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We show that different conventions for Bloch Hamiltonians on non-Bravais lattices correspond
to different natural definitions of parallel transport of Bloch eigenstates. Generically the Berry
curvatures associated with these parallel transports differ, while physical quantities are naturally
related to a canonical choice of the parallel transport.

PACS numbers: 71.20.-b 03.65.Vf 73.43.Cd

An increasing effort has been recently devoted to the
characterization of geometrical and topological properties
of electronic bands in crystals. Several physical concepts,
including the semi-classical evolution and the polarizabil-
ity, were related through the geometrical notions of Berry
connection, curvature, and phase to the parallel transport
within electronic bands [1–4]. It was recently proposed
to experimentally access such Berry properties in cold
atoms lattices [5, 6]. Blount already noted [7] that a
quantity analogous to an electromagnetic vector potential
characterizes isolated bands in a crystal. With the advent
of the integer quantum Hall effect, the first Chern class of
electronic bands was described via a connection defining
parallel transport of eigenstates over the Brillouin zone
[8]. Independently, Berry [1] introduced a similar notion
of parallel transport to describe the adiabatic evolution
of eigenstates of a time dependent Hamiltonian. Both
notions of parallel transport were related soon after [9],
and the properties of parallel transport of eigenstates in
crystals are now associated with a Berry connection, al-
though they are not necessarily related to a Hamiltonian
adiabatic evolution.

Electronic eigenstates in a crystal can be deduced from
a Bloch Hamiltonian depending on a quasi-momentum
in the Brillouin zone [7]. However, as noted by Zak,
this Hamiltonian does not have a unique matrix form
for a given model on a crystal [10]. Several conventions
exist for bases of Bloch states over the Brillouin zone, as
recently discussed in the context of graphene-like systems
in [11, 12]. Such different conventions define different
ways of transporting eigenstates parallel to the bases.
The different parallel transports do not necessarily define
unique “Berry geometrical properties” when restricted
to a (few) band(s). It is the purpose of this paper to
show that different “Berry curvatures” are obtained out
of commonly used Bloch conventions for models defined
on non-Bravais lattices such as graphene. Moreover, we
point to a canonical Bloch convention that allows to
define parallel transport in an (almost) unambiguous way.
When projected on a (few) band(s), the latter defines
the physically relevant “Berry connection” characterizing
measurable properties of the crystal. The above situation
differs from the Hamiltonian adiabatic evolution initially
considered by Berry where the parallel transport in the

whole Hilbert space is unambiguously defined from the
start.

Let us begin by considering a crystal C, a discrete subset
of a d-dimensional Euclidean space Ed (the locations of
atoms) acted upon by a Bravais lattice Γ ⊂ R

d of discrete
translations, Γ ≃ Z

d. For non-Bravais crystals, several
classes of translationally equivalent points of C called
sublattices exist: the cardinal N of C/Γ is larger than 1.
For example, the hexagonal lattice of graphene possesses
N = 2 sublattices A and B marked, respectively, as full
and empty circles in the insets of Fig. 1. The Bravais
lattice is composed of vectors connecting sites of the
same sublattice. The set C/Γ may be represented by a
fundamental domain F ⊂ C, also called a unit cell, which
has one point in each sublattice. A translation of F by
a Bravais vector is also a possible choice for a unit cell
but when N > 1 then there are choices of F that are not
related in this way. Two such choices for graphene are
illustrated in the insets of Fig. 1a and b.

Along with the translational degrees of freedom, one
may consider a finite number of internal degrees of freedom
of atoms, e.g. the spin of electrons, represented as a finite-
dimensional complex vector space V equipped with a
scalar product 〈·, ·〉V . The Hilbert space of crystalline
states is then the space H = ℓ2(C, V ) of V -valued square-
summable functions on C with the scalar product 〈ψ|χ〉 =∑

x∈C〈ψ(x)|χ(x)〉V . The translation of states ψ ∈ H by
a vector γ of the Bravais lattice is defined by the unitary
operator Tγ such that Tγψ(x) = ψ(x − γ) for x ∈ C.
Below, we shall assume for simplicity that V = C but all
considerations generalize in a straightforward way to the
case with internal degrees of freedom.

Operators Tγ define a representation of the translation
group Γ in H which may be decomposed into irreducible
1-dimensional components. Irreducible representations
of Γ are its characters γ 7→ eik·γ , where k ∈ R

d. As
eik·γ = ei(k+G)·γ for G in the reciprocal lattice Γ⋆ (com-
posed of vectors G with G · γ ∈ 2πZ), the characters
of Γ form a d-dimensional Brillouin torus BZ = R

d/Γ⋆.
The decomposition of H into irreducible components is
realized by the Fourier transform ψ 7→ ψ̂, where

ψ̂k(x) =
∑

γ∈Γ

e−ik·γψ(x− γ). (1)
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Note that ψ̂k = ψ̂k+G and

ψ̂k(x− γ) = eik·γψ̂k(x) (2)

so that T̂γψk(x) = eik·γψ̂k(x). Property (2) defines the
Bloch functions on C with quasi-momentum k. For fixed
k, such functions ϕk(x) form a finite-dimensional space
Hk = Hk+G that may be equipped with the scalar product
〈ϕk|χk〉k =

∑
C/Γ ϕk(x)χk(x). As a Bloch function is

determined by its values on a unit cell F ⊂ C, dim(Hk) =
N . Note that spaces Hk are defined canonically for each
k, without any further choices.

Geometrically, the collection of vector spaces Hk forms
a complex N -dimensional vector bundle H over the Bril-
louin torus BZ. We shall call H the Bloch bundle. Spaces
Hk are the fibers of H and their scalar product equips
H with a Hermitian structure. Sections of H are maps
k 7→ ϕk ∈ Hk. They are smooth if functions k 7→ ϕk(x)
are smooth for all x. The Fourier transform (1) is an iso-
morphism between H and the space of square-integrable
sections k 7→ ψ̂k of the Bloch bundle H defined over BZ.
It preserves the norm, as stated by the Plancherel formula.
Its inverse is given by the normalized integral of ψ̂k(x)
over the Brillouin torus.

To compare vectors in different fibers along a curve in
the base space of a bundle one needs a parallel transport,
as in the Bloch bundle where fibers Hk are distinct vector
spaces for different k. Such a transport is usually not
given a priori and requires a prescription, provided by a
so-called connection. Equivalently, a covariant derivative
of sections encodes infinitesimal parallel transport along
coordinate axes in the base space. Connections always
exist, in particular in the Bloch bundle, but are non-
unique and may be non-flat in the sense that the parallel
transport of a state along a closed loop does not end
in the same state even if the loop may be continuously
deformed to a point. Only special bundles carry flat
connections. The Bloch bundle does because it may be
trivialized (but not in a canonical way). A trivialization
of H is a family of smooth sections k 7→ eik, i = 1, . . . , N ,
defined over BZ (i.e. with eik = eik+G), which for each k
form an orthonormal basis (a frame) of Hk. An example of
a trivialization of H is provided by the Fourier transforms
of functions δx,xi

concentrated at points xi, i = 1, . . . , N ,
of a fixed unit cell F ⊂ C. We shall denote by eIik the
corresponding vectors in Hk. Bloch functions decompose
as ϕk =

∑
i ϕk(xi)e

Ii
k . The trivialization of H defined this

way depends on the choice of F . If F ′ is another unit cell
then x′i = xi+γi with γi ∈ Γ for an appropriate numbering
of its points so that δx,x′

i
= Tγi

δx,xi
and, consequently,

e′Iik = eik·γieIik .

Each trivialization permits to identify the Bloch bundle
H with the trivial bundle BZ × C

N and to equip H
with a flat connection that we identify with the covariant
derivative ∇ =

∑
dkµ∇µ acting on smooth sections k 7→

ϕk of H by the formula

〈eik|∇ϕk〉k = d〈eik|ϕk〉k (3)

where d =
∑
dkµ∂µ is the exterior derivative of functions

on BZ. Flatness of the connection means that ∇2 = 0. It
follows from the property d2 = 0 of the exterior derivative.
We shall denote by ∇I the flat connection associated
to the trivialization k 7→ eIik of H defined above. ∇I

depends on the choice of unit cell F but is independent
of the numbering of its points. For another unit cell F ′

related to F as discussed above, we have ∇′I = ∇I −
i
∑

i |e
Ii
k 〉〈e

Ii
k | dk ·γi. The difference is a differential 1-form

with values in linear transformations of the fibers of H.
There exists a more canonical and physically more rele-

vant way to equip the Bloch bundle with a flat connection.
Upon a choice of the origin x0 in the Euclidean space Ed,
we may identify Bloch functions with Γ-periodic functions
on C by writing for any ϕk ∈ Hk,

ϕk(x) = e−ik·(x−x0)uk(x). (4)

Clearly uk(x+γ) = uk(x) and uk+G(x) = eiG·(x−x0)uk(x)
for γ ∈ Γ and G ∈ Γ⋆. This allows to identify the Bloch
bundle with the quotient of the trivial bundle Rd×ℓ2(C/Γ)
over R

d, with the fiber composed of Γ-periodic functions
u(x) on C, by the action

(k, u(x)) 7−→ (k +G, eiG·(x−x0)u(x)) (5)

of the reciprocal lattice Γ⋆. Note that an element G ∈ Γ⋆

acts on u(x) by multiplying it by the Γ-periodic function
eiG·(x−x0), preserving the ℓ2(C/Γ) scalar product. The
trivial bundle R

d × ℓ2(C/Γ) has a natural flat connection
given by the exterior derivative of its sections. As the
functions eiG·(x−x0) do not depend on k, this connection
commutes with the action of Γ⋆ and, consequently, it
induces a connection ∇II on the Bloch bundle H. The
induced connection is still flat: (∇II)2 = 0, but it has a
non-trivial holonomy along the non-contractible loops of
the Brillouin torus BZ. This holonomy may be identified
via relation (4) with the above action of Γ⋆ on ℓ2(C/Γ).
Physical importance of connection ∇II resides in the fact
that −i∇II

µ corresponds under the Fourier transform to
the position operator multiplying wave functions ψ(x)
by (x − x0)µ. We can still use eq. (3) to define ∇II

but now with Bloch functions eik(x) = e−ik·(x−x0)ui(x),
where ui, i = 1, . . . , N , form any orthonormal basis of
the space ℓ2(C/Γ) of Γ-periodic functions on C (note that
eik+G 6= eik in this case). For the particular choice with
ui(x) =

∑
γ∈Γ Tγδx,xi

, where xi are the points of a unit
cell F , we shall denote the corresponding Bloch functions
by eIIik (x). Although connection ∇II does not depend on
the choice of F , it does depend on the choice of the origin
x0 of the Euclidean space, but in a very simple way. If we
choose another origin x′0 then e′IIik = eik·(x

′

0
−x0)eIIi so that

∇′II = ∇II − i dk · (x′0−x0), i.e. the two connections differ
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by a closed scalar 1-form. To compare connections ∇I

and ∇II, one notes that eIIik = e−ik·(xi−x0)eIik for the same
choice of F . Hence ∇II = ∇I − i

∑
i |e

Ii
k 〉〈e

Ii
k | dk · (xi−x0).

Often we restrict our attention to electronic states in
a Γ-invariant subspace of H, such as valence bands in
an insulator. This amounts to consider a subbundle E
of the Bloch bundle, i.e. a collection of M -dimensional
vector subspaces Ek ⊂ Hk smoothly dependent on k and
such that Ek+G = Ek. Any connection ∇ on the bundle H
projects to a connection E∇ on E for which the covariant
derivative of sections k 7→ ϕk ∈ Ek is given by

E∇ϕk = Pk∇ϕk (6)

where Pk is the orthogonal projector from Hk to Ek. In
general, flat connections project to connections with cur-
vature. In particular, if ∇ is a flat connection obtained by
formula (3) then 〈eik|

E∇ϕk〉k =
∑

j P
ij
k d〈e

j
k|ϕk〉k where

P ij
k = 〈eik|Pk|e

j
k〉k. In this case

〈eik|
E∇2ϕk〉k =

∑

j

F ij
k 〈ejk|ϕk〉k (7)

where F ij =
∑

mn P
imdPmn∧ dPnj is the matrix curva-

ture 2-form and F =
∑

i F
ii = tr (PdP∧ dP ) is its scalar

version.
The integrals divided by −2πi of F over 2-dimensional

(sub-tori in) BZ give the 1st Chern number(s) of the vector
bundle E that are independent of the choice of connection.
We may work, in particular, with the connections E∇I or
E∇II obtained by projection of ∇I and ∇II to E . Scalar
curvature F I corresponding to connection E∇I depends in
general on the unit cell F ⊂ C whereas scalar curvature
F II corresponding to connection E∇II does not depend on
x0 and is canonically defined for each subbundle E ⊂ H.
To see this note that the difference between different
frames of sections k 7→ eik and k 7→ e′ik involved in the

definitions (3) has the form eik =
∑

j U
ji
k e

′j
k for unitary

matrices Uk. The corresponding projectors P ′
k and Pk

given by matrices P ′ij
k and P ij

k are related by the equality
P ′
k = UkPkU

−1
k leading to the relation

F ′ = F + tr (dP ∧ U−1dU − P U−1dU ∧ U−1dU). (8)

In general, operators U do not commute with P and we
obtain different scalar curvatures. An exception is the
relation between the sections k 7→ eIIik corresponding to
different x0 where operators U are scalar and P ′ = P
resulting in the same scalar curvatures.

We shall use the above geometric setup for the case
of the subbundle E ⊂ H of the valence-band states of
an insulator. To this end, let us consider a tight-binding
Hamiltonian

H =
∑

x,y∈C

hx,y|x〉〈y| (9)

in the Hilbert space H , where |y〉 denotes the state with
localized wave function x 7→ δx,y. We shall assume that

hx,y = hy,x vanishes for |x−y| outside some fixed range. If
hx,y = hx+γ,y+γ for γ ∈ Γ then H commutes with Bravais
lattice translations Tγ and maps Bloch functions into
Bloch functions, defining Bloch Hamiltonians Hk = Hk+G

acting in the finite-dimensional spaces Hk. Under the
Fourier transform (1),

Ĥψk = Hkψ̂k. (10)

Given a frame of sections k 7→ eik of the Bloch bundle H,
Hamiltonians Hk may be represented by N × N Bloch

matrices 〈eik|Hk|e
j
k〉k ≡ Hij

k = Hji
k related by unitary

transformations for different choices of the frame but de-
scribing the same physics. In particular, we may obtain
Bloch matrices HI

k = HI

k+G corresponding to the choice

of frames eIik or HII

k 6= HII

k+G corresponding to the frames

eIIik , a situation considered in [13]. These matrices are the
usual standard forms of Bloch Hamiltonians. In the con-
text of graphene, they correspond to the two conventions
discussed in [12]. The spectrum Ek1 ≤ · · · ≤ EkN of the
Bloch matrices is independent of the frame and coincides
with the spectrum of operators Hk. For insulators, the
Fermi energy ǫF has a value that lies in the spectral gap,
i.e. it differs from all Ekn. The subspaces Ek ⊂ Hk corre-
sponding to Ekn < ǫF form the valence-band subbundle
E of the Bloch bundle H. The space of sections of E is
mapped by the inverse Fourier transform to the subspace
E ⊂ H of the electronic states with energy < ǫF that are
filled at zero-temperature. The geometrical properties of
bundle E have a bearing on the low temperature physics
of the insulator. The previous discussion applies directly
to the valence-band subbundle. In particular, we may
equip E with different connections E∇I or E∇II whose
scalar curvatures differ but give rise to the same Chern
numbers.

We can express the projected connections E∇ in terms
of a local frame k 7→ ϕa

k =
∑

i ϕ
a
i e

i
k, a = 1, . . . ,M , of

E , e.g. composed of the eigenstates of Hamiltonians Hk

with energies Eka < ǫF over regions in BZ where no such
energy levels cross. For ∇ given by (3), one has:

〈ϕa
k|

E∇ϕb
k〉k =

∑

i

ϕa
kidϕ

b
ki ≡ Aab

k (11)

whereAab = −Aba is the local connection 1-form, and F =∑
adA

aa. The same relation defines the Berry connection

extracted from the change of eigenstates under adiabatic
changes of the Hamiltonian. Although there is usually
no underlying physical adiabatic process involved in the
definition of connections projected on the valence-band
subbundle, those are often dubbed “Berry connections”.
We may just talk of Berry connections E∇I and E∇II on E .
In particular, the (almost) canonical connection E∇II is
related to the position operator projected on the subspace
E = P−

H of states with energy < ǫF : the operator
(x−x0)

−
µ ≡ P−(x−x0)µP

− corresponds under the Fourier
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FIG. 1. The (normalized) Berry curvature Fk of the valence band in a gapped graphene model (12) with v/t = 1 is plotted
on the Brillouin zone (dashed hexagone) for conventions I (a and b) and II (c). The corresponding choices of unit cells for
convention I are shown in the insets. Vectors ai connecting nearest neighbors in sublattices A and B of the graphene lattice are
shown in inset (c). In all three cases, curvature Fk is concentrated around the Dirac points of graphene. It depends strongly on
the unit cell for convention I and is uniquely defined and respects the symmetries of the crystal for convention II.

transform to the covariant derivative −iE∇II

µ and, for a
single valence band, the commutator [(x − x0)

−
µ , (x −

x0)
−
ν ] measuring the non-commutativity of the projected

position operators corresponds to the multiplication by
the component F II

νµ of the canonical scalar curvature F II.
One may trace back the occurrence of Berry connection
∇II in physical properties [3, 4] to the above relations.

We now illustrate the different choices of Berry connec-
tions on the gapped graphene model with an alternate
potential on different sublattices. The model is described
by the Hamiltonian

H = t
∑

〈x,y〉

|x〉〈y|+
∑

x∈C

vx|x〉〈x| (12)

where 〈x, y〉 run through the nearest neighbor pairs on
the hexagonal crystal C and vx = +v (resp. −v) on its
sublattice A (resp. B). In convention I, for the unit
cell F = {xA, xB} shown in Fig. 1a, the Bloch matrix
Hamiltonians are

HI

k =

(
+v gI

k

gI

k −v

)
(13)

with gI

k = t[1 + exp(ik · b1) + exp(−ik · b2)], where bi =
εijk(aj − ak) are the Bravais vectors between second-
nearest neighbors and ai, i = 1, 2, 3, the ones between
nearest neighbors shown on the inset in Fig. 1c. A second
choice of unit cell F ′ shown in Fig. 1b leads to g′Ik =
t[1 + exp(ik · b2) + exp(−ik · b3)]. These Hamiltonians are
periodic in k but they explicitly depend on the choice of
unit cell. The HamiltoniansHII

k in canonical convention II
can be deduced from HI

k using the change of basis matrix
Uk = eik·x0 diag(e−ik·xA , e−ik·xB ) with an arbitrary x0.
It takes the form (13) but with gIk replaced by gII

k =
eik·a3gI

k = t[exp(ik · a1) + exp(ik · a2) + exp(ik · a3)]. In
all cases the spectrum is Ek± = ±(v2 + |gk|

2)1/2 and,
for ǫF = 0, the valence band corresponds to the minus

sign. Curvature F of the valence-band subbundle has
only one component F12. It is represented in Fig. 1 for
the three above conventions for the gapped graphene with
unit v/t. The dependence of the Berry curvature on the
Bloch conventions is clearly illustrated. In particular,
for convention I, a rotation of the unit cell rotates the
curvature plot while a translation of the unit cell amounts
to a U(1) gauge transformation and does not change the
curvature.

This ends our discussion of the two main conventions
used to define Berry connections in subbundles of Bloch
states, the main subject of the present paper. We showed
how in one of those conventions the scalar curvature de-
pends on additional choices and we identified another,
more physical, convention in which the scalar curvature
is unambiguously defined and relates to the position op-
erator.
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