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Prompted by results that showed that a simple protein model, the frustrated Gō model, appears to exhibit a
transition reminiscent of the protein dynamical transition, we examine the validity of this model to describe the
low-temperature properties of proteins. First, we examine equilibrium �uctuations. We calculate its incoherent
neutron-scattering structure factor and show that it can be well described by a theory using the one-phonon
approximation. By performing an inherent structure analysis, we assess the transitions among energy states
at low temperatures. Then, we examine nonequilibrium �uctuations after a sudden cooling of the protein. We
investigate the violation of the �uctuation-dissipation theorem in order to analyze the protein glass transition.
We �nd that the effective temperature of the quenched protein deviates from the temperature of the thermostat,
however it relaxes towards the actual temperature with an Arrhenius behavior as the waiting time increases. These
results of the equilibrium and nonequilibrium studies converge to the conclusion that the apparent dynamical
transition of this coarse-grained model cannot be attributed to a glassy behavior.
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I. INTRODUCTION

Proteins are fascinating molecules due to their ability to
play many roles in biological systems. Their functions often
involve complex con�gurational changes. Therefore the famil-
iar aphorism that “form is function” should rather be replaced
by a view of the “dynamic personalities of proteins” [1]. This
is why proteins are also intriguing for theoreticians because
they provide a variety of yet unsolved questions. Besides the
dynamics of protein folding, the rise in the time averaged mean
square �uctuation� �r 2� occurring at temperatures around
� 200 K, sometimes called the “protein dynamic transition”
[2–4], is arguably the most considerable candidate in the search
of unifying principles in protein dynamics. Protein studies lead
to the concept ofenergy landscape[5,6]. According to this
viewpoint a protein is a system which explores a complex
landscape in a highly multidimensional space and some of
its properties can be related to an incomplete exploration of
the phase space. The protein glass transition, in which the
protein appears to “freeze” when it is cooled down to about
200 K, is among them. Protein folding too can be related to
this energy landscape. The famous kinetic limitation known as
the Levinthal paradox, associated to the dif�culty to �nd the
native state among a huge number of possible con�gurations,
is partly solved by the concept of a funneled landscape which
provides a bias towards the native state.

These considerations suggest that the dynamics of the
exploration of protein phase space deserves investigation,
particularly at low temperature where the dynamic transition
occurs. But, in spite of remarkable experimental progress
which allows us to “watch protein in action in real time at
atomic resolution” [1], experimental studies at this level of
detail are nevertheless extremely dif�cult. Further understand-
ing from models can help in analyzing the observations and
developing new concepts. However, studies involving com-
puter modeling to study the dynamics of protein �uctuations
are not trivial either because the range of time scales involved
is very large. This is why many mesoscale models, which
describe the protein at scales that are larger than the atom, have

been proposed. Yet, their validity to adequately describe the
qualitative features of a real protein glass remains to be tested.

In this paper we examine a model with an intermediate
level of complexity. This frustrated Ḡo model [7,8] is an
off-lattice model showing �uctuations at a large range of time
scales. It is though simple enough to allow the investigation
of time scales which can be up to 109 times larger than
the time scales of small amplitude vibrations at the atomic
level. The model, which includes a slight frustration in the
dihedral angle potential which does not assume a minimum
for the positions of the experimentally determined structure,
exhibits a much richer behavior than a standard Gō model.
Besides folding one observes a rise of �uctuations above
a speci�c temperature, analogous to a dynamical transition
[9,10], and the coexistence of two folded states. This model
has been widely used and it is therefore important to assess to
what extent it can describe the qualitative features of protein
dynamics beyond the analysis of folding for which it was
originally designed. This is why we focus our attention on
its low-temperature properties in an attempt to determine if a
fairly simple model can provide some insight on the protein
dynamical transition. The purpose of the present article is to
clarify the origin of the transition in the computer model,
and to determine similarities and differences with respect
to experimental observations. Although the calculations are
performed with a speci�c model, the methods are more general
and even raise some questions for experiments, especially
concerning the nonequilibrium properties.

This article is organized as follows. The numerical �nd-
ings relating to the “dynamical transition” from previous
studies [9,10] are presented in Sec.II . As a very large
body of experimental studies of protein dynamics emanates
from neutron scattering experiments, it is rational to seek
a connection between theory and experiment by studying
the most relevant experimental observable for dynamics, the
incoherent structure factor (ISF). We calculate the ISF from
molecular dynamics simulations of the model in Sec.III .
We show that its main features can be well reproduced by a
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theoretical analysis based on the one-phonon approximation,
which indicates that, at low temperature, the dynamics of the
protein within this model takes place in a single minimum
of the energy landscape. SectionIV proceeds to an inherent
structure analysis to examine how the transitions among energy
states start to play a role when temperature increases. As
the freezing of the protein dynamics at low temperature is
often called a “glass transition,” this raises the question of the
properties of the model protein in nonequilibrium situations. In
Sec.V we examine the violation of the �uctuation-dissipation
theorem after a sudden cooling of the protein. We �nd that
the effective temperature of the quenched protein, deduced
from the �uctuation-dissipation theorem (FDT) deviates from
the temperature of the thermostat, however it relaxes towards
the actual temperature with an an Arrhenius behavior as the
waiting time increases. This would imply that the dynamics
of the protein model is very slow but not actually glassy. This
method could be useful to distinguish very slow dynamics
from glassy dynamics, in experimental cases as well as in
molecular dynamics simulations. Finally Sec.VI summarizes
and discusses our results.

II. A DYNAMICAL TRANSITION IN A SIMPLE
PROTEIN MODEL?

Following earlier studies [9–11] we chose to study a small
protein containing the most common types of secondary
structure elements (� helix, � sheets, and loops), protein
G, the B1 domain of immunoglobulin binding protein [12]
(Protein Data Bank code 2GB1). It contains 56 residues,
with one � helix and four� strands forming a� sheet. We
describe it by an off-lattice Ḡo model with a slight frustration
which represents its geometry in terms of a single particle
per residue, centered at the location of eachC� carbon in the
experimentally determined tertiary structure. The interactions
between these residues do not distinguish between the types
of amino acids. Details on the simulation process and the
parametrization of the model are presented in the Appendix. In
spite of its simplicity, this model appears to exhibit properties
which are reminiscent of the protein dynamical transition. This
shows up when one examines the temperature dependence of
its mean-squared �uctuations [9] by calculating the variance
�r 2 of the residue distances to the center of mass as a function
of temperature, de�ned by

�r 2 =
1
N

N�

i = 1

�
r 2

i 0 Š ri 0
2�

. (1)

Here,N denotes the number of residues, andri 0 is distance of
residuei with respect to the instantaneous center of of mass.
The averageA of the observableA(t) is the time average
A = 1

T

� T
0 dt A(t). The variances of 20 trajectories (Langevin

dynamics simulations, each 3× 107 time units long) were
averaged for each temperature point (�·� denotes the average
over independent initial conditions).

Figure 1 shows the evolution of� �r 2� as a function
of temperature. It exhibits a crossover in the �uctuations
in the temperature rangeT /Tf = [0.4,0.5] resembling the
transition observed for hydrated proteins in neutron scattering
and Mössbauer spectroscopy experiments [2–4], the so-called
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FIG. 1. Average mean-squared distance �uctuations� �r 2� as a
function of temperature for protein G. Data adapted from [9]. The
temperatures markedT1, T2, T3 are the temperatures studied in
Sec.IV.

dynamical transition. Above T /Tf = 0.4, the �uctuations
increase quickly with temperature whereas a smaller, linear,
growth is observed below. One may wonder whether the
complexity of the protein structure, re�ected by the Gō model,
is suf�cient to lead to a dynamical transition or whether,
notwithstanding the resemblance of the onset of �uctuations
in the present model and the experimentally determined
transition, different physical and not necessarily related events
may contribute to the curves which by coincidence look
similar. One can already note that, for a folding temperature in
the range 330–350 K, the range 0.4–0.5 T /Tf corresponds to
132–175 K, lower than the experimentally observed transition
occurring around 180–200 K. If it had been con�rmed the
observation of a dynamical transition in a fairly simple protein
model would have been very useful to shine a new light
on this transition which is still not fully understood. It is
generally agreed that it is hydration dependent [13], but still
different directions for a microscopic interpretation are being
pursued, suggesting the existence [14] or nonexistence [15] of
a transition in the solvent coinciding at the dynamical transition
temperature. Recently, a completely different mechanism
based on percolation theory for the hydration layer has been
proposed [16]. The precise nature of the interaction between
the solvent and proteins, and the driving factor behind the
transition, hence still remain to be understood. The dynamical
transition has often been called theprotein glass transition
due to its similarity with some physical properties of structural
glasses at low temperatures. In particular, it was pointed out
that, for both glasses and protein solutions, the transition
goes along with a crossover towards nonexponential relaxation
rates at low temperatures. The comparison is however vague
since the glass transition itself and notably its mechanism are
ongoing subjects of research and debate.

Our goal in this paper is to clarify the origin of the
numerically observed transition, which moreover gives hints
on the possibilities and limits of protein computer models.

III. ANALYSIS OF THE INCOHERENT
STRUCTURE FACTOR

If computer models of proteins are to be useful they must go
beyond a simple determination of the dynamics of the atoms,
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and make the link with experimental observations. This is
particularly important for the “dynamical transition” because
its nature in a real protein is not known at the level of the
atomic trajectories. It is only observed indirectly through the
signals provided by experiments. Therefore a valid analysis of
the transition observed in the computer model must examine
it in the same context, i.e., determine its consequences on the
experimental observations.

Along with NMR and M̈ossbauer spectroscopy, neutron
scattering methods have been among the most versatile and
valuable tools to provide insight on the internal motion of
proteins [17,18]. Indeed, the thermal neutron wavelength being
of the order of�A and the kinetic energy of the order of meVs,
neutrons provide an adequate probe matching the length and
frequency scales of atomic motion in proteins. An aspect
brought forward in the discussion of the dynamical transition
in view of the properties of glassy materials is the existence of
a boson peakat low frequencies in neutron scattering spectra
[19]. Such a broad peak appears to be a characteristic feature of
unstructured materials as compared to the spectra of crystals.

A. Incoherent structure factor from molecular
dynamics trajectories

In neutron scattering the vibrational and conformational
changes in proteins appear as a quasielastic contribution to
the dynamic structure factorS(q,� ) which contains crucial
information about the dynamics on different time and length
scales of the system. In scattering experiments one measures
the double-differential scattering cross sectiond2�/ (d�dE )
which gives the probability of �nding a neutron in the solid
angle elementd� with an energy exchangedE after scattering.
The total cross section of the experiment is obtained by
integration over all angles and energies. Neglecting magnetic
interaction and only considering the short-range nuclear
forces, the isotropic scattering is characterized by a single
parameterbi , the scattering length of the atomic speciesi
[20], which can be a complex number with a nonvanishing
imaginary part accounting for absorption of the neutron. If
one de�nes the average over different spin statesbcoh = |�b� |
as the coherent scattering length, and the root-mean-square
deviationbinc =

�
�| b|2� Š |�b� |2 as the incoherent scattering

length, the double-differential cross section arising from the
scattering of a monochromatic beam of neutrons with incident
wave vectork0 and �nal wave vectork by N nuclei of the
sample can be expressed as [20]

d2�
d�dE

=
N
�

|k|
|k0|

(bcoh)2Scoh(q,� ),

+
N
�

|k|
|k0|

(binc)2Sinc(q,� ), (2)

whereq = k Š k0 is the wave vector transfer in the scattering
process andr i denote the time-dependent positions of the
sample nuclei and the coherent and incoherent dynamical
structure factors are

Scoh(q,� ) =
1

2�N

�

i,j

� �

Š�
dt eŠi�t �eŠi q(r i (t)Šr j (0))� , (3)

Sinc(q,� ) =
1

2�N

�

i

� �

Š�
dt eŠi�t �eŠi q(r i (t)Šr i (0))� . (4)

The coherent structure factor contains contributions from the
position of all nuclei. The interference pattern ofScoh(q,� )
contains the average (static) structural information on the
sample, whereas the incoherent structure factorSinc(q,� )
monitors the average of atomic motions as it is mathematically
equivalent to the Fourier transform in space and time of
the particle density autocorrelation function. In experiments
on biological samples, incoherent scattering from hydrogens
dominates the experimental spectra [18] unless deuteration of
the molecule and/or solvent are used.

Since the Ḡo-model represents a reduced description of the
protein and the locations of the individual atoms in the residues
are not resolved, we use “effective” incoherent weights of
equal value for the effective particles of the model located
in the position of theC� atoms. Such a coarse grained view
assumes that the average number of hydrogen atoms and their
location in the residues is homogeneous, which is of course
a crude approximation in particular in view of the extension
and the motion of the side chains. These approximations are
nevertheless acceptable here as we do not intend to provide a
quantitative comparison with experimental results considering
the simpli�cations and the resulting limitations of the model.

We generated Langevin and Nosé-Hoover dynamic trajec-
tories of lengtht = 105 time units, i.e., about 1000 periods
of the slowest vibrational mode of the protein, after an
equilibration of equal length for proteinG at temperatures
in the interval T /Tf = [0.0459,0.9633]. To compute the
incoherent structure factor for the Gō model of proteinG,
we use nMoldyn [21] to analyze the molecular dynamics
trajectories generated at different temperatures. The data
are spatially averaged overNq = 50 wave vectors sampling
spheres of �xed modules|q| = 2,3,4 �AŠ1, and the Fourier
transformation is smoothed by a Gaussian window of width
� = 5% of the full length of the trajectory. Prior to the analysis,
a root-mean-square displacement alignment of the trajectory
onto the reference structure at timet = 0 is performed using
virtual molecular dynamics (VMD) [22]. Such a procedure is
necessary in order to remove the effects of global rotation and
translation of the molecule.

Figure2 shows the frequency dependence of the incoherent
structure factorS(q,� ) for a �xed wave vectorq = 4 �AŠ1 for a
simulation with the Nośe-Hoover thermostat. In Fig.2(a), the
evolution of the low frequency range of the structure is shown
for a range of temperatures including the supposed dynamic
transition regionT /Tf = [0.4,0.5]. At low temperatures up
to T /Tf � 0.51, individual modes are clearly distinguishable
and become broadened as temperatures increases. The slowest
mode, located around 4 cmŠ1 is also the highest in amplitude.
It has a time constant of about	 = 80 in reduced units
(� 8 ps). These well-de�ned lines are observed to be shifting
towards lower frequencies with increasing temperature, similar
to the phonon frequency shifts that are frequently observed in
crystalline solids. As we show in the following section, the
location of these lines can be calculated from a harmonic
approximation associated to a single potential energy mini-
mum. Therefore, the shift in frequency and the appearance of
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FIG. 2. (Color online) Incoherent structure factorSinc(q =
4 �AŠ1,� ) as a function of temperature for proteinG (Nośe-Hoover
thermostat). The unit of time has been converted to absolute units
using the approximate conversion factor 1 t.u.= 0.1 ps. Panel (a)
shows a magni�cation of the structure factor in the low frequency
range. The structure factors in this panel have been shifted with an
offset to avoid the overlap of curves at different temperatures. The
different curves, from bottom to top, correspond to the temperatures
T /Tf listed on the side of each panel.

additional modes can be seen as a signature of increasingly
anharmonic dynamics involving several minima associated to
different conformational substates.

If, instead of the Nośe-Hoover thermostat, we consider
the results obtained with Langevin dynamics and a friction
constant
 = 0.01, the stronger coupling to the thermostat
leads to low energy modes which are signi�cantly broader
than with the Nośe-Hoover thermostat, so that they can hardly
be resolved anymore. However, the location of the peaks in
the spectra remains the same as the one shown on Fig.2(b).
Besides the larger damping, Langevin calculations pose
additional technical dif�culties because Langevin dynamics
does not preserve the total momentum of the system. The
center of mass of the protein diffuses on the time scale of the
trajectories. At low temperatures when �uctuations are small,
the alignment procedure can ef�ciently eliminate contributions
from diffusion as the center of mass is well de�ned for a rigid
structure. At high temperatures however, it cannot be excluded
that the alignment procedure adds spurious contributions to
the structure factor calculations as the �uctuations grow in
amplitude and the structure becomes �exible.

The analysis of the incoherent structure factor has shown
that the low-temperature dynamics of the Gō model is domi-
nated by harmonic contributions. An increase of temperature
leads to a broadening and a shift of these modes until they

eventually become continuously distributed. However, for
both strong and weak coupling to the heat bath, no distinct
change of behavior can be detected within the temperature
rangeT /Tf = [0.4,0.5] in which Fig. 1 shows an apparent
dynamical transition. Instead, the numerical results suggest a
continuous increase of anharmonic dynamics, and the absence
of a dynamical transition in this model, even though, in the
range T /Tf = [0.4,0.5], the peaks of the structure factor
in the Nośe-Hoover simulations broaden signi�cantly. In the
lowest temperature range the structure factor does not show
any contribution reminiscent of a Boson peak.

B. Structure factor from normal mode analysis in the
one phonon approximation

A further analysis can be carried out to determine whether
the low-temperature behavior of the protein model shows
a complex glassy behavior or simply the properties of an
harmonic network made of multiple bonds. The picture of
a rough energy landscape of a protein with many minima
separated by barriers of different height does not exclude
the possibility that, in the low-temperature range, the system
behaves as if it were in thermal equilibrium in a single
minimum of this multidimensional space. This would be the
case if the time scale to cross the energy barrier separating
this minimum from its neighbor basins were longer than the
observation time (both in numerical or real experiments). In
this case, it should be possible to describe the low-temperature
behavior of the protein in terms of a set of normal modes.
To determine if this is true for the Ḡo model that we study,
one can compare the spectrum obtained from thermalized
numerical simulations at low temperature (low temperature
curves on Fig.2) with the calculation of the structure factor in
terms of phonon modes, in the spirit of the study performed in
Ref. [23] for the analysis of inelastic neutron scattering data of
staphylococcal nuclease at 25 K on an all-atom protein model.

The theoretical basis for a quantitative comparison is an
approximate expression of the quantum-mechanical structure
factor S(q,� ) in the so-calledone-phonon limitwhich only
accounts for single quantum process in the scattering events
assuming harmonic dynamics of the nuclei. In this approxi-
mation, the incoherent structure factor can be written as

Sinc(q,� ) =
�

i

�

�

b2
i e� � � �/ 2eŠ2Wi (q)� |q·e�,i |2

× [4mi � � sinh(� � � � / 2)]Š1� (� Š � � ). (5)

Here, the indicesi and� denote the atom and normal modes
indices respectively.e�,i is the subvector relating to the
coordinates of particlei of the normal mode vector associated
to index� . Wi (q) denotes the Debye-Waller factor, which in
the quantum calculation of harmonic motion reads [23]

Wi (q) =
�

�

� |q·e�,i |2

mi � �
[2n(� � ) + 1] , (6)

n(� ) being the Bose factor associated to the energy level� .
For the calculations of the structure factor in the Gō

model within this approximation, we averageSinc(q,� )
on a shell of q vectors by transforming the Cartesian
coordinate vector (qx,qy,qz) into spherical coordinates
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q = q · (sin(
 )cos(� ),sin(
 )sin(� ),cos(
 )), and generate a
grid with Nq points for the interval� = [0,2� ], andNq points
for 
 = [0,� ]. With this shell of vectors, we can evaluate the
isotropic averageSinc(q,� ). In Eq. (5), � appears as a prefactor
to the Debye-Waller factorWi (q) in the exponentials and in the
inverse hyperbolic function. In order to evaluate the structure
factor in reduced units of the Ḡo model, we therefore need
to estimate the order of� in a similar way as we did for the
energy scale (see Appendix) by comparing the fractions

� �
kBTf

=
� �� �

(kBTf )�
, (7)

the nonprimed variables denoting quantities in reduced units.
In the numerical evaluation of Eq. (5), we discretize the
spectrum of frequencies from the smallest eigenvalue to the
largest mode into 10 000 grid points to evaluate the� function.
We useNq = 225 vectors to average on a shell of modulus
|q| = 4 �AŠ1. The summation runs over all eigenvectors except
for the six smallest frequencies which are numerically found
to be close to zero, and result from the invariance to overall
translation and rotation of the potential energy function.

In a �rst step, we use the coordinates of the global minimum
of the Ḡo model for proteinG corresponding to the inherent
structure with index� 0 to calculate the Hessian of the potential
energy function. The second derivatives are calculated by
numerically differentiating the analytical �rst derivatives at the
minimum. As discussed in the Appendix, due to the presence
of frustration in the potential, the experimental structure
does not correspond to the global minimum of the model.
The difference between the minimum and the experimental
structure is however small, with root-mean-square deviation
0.16 �A and notable changes in position occurring only for a
small number of residues located in the second turn.

To estimate the normal mode frequencies in absolute units,
we use the conversion of the time unit of 0.1 ps introduced
in the Appendix. The conversion into wave numbers, which
is convenient for the comparison to experimental data and
to the results from all-atom calculations, is achieved by
noting that, fromck = f , we can assign the conversion
1 psŠ1 � 33.3 cmŠ1 and multiply the frequencies by this
scaling factor. Figure3(a)shows the results of the calculation
of the incoherent structure factorS(q = 4 �A,� ) in the one
phonon approximation at the temperatureT = 0.0459Tf .
Since in this approximation the normal mode frequencies enter
with a � function into Eq. (5), there is no linewidth associated
to these modes unless the structure factor is convoluted with
an instrumental resolution function or a frictional model [18].
Comparing to the structure factor calculated from a molecular
dynamics trajectory at the same temperature [Fig.3(b)], we
�nd a good correspondence of the location of the lines and
their relative amplitude with respect to each other.

Therefore the analysis of the incoherent structure factor
using a harmonic approximation quantitatively con�rms the
dominant contribution of harmonic motion at low temper-
atures. In particular, the motion at very low temperatures
occurs in a single energy well associated to one conformational
substate. To see how this behavior changes with increasing
temperature, in the next section we analyze the distribution of
inherent structures with temperature.
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FIG. 3. (a) Frequency dependence of the incoherent structure
factorS(q = 4 �A,� ) (T = 0.0459Tf ) calculated from normal modes
in the one-phonon approximation. This �gure only shows the lower
frequency part of the spectrum. (b) Incoherent structure factor
S(q = 4 �A,� ) calculated from Nośe-Hoover constant temperature
molecular dynamics at the same temperature.

IV. INHERENT STRUCTURE ANALYSIS IN THE
DYNAMIC TRANSITION REGION

The freezing of the dynamics of a protein at tempera-
tures below the “dynamic transition” is also described as a
“glass transition.’ This leads naturally to consider an energy
landscape with many metastable states, also called “inherent
states” in the vocabulary of glass transitions. In Refs. [9,11]
we showed that the thermodynamics of a protein can be
well described in terms of its inherent structure landscape,
i.e., a reduced energy landscape which does not describe the
complete energy surface but only its minima. This picture is
valid at all temperatures, including around the folding transi-
tion and above. For our present purpose of characterizing the
low-temperature properties of a protein and probe its possible
relation with a glassy behavior, it is therefore useful to examine
how the protein explores its inherent structure landscape in
the vicinity of the dynamic transition. Here, we shall try
to �nd how the number of populated minima changes with
temperature around the transition regionT /Tf = [0.4,0.5] for
the Ḡo model of proteinG, and which conformational changes
can be associated to these inherent structures.

For three selected temperaturesT1 = 0.275 Tf , T2 =
0.39Tf , T3 = 0.482Tf shown in Fig.1, we generated ten tra-
jectories from independent equilibrated initial conditions for
2 × 107 reduced time units using the Nosé-Hoover thermostat.
Along each trajectory, a minimization was performed every
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FIG. 4. Inherent structure population of the Gō model for protein
G at temperaturesT1,T2,T3 (from top to bottom) and their associated
structural dissimilarity. Lines are drawn between states that are
connected within a molecular dynamics trajectory. The width of the
circles is proportional to 1/ 2 log(w) wherew is the total number of
occurrences of a given minimum.

2 × 104 time units such as to yieldNm = 20 000 minima for
each temperature point. In the classi�cation of these minima
and their graphical representation, we only keep those minima
which have been visited at least two times within theNm
minima, which lead to discard less than ten events from the
total number of counts. Most of the counts are concentrated
on a small number of inherent structures. In Fig.4, we show
the relative populations of the inherent structures on a two-
dimensional subspace spanned by the inherent structure energy
and the structural difference with the experimental structure
measured by the dissimilarity factor [10,24]. The radius of the
circles centered at the location of the minima on this plane is set
proportional to 1/ 2 log(w) wherew is the absolute number of
counts of this minimum along the trajectories. This de�nition
is necessary to allow the graphical representation on the plane,

FIG. 5. (Color online) Shapes of inherent structures� 1, � 2, � 6,
� 7. The reference coordinates of the global minimum� 0 are shown
by red balls surrounded by a thick black line. The coordinates of the
global minimum are invisible for residues which overlap with the
inherent structure coordinates.

however, it may visually mask that linear differences in the
radii translate into exponential differences of the frequency of
visit of the minimum. As an example, the minima� 0,� 1,� 2,� 3
have the occupation probabilitiesp(� 0) = w(� 0)/N m �
92%, p(� 1) � 8%, p(� 2) � 0.1%, and p(� 3) � 0.02%
atT = T1.

From Fig.4, we notice that already atT1 more than one
minimum is populated though the global minimum� 0 is
dominant. In these �gures, lines are drawn between minima
that are connected along the trajectory, i.e., that form a
sequence of events. It should however be noted that since
the sampling frequency is low, it cannot be excluded that an
intermediate corresponding to an additional connection line is
skipped. Connections between all minima may therefore exist
even though they did not appear in the sequences observed
in this study. Moving to higher temperaturesT2 and T3, a
larger number of minima which are both higher in energy
and structural dissimilarity appear. As the temperature rises,
their population numbers become more important, as can be
seen, e.g., by inspection of the radii of the block� 4-� 7 in
Fig. 4. To obtain a physical picture of the conformational
changes associated with these minima, it is useful to align
their coordinates onto the coordinates of the global minimum.
The results of such an alignment are shown in Fig.5. In
this �gure, the coordinates of the effective Gō-model particles
located at the positions of theC� atoms for each amino acid
are drawn in red color. One notices that the conformational
changes associated to� 1-� 3 are small. It is interesting to
notice that these small changes already appear in the range of
temperatures where the rise in �uctuations seems to grow still
linearly with the temperature. The next higher minima involve
in particular a reorientation of a turn within the� sheets of
a protein. The temperature range at which these minima start
to be populated coincides with the transition region revealed
by the mean-distance displacement� �r 2� , suggesting that the
anharmonic motion required to make transitions between the
basins of these minima is at its origin.

We again observe that the dynamic transition region does
not exhibit any particular change of behavior that could deserve
the name of “transition,” but rather a gradual evolution which
gets noticeable in the rangeT /Tf = [0.4,0.5]. In the next
section we use a nonequilibrium approach to reveal whether
the dynamics below the transition range can be characterized
as “glassy” or not.
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V. TEST OF THE FLUCTUATION-DISSIPATION
THEOREM (FDT)ÑA NONEQUILIBRIUM APPROACH

An alternative approach to study the low-temperature
transition, for which equilibrium simulations take a signi�cant
amount of computer time, consists in the test of the response
of the protein to external perturbations. Rather than waiting
a long time to see rare �uctuations dominating the average
�uctuation at low temperatures, the system is driven out of
equilibrium on purpose to either observe the relaxation back
to equilibrium and its associated structural changes, or the
response to a continuous perturbation to be compared to
�uctuations at equilibrium.

The �uctuation-dissipation theorem (FDT) relates the
response to small perturbations and the correlations of �uc-
tuations at thermal equilibrium for a given system. In the
past years, the theorem and its extensions have become
a useful tool to characterize glassy dynamics in a large
variety of complex systems [25]. For glasses below the glass
transition temperature, the equilibrium relaxation time scales
are very large so that thermal equilibrium is out of reach [26].
Consequently, the FDT cannot be expected to hold in these
situations, and the response functions and correlation functions
in principle provide distinct information. In this section, we test
the FDT for the Ḡo model of proteinG at various temperatures
to see whether a signature of glassy dynamics is present in the
system. To this aim, we �rst recall the basic de�nitions and
notations for the theorem.

In our studies we start from a given initial condition and
put the system in contact with a thermostat during a waiting
timetw. The end of the waiting time is selected as the origin of
time (t = 0) for our investigation. Iftw is large enough (strictly
speakingtw � � ) the system is in equilibrium att = 0. We
denote the Hamiltonian of the unperturbed systemH0, which
under a small linear perturbation of the order� (t) acting on an
observableB(t) becomes

H = H0 Š � (t)B(t), (8)

where for� = 0 we recover the unperturbed system. For any
observableA(t), we accordingly de�ne the two ensemble
averages�A(t)� tw

0 and�A(t)� tw
� where the index references the

average with respect to the unperturbed or perturbed system
respectively and the exponenttw indicates how long the system
was equilibrated before the start of the investigation. The
correlation function in the unperturbed system relating the
observablesA(t), B(t �) at two instances of timet,t � is de�ned
by

CAB (t,t �) = � A(t)B(t �)� tw
0 Š � A(t)� tw

0 · �B(t �)� tw
0 . (9)

The susceptibility� AB (t), which measures the time-integrated
response of the of the observableA(t) at the instantt to the
perturbation� (t �) at the instantt �, reads

� AB (t) =
� t

t0
dt�

� �A(t)� tw
�

�� (t �)
. (10)

The indexB in the susceptibility indicates that the response
is measured with respect to the perturbation arising from the
application ofB(t), and the lower boundt0 of the integral
indicates the instant of time at which the perturbation has been
switched on.

The integrated form of the FDT states that the correlations
and the integrated response are proportional and related by the
system temperature at equilibrium,

� AB (t) =
1

kBT
�C with

(11)
�C = [CAB (t,t ) Š CAB (t,0)].

In the linear response regime for a suf�ciently small and
constant �eld� , the susceptibility can be approximated as

� AB (t) �
�A(t)� tw

� Š � A(t)� tw
0

�
(12)

such that in practice, verifying the FDT accounts for the
comparison of observables on both perturbed and unperturbed
trajectories. The basic steps for a numerical experiment aiming
to verify the FDT can be summarized as follows:

(i) Initialize two identical systems 1 and 2, 1 to be simulated
with and 2 without perturbation.

(ii) Equilibrate both systems without perturbation duringtw.
(iii) At time t0 (in practicet0 = 0, i.e., immediately after

the end of the equilibration period) switch on the perturbation
for system 1 and acquire data for both systems for a �nite time
tFDT.

(iv) Repeat the calculation over a large number of initial
conditions to yield the ensemble averages�·� tw

0 and �·� tw
� ;

combine the data according to Eq. (11).
The protocol may be modi�ed to include an external

perturbation which breaks the translational invariance in time.
For instance the initial state can result from a quench from a
high to a low temperature. Then the system is only equilibrated
for a short timetw before the perturbation in the Hamiltonian
is switched on. In this case the distribution of the realizations
of the initial conditions isnot the equilibrium distributionso
that the correlation function de�ned by Eq. (9) depends on the
two timest andt � and not only on their difference.

A. Simulation at constant temperature

This case corresponds totw � � . In our calculations we
start from an initial condition which as been thermalized
for at least 5000 time units. The �rst step is to make an
appropriate choice for the perturbative potential� (t)B(t). An
earlier application of the FDT to a protein model [27] has used
the perturbative term

� (t)B(t) = �
N�

i = 1

cos(k yi ), (13)

wherek is a scalar,yi is the y coordinate of amino acidi ,
and� �= 0 for t > t 0 a constant. This perturbation is invariant
neither by a translation of the system nor by its rotation.
Although this does not invalidate the FDT, this choice poses
some problems for the accuracy of the calculations because,
even in the absence of internal dynamics of the protein, the
perturbation varies as the molecules diffuse in space or rotate.
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To avoid this dif�culty we selected the perturbation

W := Š �B (t) = Š �
N�

i = 1,i �= 28

cos(k ri, 28), (14)

whereri, 28 is the distance between amino acidi and the amino
acid 28 which has been chosen as a reference point within the
protein because it is located near the middle of the amino-acid
chain. Such a potential only depends on the internal state of the
molecule, while it remains unaffected by its position in space.
To test the FDT for the Ḡo model of proteinG using Eqs. (11)
and (12), we add this potentialW to the potential energyV of
the model and we selectA(t) = B(t). The thermal �uctuations
are described with the same Langevin dynamics as previously.
We switch on the perturbation for the equilibrated protein
model and record 50 000–400 000 trajectories (depending on
the value of� ) of duration 2000 time units for temperatures
in the rangeT /Tf = [0.275,0.826] covering both the low-
temperature domain and the approach of the folding transition
of the protein. The perturbation prefactors chosen in this �rst
set of simulations were� = 0.05 and� = 0.005, and the wave
number of the cosine term wask = 2�/ 10.

Figure6 shows the evolution of the relation between the
susceptibility and the variation of the correlation function
�C = CAB (t,t ) Š CAB (t,0). The straight lines represent the
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FIG. 6. (Color online) Variation of� vs C for � = 0.05 and
� = 0.005 at the equilibrium temperatureT = 0.826Tf . The insets
show� vs �C at T = 0.275Tf . The oblique (red) lines show the
slope 1/k BT that would be expected according to the �uctuation-
dissipation theorem. The results presented in this �gure have been
obtained from 400 000 realizations.

slopes expected from the FDT. One notices that, for� = 0.05,
atT = 0.826Tf , in the long term the value of� /�C stabilizes
around a value which is away from the expected value
1/k BT. From a �rst glance, this result is reminiscent of
the properties of a glass driven out of equilibrium. In this
context, the deviation from the slope expected from the FDT
is interpreted as the existence of an “effective temperature”
for nonequilibrium systems. For the case studied here, �nding
an effective temperature would be surprising as the results
are obtained from measurements on a thermalized protein
model, i.e., a system in a state of thermal equilibrium.
How is it then possible to explain the apparent deviation
from the FDT? The calculations performed with� = 0.005
give the clue because they show that the deviation appeared
because the perturbation was too large and outside of the
linear response regime assumed to calculate the susceptibility
because for this lower value of� the deviation has vanished.
If one computes the average value of the perturbation energy
�W� and compares it to the protein average energy�E(T)� , for
the case shown in Fig.6, � = 0.05, one �nds�W� / �E(T)� =
1.3 × 10Š2. This is small, but, at temperatures which approach
Tf the protein is a highly deformable object and even a small
perturbation can bring it out of the linear response regime.
This shows up by a rise of� versus time for� = 0.05. At
low temperatures the protein is more rigid and therefore more
resilient to perturbations. The insets in Fig.6 show that for
� = 0.05 the calculations �nd that the �uctuation-dissipation
relation atT = 0.275Tf is almost perfectly veri�ed although
a very small deviation can still be detected for this value of
� = 0.05. Therefore a careful choice of parameters is necessary
to test the FDT under controlled conditions. In particular, the
perturbation needs to be carefully chosen to only probe the
internal dynamics and not to dominate them.

B. Simulation of quenching

A typical signature of a glassy system is its aging after a
perturbation. In the context of the protein “glass transition,”
one can therefore expect to detect a slow evolution of the
system as a function of the time after which it has been
brought to the glassy state. This is usually tested in quenching
experiments, which can be investigated by a sharp temperature
drop in the numerical simulations. Our calculations start from
an equilibrium state at high temperatureT = 1.40Tf , which
is abruptly cooled at a temperatureTq below the temperature
of the dynamical transition studied in the previous sections.
The model protein is then maintained at this temperatureTq
by a Langevin thermostat. After a waiting timetw we start
recording the properties of the system over a time interval
tFDT = 25 000 units of time (t.u.) to probe the �uctuation
dissipation relation. In order to avoid nonlinear effects we use
a small value of� = 0.005. For such a weak perturbation, the
response is weak compared to thermal �uctuations and a large
number of realizations (50 000 or more) is necessary to achieve
reliable statistical averages. To properly probe the phase space
of the model, these averages must be made over different
starting con�gurations before quenching. This is achieved by
starting the simulations from a given initial condition properly
thermalized atT = 1.40Tf in a preliminary calculation. Then
we run a short simulation at this initial temperature, during
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