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Abstract

In this paper, we improve the usual relative error bound for the computation of

x
n through iterated multiplications by x in binary floating-point arithmetic. The

obtained error bound is only slightly better than the usual one, but it is simpler.

We also discuss the more general problem of computing the product of n terms.
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1 Introduction

1.1 Floating-point arithmetic and rounding errors

In general, computations in floating-point arithmetic are not errorless: a small rounding
error occurs each time an arithmetic operation is performed. Depending on the calculation
being done, the global influence of these individual rounding errors can rank anywhere
between completely negligible and overwhelming. Hence, it is always important to have
some information on the numerical quality of a computed result. Furthermore, when
critical applications are at stake, one may need certain yet tight error bounds. The ma-
nipulation of these error bounds (either paper-and-pencil manipulation or—if one wishes
to do some dynamical error analysis—numerical manipulation) will also be made easier
if these bound are simple.

In the following, we assume a radix-2, precision-p, floating-point (FP) arithmetic. To
simplify the presentation, we assume an unbounded exponent range: our results will be
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applicable to “real life” floating-point systems, such as those that are compliant with the
IEEE 754-2008 Standard for Floating-Point Arithmetic [3, 6], provided that no underflow
or overflow occurs. In such an arithmetic, a floating-point number is either zero or a
number of the form

x = X · 2ex−p+1,

where X and ex are integers, with 2p−1 ≤ |X| ≤ 2p − 1. The number X is called the
integral significand of x, X · 2−p+1 is called the significand of x, and ex is called the
exponent of x.

As said above, since in general the sum, product, quotient, etc., of two FP numbers
is not a FP number, it must be rounded. The IEEE 754-2008 Standard requires that the
arithmetic operations should be correctly rounded : a rounding function must be chosen
among five possible functions defined by the standard. If ◦ is the rounding function, when
the arithmetic operation (a⊤b) is performed, the value that must be returned is the FP
number ◦(a⊤b). The default rounding function is round to nearest ties to even, denoted
RNeven, defined as follows:

(i) for all FP numbers y, |RNeven(t)− t| ≤ |y − t|;

(ii) if there are two FP numbers that satisfy (i), RNeven(t) is the one whose integral
significand is even.

The IEEE 754-2008 standard defines another round-to-nearest rounding function, namely
round to nearest ties to away, where (ii) is replaced by

(ii′) if there are two FP numbers that satisfy (i), RNaway(t) is the one whose integral
significand has the largest magnitude.

In the following, RN is one of these two round-to-nearest functions. More precisely:
unless stated otherwise, the bounds we give are applicable to both rounding functions.
However, when we build examples (for instance for checking how tight are the obtained
bounds), we use RNeven.

Recently, classic error bounds for summation and dot product have been improved by
Jeannerod and Rump [8, 5]. They have considered the problem of calculating the sum of
n FP numbers x1, x2, . . . , xn. If we call float(

∑n
i=1 xi) the computed result and u = 2−p

the rounding unit, they have shown that
∣∣∣∣∣float

(
n∑

i=1

xi

)
−

n∑

i=1

xi

∣∣∣∣∣ ≤ (n− 1) · u
n∑

i=1

|xi| (1)

which is better than the previous bound [2, p.63]
∣∣∣∣∣float

(
n∑

i=1

xi

)
−

n∑

i=1

xi

∣∣∣∣∣ ≤ γn−1

n∑

i=1

|xi|

where
γn =

n · u
1− n · u = n · u+ n2 · u2 + n3 · u3 + · · · = n · u+O(u2). (2)

We are interested in finding if a similar simplification is possible in the particular
case of the computation of an integer power xn, that is we wish to know if the result
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computed using the “naive algorithm” (Algorithm 1 below) is always within relative error
(n−1) ·u from the exact result. This is “experimentally true” in binary32/single precision
arithmetic. More precisely, we did an exhaustive check for all x ∈ [1; 2[ in binary32 (223

numbers to be checked) until overflow for xn. For the smallest number larger than 1,
namely x = 1 + 2u, n ≈ 7.5 × 108 is needed to reach overflow. Our test used a 100-bit
interval arithmetic provided by the MPFI [7] package.

In this paper, we prove—under mild hypotheses—that this result holds for all “rea-
sonable” floating-point formats (we need the precision p to be larger than or equal to 5,
which is always true in practice).

1.2 Relative error due to roundings

Let t be a positive real number between 2e and 2e+1, where e ∈ Z. The rounding RN(t)
is between 2e and 2e+1 too, and we have

|RN(t)− t| ≤ 2e−p. (3)

From this, we easily deduce a bound on the relative error due to rounding t
∣∣∣∣
RN(t)− t

t

∣∣∣∣ ≤ 2−p = u. (4)

This is illustrated by Figure 1.

2e−p

2e 2e+1

t̂ = RN(t)

t

|t− t̂| ≤ 2e−p

≤ u · t.

Figure 1: In precision-p binary floating-point arithmetic, in the normal range, the relative
error due to rounding to nearest is always bounded by u = 2−p.

For instance, when we perform a floating-point multiplication, if a and b are the input
FP operands, z = ab is the exact result, and ẑ = RN(z) is the computed result, then we
have

(1− u) · z ≤ ẑ ≤ (1 + u) · z. (5)

Assume that we wish to evaluate the product

a1 · a2 · · · an,

of n floating-point numbers, and that the product is evaluated as

RN(· · · RN(RN(a1 · a2) · a3) · · · · ) · an). (6)

Define πn as the exact value of a1 · · · an, and π̂n as the computed value. A simple induc-
tion, based on (5), allows one to show
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Theorem 1. Let a1, . . . , an be floating-point numbers, πn = a1 · · · an, and π̂n the computed
value using (6). Then we have

(1− u)n−1πn ≤ π̂n ≤ (1 + u)n−1πn. (7)

See [1] for some results concerning the computation of the product of floating-point
numbers. Therefore, the relative error of the computation, namely |π̂n−πn|/πn is upper-
bounded by

ψn−1 = (1 + u)n−1 − 1.

One easily shows that, as long as ku < 1 (which always holds in practical cases),

k · u ≤ ψk ≤ γk,

where γk is defined by (2). Although the bound ψn−1 on the relative error of the compu-
tation of a1 · a2 · · · an is very slightly1 better than γn−1, the classical bound found in the
literature is γn−1. The reason for this is that it is easier to manipulate in calculations.

And yet, in all our experiments, we observed a relative error less than (n − 1) · u. If
we could prove that this is a valid bound, this would be even easier to manipulate. In the
general case of an iterated product, we did not succeed in proving that. We could only
automatically build cases, for each value of the precision p, for which the attained relative
error is extremely close to, yet not larger than, (n − 1) · u (see Section 5). However, in
the particular case n ≤ 4, one can prove that the relative error is less than (n − 1) · u.
This is done as follows.

First, as noticed by Jeannerod and Rump [4], one may remark that the bound on the
relative error due to rounding—i.e., (4)—can be slightly improved. Assume that t is a
real number between 2e and 2e+1. We already know that |t − RN(t)| ≤ 2e−p = u · 2e.
Therefore:

• if t ≥ 2e · (1 + u), then |t− RN(t)|/t ≤ u/(1 + u);

• if t < 2e ·(1+u), then RN(t) = 2e. Let t = 2e ·(1+τ ·u), we have: |t−RN(t)|/t = τ ·
u/(1+τ ·u). An elementary study shows that for τ ∈ [0, 1), τ ·u/(1+τ ·u) < u/(1+u).

Therefore the maximum relative error due to rounding is bounded2 by u/(1 + u). A
consequence of this is that u can be replaced by u/(1 + u) in (7). This is illustrated by
Figure 2 (see p. 6). In the general case (that is, for any n), this improvement does not
suffice to show Theorem 2, and yet, when n ≤ 4, we can use the following result.

Property 1. If k ≤ 3 then

(
1 +

u

1 + u

)k

< 1 + k · u.

Proof. The simplest way to prove Property 1 is to separately consider the cases k = 1, 2,
and 3:

1As long as nu is small enough in front of 1.
2Incidentally, if RN = RNeven, that error is attained when t = 1 + u, which shows that the bound

cannot be improved further.
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• the case k = 1 is straightforward:

• if k = 2, we have

(
1 +

u

1 + u

)2

− (1 + 2u) = −u
2 · (1 + 2u)

(1 + u)2
< 0;

• if k = 3, we have

(
1 +

u

1 + u

)3

− (1 + 3u) = −u
3 · (3u+ 2)

(1 + u)3
< 0.

By taking k = n− 1, we immediately deduce that for n ≤ 4, the relative error of the
iterative product of n FP numbers is bounded by (n− 1) · u.

Although we conjecture that this remains true for larger values of n, we did not
succeed in proving that (notice that Property 1 is no longer true when k ≥ 4). However,
in the particular case of the computation of xn, for some given FP number x and some
positive integer n, we could prove the bound (n − 1) · u: our main result is Theorem 2
below.

1.3 The particular case of computing powers

In the following, we are interested in computing xn, where x is a FP number and n is an
integer. It is not difficult to show by induction that the bound provided by Theorem 1
applies not only to the case that was discussed above (computation of RN(· · · RN(RN(x ·
x) · x) · · · · ) · x) but to the larger class of recursive algorithms where the approximation
to xk+ℓ is deduced from approximations to xk and xℓ by a FP multiplication. However,
we will prove a (slightly) better bound only in the case where the algorithm used for
computing xn is Algorithm 1 below.

Algorithm 1 (naive-power(x, n)).

y ← x
for k = 2 to n do

y ← RN(x · y)
end for

return y

We will define x̂j as the value of variable y after the iteration corresponding to k = j
in the for loop of Algorithm 1. We have x̂2 = RN(x2), and x̂k = RN(x · x̂k−1). We wish
to prove

Theorem 2. Assume p ≥ 5 (which holds in all practical cases). If

n ≤
√
21/2 − 1 · 2p/2,

then
|x̂n − xn| ≤ (n− 1) · u · xn.
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To prove Theorem 2, it suffices to prove it in the case 1 ≤ x < 2: in the following we
will therefore assume that x lies in that range.

We prove Theorem 2 in Section 3. Before that, in Section 2, we give some preliminary
results. In Section 4, we discuss the tightness of our new bound. Section 5 is devoted to a
discussion on the possible generalization of this bound to the product of n floating-point
numbers.

2 Preliminary results

In this section we give some preliminary results that will help to improve the bound of
Theorem 1 in the specific case of the computation of integer powers. Let us start with
an easy remark.

Remark 1. Since (1− u)n−1 ≥ 1− (n− 1) · u for all n ≥ 2 and u ∈ [0, 1], the left-hand
bound of (7) suffices to show that (1− (n− 1) · u) · xn ≤ x̂n. In other words, to establish
Theorem 2, we only need to improve on the right-hand bound of (7).

Now, for t 6= 0, define

t =
t

2⌊log2 |t|⌋
.

We have,

Lemma 1. Let t be a real number. If

2e ≤ w · 2e ≤ |t| < 2e+1, e ∈ Z (8)

(in other words, if |t| is lower-bounded by w) then

∣∣∣∣
RN(t)− t

t

∣∣∣∣ ≤
u

w
.

Figure 2 illustrates Lemma 1, and Figure 3 illustrates this “wobbling” maximal relative
error due to rounding.

2e 2e+1

ŷ = RN(y)

y

w |t− RN(t)|/t ≤ u/w

|y−ŷ|
y

= u
1+u

(largest)

ẑ = RN(z)

z

|z−ẑ|
z

= u
2−u

Figure 2: The bound on the relative error due to rounding to nearest can be reduced to
u/(1 + u). Furthermore, if we know that t = t/2e is larger than w, then |RN(t)− t|/t is
less than u/w.
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Figure 3: The relative error due to rounding, namely |RN(t) − t|/t, for t between 1/5
and 8.

Lemma 1 is an immediate consequence of (3) and (8). It is at the heart of our study:
our problem will be to show that at least once in the execution of Algorithm 1 the
number x · y is such that x · y is large enough to sufficiently reduce the error bound on
the corresponding FP multiplication y ← RN(x · y), so that the overall relative error
bound becomes smaller than (n − 1) · u. More precisely, we will show that, under some
conditions, at least once, x · y is larger than 1 + n2u, so that in (7) the term (1 + u)n−1

can be replaced by

(1 + u)n−2 ·
(
1 +

u

1 + n2u

)
.

Therefore, we need to bound this last quantity. We have,

Lemma 2. If 0 ≤ u ≤ 2/(3n2) then

(1 + u)n−2 ·
(
1 +

u

1 + n2u

)
≤ 1 + (n− 1) · u. (9)

Proof. Proving Lemma 2 reduces to proving that the polynomial

P (u) = (1 + (n− 1)u)(1 + n2u)− (1 + u)n−2(1 + n2u+ u)

is ≥ 0 for 0 ≤ u ≤ 2/(3n2).
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Notice that for u ≥ 0, we have

ln(1 + u) ≤ u− u2

2
+
u3

3
.

From ln(1 + u) ≤ u we also deduce that (n − 2) ln(1 + u) ≤ (n − 2)u ≤ 1/(2n). For
0 ≤ t ≤ 1/6, et ≤ 1 + t + 3

5
t2. Therefore, for 0 ≤ u ≤ 2/3n2, to prove that P (u) ≥ 0 it

suffices to prove that

Q(n, u) = (1 + (n− 1) u) (n2u+ 1)

−
(
1 + (n− 2) (u− 1/2 u2 + 1/3 u3) + 3/5 (n− 2)2 (u− 1/2 u2 + 1/3 u3)

2
)

× (n2u+ u+ 1) ≥ 0.

(10)

By defining a = n2u, Q(n, u) = R(n, a), with

R(n, a) = −1
5

a2(3 a−2)
n2 + 1

10
a2(29 a+19)

n3 + 1
5

a2(3 a2−17 a−7)
n4

− 1
30

a3(82 a−5)
n5 − 1

60

a3(33 a2−187 a+20)
n6 + 1

15
a4(33 a−8)

n7

+ 1
60

a4(12 a2−153 a+52)
n8 − 1

5
a5(4 a−7)

n9 − 1
15

a5(a2−14 a+21)
n10

+ 4
15

a6(a−2)
n11 − 1

15
a6(5 a−8)

n12

+ 4
15

a7

n13 − 4
15

a7

n14

(11)

Multiplying R(n, a) by 5n2/a2, we finally obtain

S(n, a) = −3 a+ 2 +
(
29
2
a+ 19

2

)
n−1 + 3 a2−17 a−7

n2 − 1
6

a(82 a−5)
n3

− 1
12

a(33 a2−187 a+20)
n4 + 1

3
a2(33 a−8)

n5 + 1
12

a2(12 a2−153 a+52)
n6

−a3(4 a−7)
n7 − 1

3

a3(a2−14 a+21)
n8 + 4

3
a4(a−2)

n9 − 1
3

a4(5 a−8)
n10

+4
3

a5

n11 − 4
3

a5

n12

(12)

We wish to show that S(n, a) ≥ 0 for 0 ≤ a ≤ 2/3. Let us examine the terms of S(n, a)
separately. For a in the interval [0, 2/3] and n ≥ 3:

• the term −3 a+ 2 is always larger than 0;

• the term
(
29
2
a+ 19

2

)
n−1 is always larger than 19/(2n);

• the term 3 a2−17 a−7
n2 is always larger than −6/n;

• the term −1
6

a(82 a−5)
n3 is always larger than −7/(10n);

• the term − 1
12

a(33 a2−187 a+20)
n4 is always larger than −17/(10000n);

• the term 1
3

a2(33 a−8)
n5 is always larger than −3/(10000n);

8



• the term 1
12

a2(12 a2−153 a+52)
n6 is always larger than −69/(10000n);

• the term −a3(4 a−7)
n7 is always larger than 0;

• the term −1
3

a3(a2−14 a+21)
n8 is always larger than −6/(10000n);

• the term 4
3

a4(a−2)
n9 is always larger than −6/(100000n);

• the term −1
3

a4(5 a−8)
n10 is always larger than 0;

• the term 4
3

a5

n11 is always larger than 0;

• the term −4
3

a5

n12 is always larger than −1/(1000000n).

By summing all these lower bounds, we find that for 0 ≤ a ≤ 2/3 and n ≥ 3, S(n, a) is
always larger than 2790439/(1000000n).

Let us now raise some remarks, that are direct consequences of Lemma 2.

Remark 2. Assume n ≤
√

2/3 · 2p/2. If for some k ≤ n, we have RN(x · x̂k−1) ≤ x · x̂k−1

(i.e., if in Algorithm 1 at least one rounding is done downwards), then x̂n ≤ (1 + (n −
1) · u)xn.

Proof. We have
x̂n ≤ (1 + u)n−2xn.

Lemma 2 implies that (1 + u)n−2 is less than 1 + (n− 1) · u. Therefore,

x̂n ≤ (1 + (n− 1) · u)xn.

Remark 3. Assume n ≤
√

2/3 · 2p/2. If there exists k, 1 ≤ k ≤ n − 1, such that

x · x̂k ≥ 1 + n2 · u, then x̂n ≤ (1 + (n− 1) · u)xn.

Proof. By combining Lemma 1 and Lemma 2, if there exists k, 1 ≤ k ≤ n− 1, such that

x · x̂k ≥ 1 + n2 · u,

then

x̂n ≤ (1 + u)n−2 ·
(
1 +

u

1 + n2u

)
· xn ≤ (1 + (n− 1) · u) · xn.
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3 Proof of Theorem 2

The proof is articulated as follows

• first, we show that if x is close enough to 1, then when computing RN(x2), the
rounding is done downwards (i.e., RN(x2) ≤ x2), which implies, from Remark 2,
that x̂n ≤ (1 + (n− 1) · u)xn. This is the purpose of Lemma 3.

• then, we show that in the other cases, there is at least one k ≤ n − 1 such that
x · x̂k ≥ 1 + n2 · u, which implies, from Remark 3, that x̂n ≤ (1 + (n− 1) · u)xn.

Lemma 3. Let x = 1 + k · 2−p+1 = 1 + 2ku, k ∈ N (all FP numbers between 1 and
2 are of that form). We have x2 = 1 + 2k · 2−p+1 + k2 · 2−2p+2, so that if k < 2p/2−1,
i.e., if 1 ≤ x < 1 + 2p/2u, then x̂2 = 1 + 2k · 2−p+1 < x2, which, by Remark 2, implies
x̂n ≤ (1 + (n− 1)u) · xn.

Remark 3 and Lemma 3 imply that to prove Theorem 2, we are reduced to examine
the case where 1+ 2p/2u ≤ x < 2 and we assume u ≤ 2/(3n2), i.e., n <

√
2/3 · 2p/2 (later

on, we will see that a stronger assumption is necessary). For that, we distinguish between
the cases where x2 ≤ 1 + n2u and x2 > 1 + n2u.

3.1 First case: if x2 ≤ 1 + n2u

From x ≥ 1 + 2p/2u ≥ 1 + nu, we deduce

xn ≥ (1 + nu)n > 1 + n2u,

so that, from Remark 2, we can assume that

x̂n−1 · x > (1 + n2u)

(otherwise, at least one rounding was done downwards, which implies Theorem 2). There-
fore

• if x̂n−1x < 2, then x̂n−1x ≥ (1+n2u), so that, from Remark 3, xn ≤ (1+(n−1)·u)·xn;

• if x̂n−1x ≥ 2, then let k be the smallest integer such that x̂k−1x ≥ 2. Notice that
since we have assumed that x2 ≤ 1 + n2u, we necessarily have k ≥ 3. We have

x̂k−1 ≥
2

x
≥ 2√

1 + n2u
,

hence

x̂k−2 · x ≥
2√

1 + n2u · (1 + u)
. (13)

Now, define

αp =

√(
2p+1

2p + 1

)2/3

− 1.

10



For all p ≥ 5, αp ≥ α5 = 0.74509 · · · , and αp ≤
√
22/3 − 1 = 0.7664209 · · · . If

n ≤ αp · 2p/2, (14)

then

1 + n2u ≤
(

2p+1

2p + 1

)2/3

,

so that
(1 + n2u)3/2 · (1 + u) ≤ 2,

so that
2√

1 + n2u · (1 + u)
≥ 1 + n2u.

Therefore, from (13), we have

x̂k−2 · x ≥ 1 + n2u.

Also, x̂k−2 · x is less than 2, since k was assumed to be the smallest integer such
that x̂k−1x ≥ 2. Therefore

x̂k−2 · x ≥ 1 + n2u.

Which implies, by Remark 3, that xn ≤ (1 + (n− 1) · u) · xn. So, to summarize this
first case, if x2 ≤ 1+n2u and n ≤ αp ·2p/2, then the conclusion of Theorem 2 holds.

3.2 Second case: if x2 > 1 + n2u

First, if x2 < 2 then we deduce from Remark 3 that xn ≤ (1 + (n − 1) · u) · xn. The
case x2 = 2 is impossible (x is a floating-point number, thus it cannot be irrational).
Therefore let us now assume that x2 > 2. We also assume that x2 < 2+2n2u (otherwise,
we would have (x2) ≥ 1 + n2u, so that we could apply Remark 3). Hence, we have

√
2 < x <

√
2 + 2n2u.

From this we deduce
xn−1 < (2 + 2n2u)

n−1

2 ,

therefore, using Theorem 1,

x̂n−1 < (2 + 2n2u)
n−1

2 · (1 + u)n−2,

which implies
x · x̂n−1 < (2 + 2n2u)n/2 · (1 + u)n−2. (15)

Define
β =

√
21/3 − 1 = 0.5098245285339 · · ·

If n ≤ β · 2p/2 then 2 + 2n2u ≤ 24/3, so that we find

(2 + 2n2u)n/2 · (1 + u)n−2 ≤ 22n/3 · (1 + u)n−2. (16)

11



• if n = 3, the bound on x · x̂n−1 derived from (15) and (16) is equal to 4 · (1 + u).
Therefore either x·x̂n−1 < 4, or x·x̂n−1 will be rounded downwards when computing
x̂n (in which case we already know from Remark 2 that the conclusion of Theorem 2
holds);

• if n ≥ 4, consider function

g(t) = 2t−1 − 22t/3
(
1 +

1

2p

)t−2

= 22t/3

[
2t/3−1 −

(
1 +

1

2p

)t−2
]
.

It is a continuous function, and it goes to +∞ as t→ +∞. We have:

g(t) = 0⇔ t =
log(2) + 2 log

(
1 + 1

2p

)
1
3
log(2)− log

(
1 + 1

2p

) .

Hence, function g has one root only, and as soon as p ≥ 5, that root is strictly less
than 4. From this, we deduce that if p ≥ 5, then g(t) > 0 for all t ≥ 4. Hence,
using (15) and (16), we deduce that if p ≥ 5 then x · x̂n−1 < 2n−1.

Now that we have shown that3 if n ≤ β · 2p/2 then

x · x̂n−1 < 2n−1,

let us define k as the smallest integer for which x · x̂k−1 < 2k−1. We now know that k ≤ n,
and (since we are assuming x2 > 2), we have k ≥ 3. The minimality of k implies that
x · x̂k−2 ≥ 2k−2, which implies that x̂k−1 = RN(x · x̂k−2) ≥ 2k−2. Therefore, x̂k−1 and
x · x̂k−1 belong to the same binade, therefore,

x · x̂k−1 ≥ x >
√
2. (17)

The constraint n ≤ β · 2p/2 implies

1 + n2u ≤ 1 + β2 = 21/3 <
√
2. (18)

By combining (17) and (18) we obtain

x · x̂k−1 ≥ 1 + n2u.

Therefore, using Remark 3, we deduce that x̂n ≤ (1 + (n− 1) · u) · xn.

3.3 Combining both cases

One easily sees that for all p ≥ 5, αp is larger than β. Therefore, combining the conditions
found in the cases x2 ≤ 1+n2u and x2 > 1+n2u, we deduce that if p ≥ 5 and n ≤ β ·2p/2,
then for all x,

(1− (n− 1) · u) · xn ≤ x̂n ≤ (1 + (n− 1) · u) · xn.
Q.E.D.

3Unless n = 3 and x · x̂n−1 ≥ 4 but in that case we have seen that the conclusion of Theorem 2 holds.

12



Notice that the condition n ≤ β · 2p/2 is not a huge constraint. The table below gives
the maximum value of n that satisfies that condition, for the various binary formats of
the IEEE 754-2008 Standard for Floating-Point Arithmetic.

p nmax

24 2088
53 48385542
113 51953580258461959

For instance, in the binary32/single precision format, with the smallest n larger than
that maximum value (i.e., 2089), xn will underflow as soon as x ≤ 0.95905406 and overflow
as soon as x ≥ 1.0433863. In the binary64/double precision format, with n = 4385543, xn

will underflow as soon as x ≤ 0.999985359 and overflow as soon as x ≥ 1.000014669422.
With the binary113/quad precision format, the interval in which function xn does not
under- or overflow is even narrower and, anyway, computing x51953580258461959 by Algo-
rithm 1 would at best require months of computation on current machines.

4 Is the bound of Theorem 2 tight?

For very small values of p, it is possible to check all possible values of x (we can assume
1 ≤ x < 2, so that we need to check 2p−1 different values), using a Maple program
that simulates a precision-p floating-point arithmetic. Hence, for small values of p and
reasonable values of n it is possible to compute the actual maximum relative error of
Algorithm 1. For instance, Tables 1 and 2 present the actual maximum relative errors
for p = 8 and 9, respectively, and various values of n.

Table 1: Actual maximum relative error of Algorithm 1 assuming precision p = 8, com-
pared with the usual bound γn−1 and our bound (n − 1)u. The term nmax designs the
largest value of n for which Theorem 2 holds, namely

√
21/2 − 1 · 2p/2

n actual maximum γn−1 our bound

3 1.35988u 2.0157u 2u
4 1.73903u 3.0355u 3u
5 2.21152u 4.06349u 4u
6 2.53023u 5.099601u 5u
7 2.69634u 6.1440u 6u
8 = nmax 3.42929u 7.1967u 7u

For larger values, we have some results (notice that beyond single precision—p = 24—
exhaustive testing is out of reach):

• for single precision arithmetic (p = 24) and n = 6, the actual largest relative error
is 4.328005619u. It is attained for x = 8473808/223 ≈ 1.010156631;

• for double precision arithmetic (p = 53) and n = 6, although finding the ac-
tual largest relative error is out of reach, we could find an interesting case: for
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Table 2: Actual maximum relative error of Algorithm 1 assuming precision p = 9, com-
pared with the usual bound γn−1 and our bound (n − 1)u. The term nmax designs the
largest value of n for which Theorem 2 holds, namely

√
21/2 − 1 · 2p/2

n actual maximum γn−1 our bound

6 2.677u 5.049u 5u
7 2.975u 6.071u 6u
8 3.435u 7.097u 7u
9 4.060u 8.1269u 8u
10 3.421u 9.1610u 9u
11 = nmax 3.577u 10.199u 10u

x = 4507062722867963/252 ≈ 1.0007689616715527147761, the relative error is
4.7805779 · · · u

• for quad precision arithmetic (p = 113) and n = 6, although finding the actual
largest relative error is out of reach, we could find an interesting case: for

x = 5192324351407105984705482084151108/2112

≈ 1.0000052949345978099886352037496365983,

the relative error is 4.8827888 · · · u

• for single precision arithmetic (p = 24) and n = 10, the actual largest relative error
is 7.059603149u. It is attained for x = 8429278/223 ≈ 1.004848242;

• for double precision arithmetic (p = 53) and n = 10, although finding the ac-
tual largest relative error is out of reach, we could find an interesting case: for x =
4503796447992526/252 ≈ 1.00004370295725975026, the relative error is 7.9534189 · · · u.

Notice that we can use the maximum relative error of single precision and “inject it” in
the inductive reasoning that led to Theorem 1 to show that in single-precision arithmetic,
and if n ≥ 10 then

(1− 7.06u)(1− u)n−10xn ≤ x̂n ≤ (1 + 7.06u)(1 + u)n−10xn.

Then, by replacing u by 2−24 and through an elementary study of the function

ϕ(t) =
[
(1 + 7.06 · 2−24)(1 + 2−24)t−10 − 1

]
· 224 − t

one easily deduces that for 10 ≤ n ≤ 2088, we always have

∣∣∣∣
x̂n − xn
xn

∣∣∣∣ ≤ (n− 2.8104) · u.
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5 What about iterated products ?

Assume now that, still in precision-p binary FP arithmetic, we wish to evaluate the
product

a1 · a2 · · · · · · · an,
of n floating-point numbers. We assume that the product is evaluated as

RN(· · · RN(RN(a1 · a2) · a3) · · · · ) · an).

Define πk as the exact value of a1 · · · ak, and π̂k as the computed value. As already
discussed in Section 1.2, ve have

(1− u)n−1πn ≤ π̂n ≤ (1 + u)n−1πn, (19)

which implies that the relative error |πn−π̂n|/πn is upper-bounded by γn−1. We conjecture
that the error is upper-bounded by (n− 1)u. Let us now show how to build a1, a2, . . . ,
an so that the relative error becomes extremely close to (n− 1) · u.

Define a1 = 1 + k1 · 2−p+1, and a2 = 1 + k2 · 2−p+1. We have

π2 = a1a2 = 1 + (k1 + k2) · 2−p+1 + k1k2 · 2−2p+2.

If k1 and k2 are not too large, 1 + (k1 + k2) · 2−p+1 is a FP number. To maximize the
relative error, we wish k1 + k2 to be as small as possible, while k1k2 · 2−2p+2 is as close as
possible to 2−p. Hence a natural choice is

k1 = k2 =
⌊
2

p

2
−1
⌋
,

which gives π̂2 < π2. Now, if at step i− 1 we have

π̂i = 1 + gi · 2−p+1, with π̂i < πi,

we choose ai+1 of the form 1 + ki+12
−p+1, with

• ki+1 =
⌈
2p−2

gi
− 1
⌉

if gi ≤ 2
p

2
−1;

• ki+1 = −
⌊
2p−2

gi
+ 1
⌋

otherwise.

For instance, in single precision (p = 24), the first values ai generated by this strategy
are

a1 = 4097/4096
a2 = 4097/4096
a3 = 8387583/8388608
a4 = 8387241/8388608
a5 = 262221/262144
a6 = 8387601/8388608
a7 = 8387279/8388608

Table 3 gives examples of the relative errors achieved with the values ai generated by
this method, for various values of p and n. As one can easily see, the relative error is
always very close to, but less than (n− 1) · u.
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Table 3: Relative errors achieved with the values ai generated by our method of Section 5.

p n relative error

24 10 8.99336984 · · · u
24 100 98.9371972591 · · · u
53 10 8.99999972447 · · · u
53 100 98.9999970091 · · · u
113 10 8.99999999999999973119 · · · u
113 100 98.99999999999999701662 · · · u

6 Conclusion

We have shown that, under mild conditions, the relative error of the computation of xn

in floating-point arithmetic using the “naive” algorithm is upper bounded by (n− 1) · u.
This bound is simpler and slightly better than the previous bound. We conjecture that
the same bound holds in the more general case of the computation of the product of
n floating-point numbers. In that case, we have provided examples that show that the
actual error can be very close to (n− 1) · u.
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