′,x : α,y : β ⊢� M : σ.

(iv) Γ ⊢� x⊙M : σ iff Γ = Γ′,x : ⊤ and Γ′ ⊢� M : σ.

(v) Γ ⊢� M[N/x] : σ iff there exist ∆i and τi, i = 0, . . . ,n such that Γ′,x :

∩n
i τi ⊢

� M : σ and for all i ∈ {0, . . . ,n}, ∆i ⊢ N : τi and Γ = Γ′,∆⊤
0 ⊓∆1 ⊓

. . .⊓∆n.

Proof. The proof is straightforward since all the rules are syntax directed, and

relies on Lemma 31.

To prove Lemma 34 we will need the definition of contexts.

Definition 33 (λ�

r-Contexts).

C ::= [ ] | λx.C | MC | CM | x⊙C | x <x1
x2

C | C [N/x]

Lemma 34 (Type preservation under
�

−−−−→→).
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(i) For all M,M′ ∈ Λ�

r, N ∈ Λr, if Γ ⊢� M[N/x] : σ and M[N/x]
�

−−−−→→ M′,

then Γ ⊢� M′ : σ.

(ii) For all M,M′ ∈Λ�

r, N ∈Λr, if Γ⊢� C [M[N/x]] : σ and C [M[N/x]]
�

−−−−→→

C [M′], then Γ ⊢� C [M′] : σ.

Proof. (i) The proof is by case analysis on �−−−→ (Figure 5). We consider only

some representative rules. The other rules are routine and their proofs are analo-

gous to the second rule we consider.

• Rule x[N/x] �−−−→ N. In this case n = 1 and Γ is empty. Recall that

∆⊤⊓∆ = ∆. On one hand we have

x : τ ⊢� x : τ
(Ax)

∆ ⊢� N : τ ∆ ⊢� N : τ
∆ ⊢� x[N/x] : τ

(Subst)

and on the other hand we have

∆ ⊢� N : τ

by assumption.

• Rule (MP)[N/x] �−−−→ M[N/x]P, x ∈ Fv�(M). On one hand we have:

Γ,x : ∩n
i υi ⊢

� M : ∩m
i ρi → σ Θ0 ⊢

� P : ρ0 . . . Θm ⊢� P : ρm

Γ,x : ∩n
i υi,Θ

⊤
0 ⊓Θ1 ⊓ ...⊓Θm ⊢� M P : σ

→E

∆0 ⊢
� N : τ0 ... ∆n ⊢

� N : τn

Γ,Θ⊤
0 ⊓Θ1 ⊓ ...⊓Θm,∆

⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢

� (M P)[N/x] : σ
(Subst)

One the other hand we have:

Γ,x : ∩n
i υi ⊢

� M : ∩m
i ρi → σ ∆0 ⊢

� N : τ0 ... ∆n ⊢
� N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢

� M[N/x] : ∩m
i ρi → σ

(Subst)
Θ0 ⊢

� P : ρ0 . . . Θm ⊢� P : ρm

Γ,Θ⊤
0 ⊓Θ1 ⊓ ...⊓Θm,∆

⊤
0 ⊓∆1 ⊓ ...⊓∆,n ⊢� M[N/x] P : σ

(→E)

• Rule (x⊙M)[N/x] �−−−→ Fv(N)⊙M. In this case n = 0. On one hand we

have:
Γ ⊢� M : σ

(T hin)
Γ,x : ⊤ ⊢� x⊙M ∆0 ⊢

� N : τ0

(Subst)
Γ,∆⊤

0 ⊢� (x⊙M)[N/x] : σ
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On the other hand we have:

Γ ⊢� M : σ
(T hin)

...
(T hin)

Γ,∆⊤
0 ⊢� Fv(N)⊙M : σ

• Rule (x <x1
x2 M)[N/x] �−−−→ Fv[N] <

Fv[N1]
Fv[N2]

M[N1/x1][N2/x2]. In order to

make the proof tree readable, we adopt the following abbreviations:

τ1 , ∩n1
i τ1,i

τ2 , ∩n2
i τ2,i

∆1 , ∆1,1 ⊓ ...⊓∆1,n1

∆2 , ∆2,1 ⊓ ...⊓∆2,n2

L1 , ∆1,1 ⊢
� N : τ1,1 ... ∆1,n1

⊢� N : τ1,n1

L2 , ∆2,1 ⊢
� N : τ2,1...∆2,n2

⊢� N : τ2,n2

Since N1 and N2 are obtained from N only by renaming the free variables

with fresh variables of the same type, for each derivation ∆1,i ⊢
� N : τ1,i

where i ∈ {1, ...,n1} we have ∆′
1,i ⊢

� N1 : τ1,i, where ∆1,i and ∆′
1,i differ

only in variables names. Analogously, for each derivation ∆1, j ⊢
� N : τ1, j

where i ∈ {1, ...,n2} we have ∆′′
1, j ⊢

� N2 : τ1, j, where ∆1, j and ∆′′
1, j differ

only in variables names. Now, we also adopt the following abbreviations:

∆′
1 , ∆′

1,1 ⊓ ...⊓∆′
1,n1

∆′′
2 , ∆′′

2,1 ⊓ ...⊓∆′′
2,n2

L
′
1 , ∆′

1,1 ⊢
� N1 : τ1,1 ... ∆′

1,n1
⊢� N1 : τ1,n1

L
′′

2 , ∆′′
2,1 ⊢

� N2 : τ2,1...∆
′′
2,n2

⊢� N2 : τ2,n2

Moreover, we do not consider the environment ∆0 since it is useless here.

Now, on one hand we have:

Γ,x1 : τ1,x2 : τ2 ⊢
� M : σ

(Cont)
Γ,x : τ1 ∩ τ2 ⊢

� x <x1
x2

M : σ L1 L2
(Subst)

Γ,∆1 ⊓∆2 ⊢
� (x <x1

x2
M)[N/x] : σ

28



On the other hand we have

Γ,x1 : τ1,x2 : τ2 ⊢
� M : σ L

′
1
(Subst)

Γ,∆′
1,x2 : τ2 ⊢

� M[N1/x1] : σ L
′′

2
(Subst)

Γ,∆′
1,∆

′′
2 ⊢� M[N1/x1][N2/x2] : σ

(Cont)
...

(Cont)
Γ,∆1 ⊓∆2 ⊢

� Fv[N]<
Fv[N1]
Fv[N2]

M[N1/x1][N2/x2] : σ

(ii) We will denote by Q ≡ C [M[N/x]] and Q′ ≡ C [M′]. If Q
�

−−−−→→ Q′ this

means that M[N/x]
�

−−−−→→M′. We prove the statement by induction on the struc-

ture of a context containing a redex. We provide the proof for the basic case C = [ ]
and three additional cases C = λx.C ′, C = x⊙C ′ and C = C ′[P/y], the proof being

similar for the remaining context kinds.

• Case C = [ ]. This is the first part of this lemma (i).

• Case C = λx.C ′. Then Q = λx.C ′[M[N/x]] and Q′ = λx.C ′[M′]. By assump-

tion Γ ⊢� Q : σ, i.e. Γ ⊢� λx.C ′[M[N/x]] : σ. Using Generation lemma for

λ�

r∩ (Lemma 32(i)) we obtain that there exist α and τ such that σ = α → τ

and Γ,x : α ⊢� C ′[M[N/x]] : τ. Since M[N/x]
�

−−−−→→ M′ by IH we have

that Γ,x : α ⊢� C ′[M′] : τ. Using rule (→I) we can conclude that Γ ⊢�

λ.C ′[M′] : α → τ = σ.

• Case C = x⊙C ′. Then Q = x⊙C ′[M[N/x]] and Q′ = x⊙C ′[M′]. By as-

sumption Γ ⊢� Q : σ, i.e. Γ ⊢� x⊙C ′[M[N/x]] : σ. Using Generation lemma

for λ�

r∩ (Lemma 32(iv)) we obtain that Γ= Γ′,x :⊤ and Γ′ ⊢� C ′[M[N/x]] :

σ. Since M[N/x]
�

−−−−→→ M′ by IH we have that Γ′ ⊢� C ′[M′] : σ. Using

rule (T hin) we can conclude that Γ ⊢� x⊙C ′[M′] : σ.

• Case C = C ′[P/y]. Then Q = C ′[P/y][M[N/x]] and Q′ = C ′[P/y][M′]. By

assumption Γ ⊢� Q : σ, i.e. Γ ⊢� C ′[P/y][M[N/x]] : σ. Using Generation

lemma for λ�

r∩ (Lemma 32(v)) we obtain that there exist ∆i and τi, i =

0, . . . ,n such that Γ′,y : ∩n
i τi ⊢

� C ′[M[N/x]] : σ and for all i ∈ {0, . . . ,n},

∆i ⊢
� P : τi and Γ = Γ′,∆⊤

0 ⊓∆1⊓ . . .⊓∆n. Since M[N/x]
�

−−−−→→ M′ by IH
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we have that Γ′,y : ∩n
i τi ⊢

� C ′[M′] : σ. Using rule (Subst) we can conclude

that Γ ⊢� C ′[P/y][M′] : σ.

Lemma 35 (Substitution lemma for λr∩). If Γ,x : ∩n
i τi ⊢ M : σ and ∆i ⊢ N : τi,

for all i ∈ {0, . . . ,n}, then Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ M|||[N///x]||| : σ.

Proof. From assumptions Γ,x :∩n
i τi ⊢M : σ and ∆i ⊢ N : τi, for all i∈ {0, . . . ,n},

we get that Γ,x : ∩n
i τi ⊢

� M : σ and for all i ∈ {0, . . . ,n}, ∆i ⊢
� N : τi. Applying

(Subst) rule we get Γ,∆⊤
0 ⊓ ∆1 ⊓ ...⊓ ∆n ⊢� M[N/x] : σ. Now, using termina-

tion and confluence of �−−−→ reduction (Proposition 10 and Proposition 11) and

preservation of type under the �−−−→ reduction (Lemma 34) we obtain that the

unique normal form M|||[N///x]||| exists and that Γ,∆⊤
0 ⊓∆1⊓ ...⊓∆n ⊢

� M|||[N///x]||| : σ.
Since M|||[N///x]||| ∈ Λr (Proposition 14), having that λ�

r∩ is conservative extension

of λr∩, we finally get that Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ M|||[N///x]||| : σ.

Proposition 36 (Type preservation under reduction and equivalence in λr∩). For

every λr-term M: if Γ ⊢ M : σ and M →→ M′ or M ≡λr
M′, then Γ ⊢ M′ : σ.

Proof. The proof is done by case analysis on the applied reduction. Since the

property is stable by context, we can without loss of generality assume that the

reduction takes place at the outermost position of the term. Here we just show sev-

eral cases. We will use GL as an abbreviation for Generation lemma (Lemma 29).

• Case (β): Let Γ ⊢ (λx.M)N : σ. We want to show that Γ ⊢ M|||[N///x]||| : σ.

From Γ⊢ (λx.M)N : σ and from GL(ii) it follows that Γ=Γ′,∆⊤
0 ⊓∆1⊓ . . .⊓

∆n, and that there is a type ∩n
i τi such that for all i = 0, . . . ,n, ∆i ⊢ N : τi,

and Γ′ ⊢ λx.M : ∩n
i τi → σ. Further, by GL(i) we have that Γ′,x : ∩n

i τi ⊢
M : σ. Now, all the assumptions of Substitution lemma 35 hold, yielding

Γ′,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n ⊢ M|||[N///x]||| : σ which is exactly what we need, since

Γ = ∆⊤
0 ⊓Γ′,∆1 ⊓ . . .⊓∆n.

• Case (γω2): Let Γ ⊢ x <x1
x2

x1⊙M : σ. We are showing that Γ ⊢ M|||[x///x2]||| : σ.

From the first sequent by GL(iii) we have that Γ = Γ′,x : α∩β and Γ′,x1 :

α,x2 : β ⊢ x1 ⊙M : σ. Further, by GL(iv) we conclude that α ≡ ⊤, x :

⊤∩β ≡ β and Γ′,x2 : β ⊢ M : σ. Since β =∩n
i τi for some n ≥ 0, by applying

Substitution lemma 35 to Γ′,x2 : β ⊢ M : σ and x : τi ⊢ x : τi, i = 0, . . . ,n we

get Γ ⊢ M|||[x///x2]||| : σ.
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• The other rules are easy since they do not essentially change the structure

of the term.

Due to this property, equivalent (by ≡λr
) terms have the same type.

3 Characterisation of strong normalisation in λr

3.1 SN ⇒ Typeability in λr∩

We want to prove that if a λr-term is strongly normalising (SN), then it is typeable

in the system λr∩. We proceed in two steps:

1. we show that all λr-normal forms are typeable and

2. we prove the redex subject expansion.

Proposition 37. λr-normal forms are typeable in the system λr∩.

Proof. By induction on the structure of Mn f and En f , given in Definition 20.

The basic case is a variable, namely xM1
n f . . .M

n
n f , where n = 0. It is typeable

by (Ax). Cases involving duplication and erasure operators are easy, because

the associated type assignment rules (Cont) and (T hin) preserve the type of a

term. If Mn f = λx.x⊙Nn f , then by the induction hypothesis Γ ⊢ Nn f : σ, hence

Γ,x : ⊤ ⊢ x⊙Nn f : σ and Γ ⊢ λx.x⊙Nn f : ⊤ → σ. Further, we discuss the case

xM1
n f . . .M

n
n f , where n ≥ 1. In this case, M1

n f , . . . ,M
n
n f are typeable by the induc-

tion hypothesis, say Γi
j ⊢ Mi

n f : σi
j, i ∈ {1, ...,n}, j ∈ {1, ...,mi}. Then, since x

is a fresh variable, taking x : ∩m1
j σ1

j → (∩m2
j σ2

j → . . .(∩mn

j σn
j → τ) . . .) and apply-

ing (→E) rule n times, we obtain Γ ⊢ xM1
n f . . .M

n
n f : τ, where Γ = x : ∩m1

j σ1
j →

(∩m2
j σ2

j → . . .(∩mn

j σn
j → τ) . . .),Γ1⊤

0 ⊓Γ1
1 ⊓ ...⊓Γ1

m1
, . . . ,Γn⊤

0 ⊓Γn
1 ⊓ ...⊓Γn

mn
.

Lemma 38. For all M,M′ ∈ Λ�

r and N ∈ Λr, if Γ ⊢� M′ : σ, M[N/x] �−−−→ M′,

and N is typeable, then Γ ⊢� M[N/x] : σ.

Proof. The proof is by case analysis on the applied �−−−→ reduction. We consider

only some interesting rules.
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• Rule (x⊙M)[N/x] �−−−→ Fv(N)⊙M.

Let Fv(N) = {x1, ...,xm}. By assumption N is typeable, thus ∆0 ⊢ N : τ0 for

some ∆0 = {x1 : τ1, ...,xm : τm}. If Γ ⊢� Fv(N)⊙M : σ, then by applying m

times the Generation Lemma 32(iv), we get Γ′ ⊢� M : σ, where Γ = Γ′,∆⊤
0 .

On the other hand

Γ′ ⊢� M : σ
(T hin)

Γ′,x : ⊤ ⊢� x⊙M : σ ∆0 ⊢ N : τ0
(Subst)

Γ′,∆⊤
0 ⊢� (x⊙M)[N/x] : σ.

Notice that the rule (Subst) can be applied because ⊤= ∩n
i τi for n = 0.

• Rule (x <x1
x2

M)[N/x] �−−−→ Fv[N]<
Fv[N1]
Fv[N2]

M[N1/x1][N2/x2].

Let Fv[N] = [y1, ...,ym]. Then, since N1 and N2 are obtained from N by re-

naming the free variables, we have that Fv[N1] = [y′1, ...,y
′
m] and Fv[N2] =

[y′′1, ...,y
′′
m]. From the assumption Γ ⊢� Fv[N] <

Fv[N1]
Fv[N2]

M[N1/x1][N2/x2] :

σ, by m applications of Lemma 32(iii), we obtain that Γ = Γ′,y1 : τ1 ∩
ρ1, ...,ym : τm ∩ρm and that Γ′,∆′,∆′′ ⊢� M[N1/x1][N2/x2] : σ, where ∆′ =
{y′1 : τ1, ...,y

′
m : τm} and ∆′′= {y′′1 : ρ1, ...,y

′′
m : ρm}. Now, by two applications

of Lemma 32(v), we get that ∆′ = ∆
′

0

⊤
⊓∆′

1...⊓∆′
n1

, ∆′′ = ∆
′′

0

⊤
⊓∆′′

1...⊓∆′′
n2

,

where ∆′
i = {y′1 : τ1,i, ...,y

′
m : τm,i} for i ∈ {0, ...,n1}, ∆′′

j = {y′′1 : ρ1, j, ...,y
′′
m :

ρm, j} for j ∈ {0, ...,n2}, ∆′
i ⊢

� N1 : ∩m
k τk,i, ∆′′

j ⊢
� N2 : ∩m

k ρk, j, and finally

Γ′,x1 : ∩n1
i τi,x2 : ∩n2

j ρ j ⊢
� M : σ (we used the following abbreviations:

∩m
k τk,i ≡ τi, ∩

m
k ρk, j ≡ ρ j). Now, since N1 and N2 are obtained from N by re-

naming, for each derivation of the type of N1 (respectively N2) we can write

an analogous derivation of the type of N, i.e. ∆i ⊢
� N : τi for i ∈ {0, ...,n1}

and ∆ j ⊢
� N : ρ j for j ∈ {0, ...,n2}, where ∆i differ from ∆′

i (and respectively

∆ j from ∆′′
j ) only by the domain (Dom(∆i) = Dom(∆ j) = {y1, ...,ym}). If

we adopt abbreviations L1 for the array of the first n1 derivations, and L2

for the array of the latter n2 derivations, we have:

Γ′, ,x1 : ∩n1
i τi,x2 : ∩n2

j ρ j ⊢
� M : σ

(Cont)
Γ′,x : (∩n1

i τi)∩ (∩n2
j ρ j) ⊢

� x <x1
x2

M : σ L1 L2
(Subst)

Γ ⊢� (x <x1
x2

M)[N/x] : σ.

The left hand side of the latter assignment holds because Γ′,∆⊤
0 ⊓∆1 ⊓ ...⊓

∆n1+n2
=Γ′,y1 :⊤∩(∩n1

i τ1,i)∩(∩
n2
j ρ1, j), ...,ym :⊤∩(∩n1

i τm,i)∩(∩
n2
j ρm, j)=

Γ′,y1 : τ1 ∩ρ1, ...,ym : τm∩ρm = Γ.
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Proposition 39 (Redex subject expansion).

(i) If Γ ⊢ M|||[N///x]||| : σ and N is typeable, then Γ ⊢ (λx.M)N : σ.

(ii) Let M be a λr-redex other than a β-redex and M → M′. If Γ ⊢ M′ : σ, then

Γ ⊢ M : σ.

Proof. (i) From Γ ⊢ M|||[N///x]||| : σ we have that Γ ⊢� M[N/x] : σ using Lemma 38

multiple times, since M|||[N///x]|||= M[N/x] ↓�, i.e. M[N/x]
�

−−−−→→ M|||[N///x]|||. From

Γ ⊢� M[N/x] : σ by Lemma 32(v) (Generation lemma) it follows that there exist

∆i and τi, i = 0, . . . ,n such that Γ′,x : ∩n
i τi ⊢

� M : σ and for all i ∈ {0, . . . ,n},

∆i ⊢ N : τi and Γ = Γ′,∆⊤
0 ⊓∆1 ⊓ . . .⊓∆n. Now:

Γ′,x : ∩n
i τi ⊢

� M : σ
(→I)

Γ′ ⊢� λx.M : ∩n
i τi → σ ∆0 ⊢

� N : τ0 ... ∆n ⊢
� N : τn

(→E)
Γ ⊢� (λx.M)N : σ

Since M,N ∈ Λr we have that Γ ⊢ (λx.M)N : σ.

(ii) By case analysis according to the applied reduction, similar to the proof of

Proposition 36.

Theorem 40 (SN ⇒ typeability). All strongly normalising λr-terms are typeable

in the λr∩ system.

Proof. The proof is by induction on the length of the longest reduction path out

of a strongly normalising term M, with a subinduction on the structure of M.

• If M is a normal form, then M is typeable by Proposition 37.

• If M is a λr-redex, i.e. M → M′, then let M′ be its contractum. M′ is also

strongly normalising, hence by IH it is typeable. Then M is typeable, by

Proposition 39. Notice that, if M ≡ (λx.N)P →β N|||[P///x]||| ≡ M′, then, by

IH, P is typeable, since the length of the longest reduction path out of P is

smaller than that of M.

• Next, suppose that M itself is neither a redex nor a normal form. Then,

according to Lemma 22, M has of one of the following forms:
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- λx.N (where N 6= y⊙P and y 6= x, since in this case M would be a

redex and previous case would apply),

- xT1 . . .Tn,

- x⊙N,

- (λx.N)PT1 . . .Tn,

- (x⊙N)PT1 . . .Tn,

- (x <x1
x2 N)T1 . . .Tn,

where N,P,T1, . . . ,Tn, are not all normal forms. We can classify these forms

into the following two categories:

1) Terms with internal redexes: λx.N, xT1 . . .Tn, x⊙N and (x<x1
x2 N)T1 . . .Tn

when duplication cannot be propagated further into N, i.e. N ≡PQ, x1 ∈
Fv(P), x2 ∈ Fv(Q). In all these cases, we proceed by subinduction on

the structure of M, since the length of the longest reduction path out

of a subterm that contains a redex is equal to the length of the longest

reduction path out of M.

2) Terms with a leftmost redex: (λx.N)PT1 . . .Tn, (x⊙N)PT1 . . .Tn and

(x <x1
x2

N)T1 . . .Tn when duplication can be propagated further into N.

In these cases, by applying the leftmost reduction, we obtain a term

with smaller length of the longest reduction path, therefore we can

proceed using induction.

In all the cases, after the application of induction (respectively subinduc-

tion) hypothesis in order to conclude typeability of subterms of M, it is easy

to build the type of M. We will prove some illustrative cases from both

categories, the rest being similar.

– M ≡ λx.N. Then, the only way to reduce M is to reduce N and the

number of reductions in N is equal to the number of reductions in M.

Since M is SN, N is also SN. Since N is a subterm of M, N is typeable

by subinduction and λx.N is typeable by (→I).

– M ≡ xT1 . . .Tn. Then T1, . . . ,Tn must be SN by subinduction, hence

typeable. Then we build the type for M by multiple application of the

rule (→E), as in Proposition 37.
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– M ≡ (x <x1
x2 PQ)T1 . . .Tn with x1 ∈ Fv(P), x2 ∈ Fv(Q). Again, each of

P,Q,T1, . . . ,Tn must be SN by subinduction, hence typeable. We first

use the rule (Cont) to type x <x1
x2 PQ and then we use the rule (→E),

as in Proposition 37 to type M.

– M ≡ (λx.N)PT1 . . .Tn. Then M → M′ where M′ ≡ N|||[P///x]|||T1 . . .Tn. M′

is also SN, hence typeable by induction hypothesis, since the longest

reduction path out of M′ is smaller than the one out of M. This im-

plies that N|||[P///x]|||,T1, . . . ,Tn are also SN and hence typeable by sub

induction. Then we build the type for M by multiple application of the

rule (→E), as in Proposition 37. The cases M ≡ (x⊙N)PT1 . . .Tn and

M ≡ (x <x1
x2

N)T1 . . .Tn are analogous.

3.2 Typeability ⇒ SN in λr∩

In various type assignment systems, the reducibility method can be used to prove

many reduction properties of typeable terms. It was first introduced by Tait [51]

for proving the strong normalisation of simply typed λ-calculus, and developed

further to prove strong normalisation of various calculi in [52, 28, 37, 24, 27], con-

fluence (the Church-Rosser property) of βη-reduction in [36, 50, 40, 41, 27] and to

characterise certain classes of λ-terms such as strongly normalising, normalising,

head normalising, and weak head normalising terms (and their persistent versions)

by their typeability in various intersection type systems in [21, 17, 15, 16].

The main idea of the reducibility method is to interpret types by suitable sets

of lambda terms which satisfy some realisability properties and prove the sound-

ness of type assignment with respect to these interpretations. A consequence of

soundness is that every typeable term belongs to the interpretation of its type,

hence satisfying a desired reduction property.

In the sequel, we adapt the reducibility method in order to prove that terms

typeable in λr∩ are strongly normalising.

Definition 41. For M ,N ⊆ Λr, we define M // N ⊆ Λr as

M // N = {M ∈ Λr | ∀N ∈ M MN ∈ N }.

Definition 42. The type interpretation [[−]] : Types→ 2Λr is defined by:

(I1) [[p]] = SN , where p is a type atom;
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(I2) [[α → σ]] = [[α]] // [[σ]];

(I3) [[∩n
i σi]] =

{

∩n
i [[σi]] for n > 0

SN for n = 0.

Next, we introduce the notions of variable property, β-expansion property,

ω-expansion property, γ-reduction property, thinning property and contraction

property. The variable property and the β-expansion property correspond to the

saturation property given in [5].

Definition 43.

• A set X ⊆Λr satisfies the variable property, notation VAR(X ), if X contains

all the terms of the form xM1 . . .Mn, where n ≥ 0 and Mi ∈ SN , i = 1, . . . ,n.

• A set X ⊆ Λr satisfies the β-expansion property, notation EXPβ(X ) if

M1 ∈ SN . . . Mn ∈ SN N ∈ SN M|||[N///x]|||M1 . . .Mn ∈ X
EXPβ(X )

(λx.M)N M1 . . .Mn ∈ X .

• A set X ⊆ Λr satisfies the ω-expansion property, notation EXPω(X ) if

M1 ∈ SN . . . Mn ∈ SN N ∈ SN x⊙ (MN)M1 . . .Mn ∈ X
EXPω(X )

(x⊙M)N M1 . . .Mn ∈ X .

• A set X ⊆ Λr satisfies the γ-reduction property, notation REDγ(X ) if

M1 ∈ SN . . . Mn ∈ SN N ∈ SN x <x1
x2
(MN)M1 . . .Mn ∈ X

REDγ(X )
(x <x1

x2
M)N M1 . . .Mn ∈ X .

• A set X ⊆ Λr satisfies the thinning property, notation THIN(X ) if:

M ∈ X
THIN(X )

x⊙M ∈ X .

• A set X ⊆ Λr satisfies the contraction property, notation CONT(X ) if:

M ∈ X
CONT(X )

x <y
z M ∈ X .
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Remark. In Definition 43 it is not necessary to explicitly write the conditions

about free variables since we work with λr-terms.

Definition 44 (r-Saturated set). A set X ⊆ Λr is called r-saturated, if X ⊆ SN

and X satisfies the variable, β-expansion, ω-expansion, γ-reduction, thinning and

contraction properties.

Proposition 45. Let M ,N ⊆ Λr.

(i) SN is r-saturated.

(ii) If M and N are r-saturated, then M // N is r-saturated.

(iii) If M and N are r-saturated, then M ∩N is r-saturated.

(iv) For all types ϕ ∈ Types, [[ϕ]] is r-saturated.

Proof. (i)

• SN ⊆ SN and VAR(SN ) trivially hold.

• EXPβ(SN ). Suppose that M|||[N///x]|||M1 . . .Mn ∈ SN , M1, . . . ,Mn ∈ SN and

N ∈ SN . We know that M|||[N///x]||| ∈ SN as a subterm of a term in SN and

N ∈ SN , hence M ∈ SN . By assumption, M1, . . . ,Mn ∈ SN , so all reduc-

tions inside of these terms terminate. Starting from (λx.M)NM1 . . .Mn, we

can either contract the head redex and obtain M|||[N///x]|||M1 . . .Mn which is SN

by assumption, so we are done, or we can contract redexes inside M,N,M1,
. . . ,Mn, which are all SN by assumption. All these reduction paths are finite.

Consider a term obtained after finitely many reduction steps

(λx.M)NM1 . . .Mn → . . .→ (λx.M′)N′M′
1 . . .M

′
n

where M →→ M′, N →→ N′, M1 →→ M′
1, . . . ,Mn →→ M′

n. After contracting the

head redex of (λx.M′)N′M′
1 . . .M

′
n to M′|||[N′///x]|||M′

1 . . .M
′
n, we actually obtain

a reduct of M|||[N///x]|||M1 . . .Mn ∈ SN . Hence, (λx.M)NM1 . . .Mn ∈ SN .

• EXPω(SN ). Suppose that x⊙(MN)M1 . . .Mn ∈ SN , M1, . . . ,Mn ∈ SN .Since

x ⊙ (MN) is a subterm of a term in SN , we know that MN ∈ SN and

consequently M,N ∈ SN . By assumption, M1, . . . ,Mn ∈ SN , so the re-

ductions inside of these terms terminate. Starting from (x⊙M)NM1 . . .Mn,

we can either contract the head redex and obtain x⊙ (MN)M1 . . .Mn which

is SN by assumption, so we are done, or we can contract redexes inside
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M,N,M1, . . . ,Mn, which are all SN by assumption. All these reduction paths

are finite. Consider a term obtained after finitely many reduction steps

(x⊙M)NM1 . . .Mn → . . .→ (x⊙M′)N′M′
1 . . .M

′
n

where M →→M′, M1 →→M′
1, . . . ,Mn →→M′

n. After contracting the head redex

of (x⊙M′)N′M′
1 . . .M

′
n to x⊙ (M′N′)M′

1 . . .M
′
n, we obtain a reduct of x⊙

(MN)M1 . . .Mn ∈ SN . Hence, (x⊙M)NM1 . . .Mn ∈ SN .

• REDγ(SN ). This is trivial, since by reducing a SN term we again obtain a

SN term.

• THIN(SN ). Suppose that M ∈ SN and x 6∈ Fv(M). Then trivially x⊙M ∈
SN , since no new redexes are formed.

• CONT(SN ). Suppose that M ∈ SN , y 6= z, y,z ∈ Fv(M), x 6∈ Fv(M) \
{y,z}. We prove that x <

y
z M ∈ SN by induction on the structure of M.

– M = yz. Then x <
y
z M = x <

y
z (yz) which is a normal form.

– M = y⊙ z. Then x <
y
z M = x <

y
z (y⊙ z)→γω2

z|||[x///z]|||= x ∈ SN .

– M = λw.N. Then N ∈ SN and x <
y
z M = x <

y
z (λw.N) →γ1

λw.x <
y
z

N ∈ SN , since x <
y
z N ∈ SN by IH.

– M =PQ. Then P,Q∈ SN and if y,z 6∈Fv(Q), x<
y
z M = x<

y
z (PQ)→γ2

(x <
y
z P)Q ∈ SN , since by IH x <

y
z P ∈ SN .

The case of →γ3
reduction when y,z 6∈ Fv(P) is analogous.

– M = w⊙N. Then x <
y
z M = x <

y
z (w⊙N)→γω1

w⊙ (x <
y
z N). By IH

x <
y
z N ∈ SN and w⊙ (x <

y
z N) does not introduce any new redexes.

– M = y⊙N. Then x <
y
z M = x <

y
z (y⊙N)→γω2

N|||[x///z]||| ∈ SN , since

N ∈ SN by IH.

– M = y <u
v N. Then the only possible reduction is inside the term N

which is strongly normalising as a subterm of the strongly normalising

term M = y <u
v N.

– M = x1 <
y1
z1 N. Analogous to the previous case.

(ii)

• M // N ⊆ SN . Suppose that M ∈M // N . Then, for all N ∈M , MN ∈
N . Since M is r-saturated, VAR(M ) holds so x ∈ M and Mx ∈ N ⊆ SN .
From here we can deduce that M ∈ SN .
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• VAR(M // N ). Suppose that x is a variable and M1, . . . ,Mn ∈ SN ,n ≥ 0,

such that x∩Fv(M1)∩ . . .∩Fv(Mn) = /0. We need to show that xM1 . . .Mn ∈
M // N , i.e. ∀N ∈M , xM1 . . .MnN ∈N . This holds since by assumption

M ⊆ SN and N is r-saturated, i.e. VAR(N ) holds.

• EXPβ(M // N ). Suppose that M|||[N///x]|||M1 . . .Mn ∈ M // N , M1, . . . ,
Mn ∈ SN and N ∈ SN . This means that for all P∈M , M|||[N///x]|||M1 . . .MnP∈
N . But N is r-saturated, so EXPβ(N ) holds and we have that for all

P ∈ N , (λx.M)NM1 . . .MnP ∈ N . This means that (λx.M)NM1 . . .Mn ∈
M // N .

• EXPω(M // N ). Analogous to EXPβ(M // N ).

• REDγ(M // N ). Suppose that x <x1
x2 (MN) ∈ M // N . This means

that for all P ∈ M ,x <x1
x2
(MN)P ∈ N . But N is r-saturated, i.e. REDγ(N )

holds, hence (x <x1
x2 M)NP ∈ N . This means that (x <x1

x2 M)N ∈ M // N .

• THIN(M // N ). Suppose that M ∈ M // N and x 6∈ Fv(M). This

means that for all N ∈ M ,MN ∈ N . But N is r-saturated, i.e. THIN(N )
holds, hence x⊙ (MN) ∈ N . Also EXPω(N ) holds so we obtain for all

N ∈ M ,(x⊙M)N ∈ N , i.e. x⊙M ∈ M // N .

• CONT(M // N ). Let M ∈ M // N . We want to prove that x <
y
z M ∈

M // N for y 6= z, y,z∈ Fv(M) and x 6∈ Fv(M). Let P be any term in M .

We have to prove that (x <
y
z M)P ∈ N . Since M ∈ M // N , we know

that M P ∈ N . By assumption N is r-saturated so x <
y
z (M P) ∈ N . Using

REDγ(N ) we obtain (x <
y
z M)P ∈ N . Therefore x <

y
z M ∈ M // N .

(iii)

• M ∩N ⊆ SN is straightforward, since M ,N ⊆ SN by assumption.

• VAR(M ∩N ). Since VAR(M ) and VAR(N ) hold, we have that ∀M1, . . . ,
Mn ∈ SN , n ≥ 0: xM1 . . .Mn ∈ M and xM1 . . .Mn ∈ N . We deduce that

∀M1, . . . ,Mn ∈ SN , n ≥ 0: xM1 . . .Mn ∈ M ∩N , i.e. VAR(M ∩N ) holds.

• EXPβ(M ∩N ) is straightforward.

• EXPω(M ∩N ) is straightforward.
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• REDγ(M ∩N ). Suppose that x <x1
x2 (MN) ∈ M ∩N . Since both M and

N are r-saturated REDγ(M ) and REDγ(N ) hold, hence (x <x1
x2

M)N ∈ M

and (x <x1
x2 M)N ∈ M , i.e. (x <x1

x2 M)N ∈ M ∩N .

• THIN(M ∩N ). Let M ∈ M ∩N and x 6∈ Fv(M). Then M ∈ M and M ∈ N .

Since both M and N are r-saturated THIN(M ) and THIN(N ) hold, hence

x⊙M ∈ M and x⊙M ∈ N , i.e. x⊙M ∈ M ∩N .

• CONT(M ∩ N ). Suppose that M ∈ M ∩ N , y 6= z, y,z ∈ Fv(M), x 6∈
Fv(M) \ {y,z}. Since both M and N are r-saturated CONT(M ) and

CONT(N ) hold, hence x<
y
z M ∈M and x <

y
z M ∈N , i.e. x<

y
z M ∈M ∩N .

(iv) By induction on the construction of ϕ ∈ Types.

• If ϕ ≡ p, p a type atom, then [[ϕ]] = SN , so it is r-saturated using (i).

• If ϕ ≡α → σ, then [[ϕ]] = [[α]] // [[σ]]. Since [[α]] and [[σ]] are r-saturated

by assumption, we can use (ii).

• If ϕ ≡ ∩n
i σi, then we distinguish two cases:

– for n > 0, [[ϕ]] = [[∩n
i σi]] = ∩n

i [[σi]] and for all i = 1, . . . ,n, [[σi]] are

r-saturated by assumption, so we can use (iii).

– for n = 0, ϕ ≡ ∩0
i σi, then [[ϕ]] = SN and we can use (i).

We further define a valuation of terms [[−]]ρ : Λr → Λr and the semantic

satisfiability relation |= connecting the type interpretation with the term valuation.

Definition 46. Let ρ : var → Λr be a valuation of term variables in Λr. For

M ∈ Λr, with Fv(M) = {x1, . . . ,xn} the term valuation [[−]]ρ : Λr → Λr is de-

fined as follows:

[[M]]ρ = M|||[ρ(x1)///x1, . . . ,ρ(xn)///xn]|||

providing that x 6= y ⇒ Fv(ρ(x))∩Fv(ρ(y)) = /0.

Notation: ρ(N/x) is the valuation defined as: ρ(N/x)(y)= ρ(y) and ρ(N/x)(x) = N

for x 6= y.

Lemma 47.

(i) [[x]]ρ = ρ(x);
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(ii) [[MN]]ρ = [[M]]ρ[[N]]ρ;

(iii) [[λx.M]]ρN →β [[M]]ρ|||[N///x]||| and [[M]]ρ|||[N///x]|||= [[M]]ρ(N/x);

(iv) [[x⊙M]]ρ = Fv(ρ(x))⊙ [[M]]ρ;

(v) [[z <x
y M]]ρ = Fv[N]<

Fv[N1]
Fv[N2]

[[M]]ρ(N1/x,N2/y)

where N = ρ(z) and N1, N2 are obtained from N by renaming its free vari-

ables.

Proof.

(i) [[x]]ρ = x|||[ρ(x)///x]|||= x[ρ(x)/x] ↓�= ρ(x), since x[ρ(x)/x] �−−−→ ρ(x).

(ii) Without loss of generality, we can assume that Fv(M) = {x1, . . . ,xi} and

Fv(N) = {xi+1, . . . ,xn}. Then

[[MN]]ρ = (MN)|||[ρ(x1)///x1, . . . ,ρ(xn)///xn]|||=
M|||[ρ(x1)///x1, . . . ,ρ(xi)///xi]|||N|||[ρ(xi+1)///xi+1, . . . ,ρ(xn)///xn]|||= [[M]]ρ[[N]]ρ.

(iii) If Fv(λx.M) = {x1, . . . ,xn}, then

[[λx.M]]ρN = (λx.M)|||[ρ(x1)///x1, . . . ,ρ(xn)///xn]|||N =
(λx.M|||[ρ(x1)///x1, . . . ,ρ(xn)///xn]|||)N → (M|||[ρ(x1)///x1, . . . ,ρ(xn)///xn]|||)|||[N///x]|||=
[[M]]ρ|||[N///x]|||.

[[M]]ρ(N/x) = M|||[ρ(N/x)(x1)///x1, . . . ,ρ(N/x)(xn)///xn,ρ(N/x)(x)///x]|||=
M|||[ρ(x1)///x1, . . . ,ρ(xn)///xn]||||||[N///x]|||= [[M]]ρ|||[N///x]|||.

(iv) If Fv(M) = {x1, . . . ,xn}, then Fv(x⊙M) = {x,x1, . . . ,xn} and

[[x⊙M]]ρ = (x⊙M)|||[ρ(x)///x,ρ(x1)///x1, . . . ,ρ(xn)///xn]|||=
Fv(ρ(x))⊙M|||[ρ(x1)///x1, . . . ,ρ(xn)///xn]|||= Fv(ρ(x))⊙ [[M]]ρ since

(x⊙M)[ρ(x)/x][ρ(x1)/x1] . . . [ρ(xn)/xn]
�−−−→

(Fv(ρ(x))⊙M)[ρ(x1)/x1] . . . [ρ(xn)/xn]
�

−−−−→→

Fv(ρ(x))⊙M[ρ(x1)/x1] . . . [ρ(xn)/xn].

(v) If Fv(M) = {x,y,x1, . . . ,xn}, then Fv(z <x
y M) = {z,x1, . . . ,xn} and

[[z <x
y M]]ρ = (z <x

y M)|||[ρ(z)///z,ρ(x1)///x1, . . . ,ρ(xn)///xn]|||=
(z <x

y M)|||[N///z]||||||[ρ(x1)///x1, . . . ,ρ(xn)///xn]|||=

Fv[N]<
Fv[N1]
Fv[N2]

M|||[N1///x]||||||[N2///y]||||||[ρ(x1)///x1, . . . ,ρ(xn)///xn]|||

since (z <x
y M)[N/z][ρ(x1)/x1] . . . [ρ(xn)/xn]

�−−−→
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(Fv[N]<
Fv[N1]
Fv[N2]

M[N1/x][N2/y])[ρ(x1)/x1] . . . [ρ(xn)/xn]
�−−−→

Fv[N]<
Fv[N1]
Fv[N2]

M[N1/x][N2/y][ρ(x1)/x1] . . . [ρ(xn)/xn].

On the other hand, denoting by ρ′ = ρ(N1/x,N2/y) we obtain

Fv[N]<
Fv[N1]
Fv[N2]

[[M]]ρ(N1/x,N2/y) =

Fv[N]<
Fv[N1]
Fv[N2]

M|||[ρ′(x)///x,ρ′(y)///y,ρ′(x1)///x1, . . . ,ρ
′(xn)///xn]|||=

Fv[N]<
Fv[N1]
Fv[N2]

M|||[N1///x,N2///y,ρ(x1)///x1, . . . ,ρ(xn)///xn]|||

Definition 48.

(i) ρ |= M : σ ⇐⇒ [[M]]ρ ∈ [[σ]];

(ii) ρ |= Γ ⇐⇒ (∀(x : α) ∈ Γ) ρ(x) ∈ [[α]];

(iii) Γ |= M : σ ⇐⇒ (∀ρ,ρ |= Γ ⇒ ρ |= M : σ).

Lemma 49. Let Γ � M : σ and ∆ � M : τ, then

ρ � Γ⊓∆ if and only if ρ � Γ and ρ � ∆.

Proof. The proof is a straightforward consequence of the definition of bases in-

tersection ⊓.

Proposition 50 (Soundness of λr∩). If Γ ⊢ M : σ, then Γ |= M : σ.

Proof. By induction on the derivation of Γ ⊢ M : σ.

• The last rule applied is (Ax), i.e.

x : σ ⊢ x : σ
(Ax)

We have to prove x : σ |= x : σ. i.e. (∀ρ) ρ(x) ∈ [[σ]]⇒ [[x]]ρ ∈ [[σ]]. This is

trivial since according to Lemma 47(i) [[x]]ρ = ρ(x).

• The last rule applied is (→I), i.e.

Γ,x : α ⊢ M : σ

Γ ⊢ λx.M : α → σ
(→I)

42



By the IH Γ,x : α |= M : σ (*). Suppose that ρ |= Γ and we want to show

that ρ |= λx.M : α → σ. We have to show that

[[λx.M]]ρ ∈ [[α → σ]] = [[α]] // [[σ]] i.e. ∀N ∈ [[α]]. [[λx.M]]ρN ∈ [[σ]].

Suppose that N ∈ [[α]]. We have that ρ(N/x) |= Γ,x : α (**) since ρ |= Γ, x 6∈
Γ and ρ(N/x)(x) = N ∈ [[α]]. From (*) and (**) we conclude that ρ(N/x) |=
M : σ, hence we can conclude that [[M]]ρ(N/x) ∈ [[σ]]. Using Lemma 47(iii)

we get [[λx.M]]ρN →β [[M]]ρ|||[N///x]|||= [[M]]ρ(N/x). Since [[M]]ρ(N/x) ∈ [[σ]] and

[[σ]] is r-saturated, we obtain [[λx.M]]ρN ∈ [[σ]].

• The last rule applied is (→E), i.e.

Γ ⊢ M : ∩n
i τi → σ ∆0 ⊢ N : τ0 . . . ∆n ⊢ N : τn

Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n ⊢ MN : σ

(→E)

Let ρ be any valuation. Assuming that Γ⊢M :∩n
i τi →σ,∆0 ⊢N : τ0, . . . ,∆n ⊢

N : τn, we have to prove that if ρ � Γ,∆⊤
0 ⊓∆1 ⊓ ...⊓∆n, then ρ � M N : σ,

i.e. [[MN]]ρ ∈ [[σ]].

By IH, Γ |= M : ∩n
i τi → σ and ∆0 |= N : τ0, . . . ,∆n |= N : τn. Assume that

ρ |= Γ,∆⊤
0 ⊓ ∆1 ⊓ . . .⊓ ∆n. This means that ρ |= Γ and ρ |= ∆⊤

0 ⊓ ∆1 ⊓
. . .⊓∆n. From ρ |= Γ we deduce by Definition 48 (iii) ρ |= M : ∩n

i τi → σ

and by Definition 48 (i) [[M]]ρ ∈ [[∩n
i τi → σ]]. By Definition 46 [[M]]ρ ∈

⋂n
i [[τi]] // [[σ]] (*). Using Lemma 49 ρ |= ∆⊤

0 ⊓∆1 ⊓ ...⊓∆n implies (ρ |=
∆⊤

0 )∧ (
∧n

i=1 ρ |= ∆i), hence by Definition 48 (i) and (iii) we get ([[N]]ρ ∈
[[⊤]])∧

∧n
i=1([[N]]ρ ∈ [[τi]]), i.e. [[N]]ρ ∈ SN ∩ ∩n

i [[τi]] = ∩n
i [[τi]] (**), since

[[τi]] ⊆ SN by Proposition 45(iv). From (*) and (**), using Definition 41

of //, we can conclude that [[M]]ρ[[N]]ρ ∈ [[σ]]. Using Lemma 47(ii) we can

conclude that [[M N]]ρ = [[M]]ρ[[N]]ρ ∈ [[σ]] and by Definition 48 (i) ρ � M N : σ.

• The last rule applied is (T hin), i.e.,

Γ ⊢ M : σ
Γ,x : ⊤ ⊢ x⊙M : σ

(T hin)

By the IH Γ |= M : σ. Suppose that ρ |= Γ,x : ⊤ ⇔ ρ |= Γ and ρ |= x : ⊤.

From ρ |= Γ we obtain [[M]]ρ ∈ [[σ]]. Using multiple times the thinning

property THIN([[σ]]) and Lemma 47(iv) we obtain Fv(ρ(x))⊙ [[M]]ρ = [[x⊙
M]]ρ ∈ [[σ]], since Fv(ρ(x))∩Fv([[M]]ρ) = /0.
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• The last rule applied is (Cont), i.e.,

Γ,x : α,y : β ⊢ M : σ

Γ,z : α∩β ⊢ z <x
y M : σ

(Cont)

By the IH Γ,x : α,y : β |= M : σ. Suppose that ρ |= Γ,z : α∩β.This means

that ρ |= Γ and ρ |= z : α∩ β ⇔ ρ(z) ∈ [[α]] and ρ(z) ∈ [[β]]. For the sake

of simplicity let ρ(z) ≡ N. We define a new valuation ρ′ such that ρ′ =
ρ(N1/x,N2/y), where N1 and N2 are obtained by renaming the free vari-

ables of N. Then ρ′ |= Γ,x : α,y : β since x,y 6∈ Dom(Γ), N1 ∈ [[α]] and

N2 ∈ [[β]]. By the IH [[M]]ρ′ = [[M]]ρ(N1/x,N2/y) ∈ [[σ]]. Using the contrac-

tion property CONT([[σ]]) and Lemma 47(v) we have that Fv(N) <
Fv(N1)
Fv(N2)

[[M]]ρ(N1/x,N2/y) = [[z <x
y M]]ρ ∈ [[σ]].

Theorem 51 (SN for λr∩). If Γ ⊢ M : σ, then M is strongly normalising, i.e.

M ∈ SN .

Proof. Suppose Γ ⊢ M : σ. By Proposition 50 Γ |= M : σ. According to Defi-

nition 48(iii), this means that (∀ρ) ρ |= Γ ⇒ ρ |= M : σ. We can choose a

particular ρ0(x) = x for all x ∈ var. By Proposition 45(iv), [[σ]] is r-saturated

for each type σ, hence [[x]]ρ0
= x ∈ [[σ]] (variable condition for n = 0). Therefore,

ρ0 |= Γ and we can conclude that [[M]]ρ0
∈ [[σ]]. On the other hand, M = [[M]]ρ0

and [[σ]]⊆ SN (Proposition 45), hence M ∈ SN .

Finally, we can give a characterisation of strong normalisation in λr-calculus.

Theorem 52. In λr-calculus, the term M is strongly normalising if and only if it

is typeable in λr∩.

Proof. Immediate consequence of Theorems 51 and 40.

4 Related work and conclusions

The idea to control the use of variables can be traced back to Church’s λI-calculus [4]

and Klop’s extension of λ-calculus [35]. Currently, there are several different lines

of research in resource aware term calculi.
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Van Oostrom [54] and later Kesner and Lengrand [30], applying ideas from

linear logic [29], proposed to extend λ-calculus with explicit substitution [30] with

operators to control the use of variables (resources). Their linear λlxr-calculus is

an extension of the λx-calculus [9, 47] with operators for linear substitution, era-

sure and duplication, preserving at the same time confluence and full composition

of explicit substitutions. The simply typed version of this calculus corresponds to

the intuitionistic fragment of linear logic proof-nets, according to Curry-Howard

correspondence, and it enjoys strong normalisation and subject reduction. Gen-

eralising this approach, Kesner and Renaud [31, 32] developed the prismoid of

resources, a system of eight calculi parametric over the explicit and implicit treat-

ment of substitution, erasure and duplication.

On the other hand, process calculi and their relation to λ-calculus by Boudol [10]

initialised investigations in resource aware non-deterministic λ-calculus with mul-

tiplicities and a generalised notion of application [11]. The theory was connected

to linear logic via differential λ-calculus by Ehrhard and Regnier in [19] and typed

with non-idempotent intersection types by Pagani and Ronchi Della Rocha in [43].

An account of this approach is given in [2].

Resource control in sequent calculus corresponding to classical logic was pro-

posed by Žunić in [56]. Resource control in sequent λ-calculus was investigated

in [25].

Intersection types in the presence of resource control were first introduced

in [26]. Later on non-idempotent intersection types for λlxr-calculus were intro-

duced by Bernadet and Lengrand in [8]. Their proof of strong normalisation takes

advantage of intersection types being non-idempotent.

Our contribution extends the work of [26], accordingly we follow the notation

of [56] and [26], along the lines of [54]. We have proposed an intersection type

assignment system for the resource control lambda calculus λr, which gives a

complete characterisation of strongly normalising terms of the λr-calculus. The

proofs do not rely on any assumption about idempotence, hence they can be ap-

plied both to idempotent and non-idempotent intersection types.

This paper expands the range of the intersection type techniques and combines

different methods in the strict type environment. It should be noticed that the strict

control on the way variables are introduced determines the way terms are typed in

a given environment. Basically, in a given environment no irrelevant intersection

types are introduced. The flexibility on the choice of a type for a term, as it is used

in rule (→E) in Figure 8, comes essentially from the choice one has in invoking

the axiom.

The presented calculus is a good candidate to investigate the computational
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content of substructural logics [49] in natural deduction style and relation to sub-

structural type systems [55]. The motivation for these logics comes from philoso-

phy (Relevant Logics), linguistics (Lambek Calculus), computing (Linear Logic).

Since the basic idea of resource control is to explicitly handle structural rules, the

control operators could be used to handle the absence of (some) structural rules

in substructural logics such as thinning, weakening, contraction, commutativity,

associativity. This would be an interesting direction for further research. Another

direction involves the investigation of the use of intersection types, being a power-

ful means for building models of lambda calculus [6, 16], in constructing models

for substructural type systems. Finally, one may wonder how the strict control on

the duplication and the erasure of variables influences the type reconstruction of

terms [12, 33].
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