Relabeling nodes according to the structure of the graph
Ronan Hamon, Céline Robardet, Pierre Borgnat, Patrick Flandrin

To cite this version:
Ronan Hamon, Céline Robardet, Pierre Borgnat, Patrick Flandrin. Relabeling nodes according to the structure of the graph. 2013. ensl-00878041

HAL Id: ensl-00878041
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00878041
Submitted on 29 Oct 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Relabeling nodes according to the structure of
the graph.

Ronan Hamon, Céline Robardet, Pierre Borgnat, Patrick Flandrin

1 Proposed method

1.1 Algorithm

We propose to solve this problem thanks to a two-step algorithm. The first step
is based on the depth-first search algorithm and enables us to obtain a
collection of independent paths. From a starting node with minimal value of
closeness centrality, the algorithm jumps from another node according to the
neighborhood of the considered node. The neighborhood is computed such that
a node already taken into account in a path is not included. If one or more
of his neighbors have a degree equal to 1, that means the neighbor node is
only linked to the considered node, the node is added to the path and another
neighbor is considered. If all neighbors have a degree greater than 1, the next
node is chosen taking the highest value of a criterion based on the Jaccard index
between neighborhood of the considered node and each of its neighbors. This
criterion determines which neighbors is the most similar to the current node in
order to stay in the same part of the graph. The other neighbors are stacked
in a pile and the algorithm repeats the same procedure from the chosen node.
When no neighbors are available, the procedure stops and the path is closed.
A new path is opened and starts from the last node put in the pile and so on. At
the end of step 1, there is a collection of paths which are independent i.e. no
vertex is in two different paths.

The second step aims to aggregate these paths in order to minimize the cyclic
bandwidth sum. The paths are considered following their decreasing lengths.
The longest path is first considered and inserted into a empty list called labeling.
The second longest path is then considered and inserted at all available indices
in the labeling : for each insertion, a criterion based on the cyclic bandwidth
sum is computed. The path is inserted definitively at the index which minimized
this criterion. The algorithm goes on until the collection of paths is empty.
Algorithm 1 Minimization_Cyclic_Bandwidth_Sum

Require: $G = (V, E)$

Ensure: π a one-to-one and onto mapping of V to $\{0 \ldots n - 1\}$. L, labeling two piles. Paths a heap.

1: for all $u \in V$ do
2: \hspace{1em} color[u] \leftarrow white
3: \hspace{1em} $\pi[u]$ \leftarrow nil
4: end for
5: centrality \leftarrow Closeness_Centrality(G)
6: for all Connected components C of G do
7: \hspace{1em} V_C \leftarrow Vertices of C
8: \hspace{1em} for all $u \in V_C$ do
9: \hspace{2em} Heap_Push(S, (centrality[u, u]))
10: \hspace{1em} end for
11: end for
12: while S is not empty do
13: \hspace{1em} u_0 \leftarrow Heap_Pop(S)
14: \hspace{2em} if color[u_0] = white then
15: \hspace{3em} P \leftarrow Find_best_path(u_0, C, color, centrality)
16: \hspace{3em} Heap_Insert(Paths, (length(P), P))
17: \hspace{1em} end if
18: end while
19: while Paths is not empty do
20: \hspace{1em} path \leftarrow Max_Heap_Extract(Paths)
21: \hspace{2em} Insert_path(labeling, path, C, color)
22: \hspace{1em} for all $u \in$ path do
23: \hspace{2em} \hspace{1em} color[u] \leftarrow black
24: \hspace{1em} end for
25: end while
26: end for
27: for $i \in [0, \ldots, n - 1]$ do
28: \hspace{1em} $\pi[i]$ \leftarrow Index(labeling, i)
29: end for
Algorithm 2 Find_best_path(u₀, C, color, centrality)

Ensure: P a pile. H a heap.
1: u ← u₀
2: while u ≠ -1 do
3: Push(P, u)
4: for all v ∈ adj[u] do
5: if color[v] = white then
6: if degree(v) = 1 then
7: Push(P, v)
8: color[v] ← gray
9: else
10: j ← Modified_Index_Jaccard(u, v)
11: c ← centrality[v]
12: Heap_Insert(H, (v, c, j))
13: end if
14: end if
15: end for
16: color[u] ← gray
17: if H not empty then
18: u ← Min_Heap_Extract(H)
19: else
20: u ← -1
21: end if
22: end while
23: return P

Lines 8-17 concerns the step 1 of the algorithm whereas lines 18-25 concerns the step 2.

Algorithm 3 Modified_Index_Jaccard(u, v)

Ensure: nb_u, nb_v two piles.
1: for all w ∈ adj[u] do
2: if color[w] = white then
3: nb_u, w
4: end if
5: end for
6: for all w ∈ adj[v] do
7: if color[w] = white then
8: nb_v, w
9: end if
10: end for
11: return #(nb_u ∪ nb_v) / #(nb_u ∩ nb_v)
Algorithm 4 Insert_path(labeling, path, C, color)
1: best_index ← 0
2: best_cbs ← Criterion(labeling, path, C, color)
3: for all $i \in [0, \ldots, \text{length}(labeling)]$ do
4: $cbs ← \text{Criterion}(\text{Insert}(labeling, path, i), path, color)$
5: if $cbs < \text{best_cbs}$ then
6: best_index ← i
7: best_cbs ← cbs
8: end if
9: end for
10: return $\text{labeling} ← \text{INSERT}(\text{labeling}, \text{path}, \text{best_index})$

Algorithm 5 Criterion(labeling, path, C, color)
1: CBS ← 0
2: n ← $\#V$
3: for all $u \in \text{path}$ do
4: for all $v \in \text{adj}[u]$ do
5: if $\text{color}[v] = \text{black}$ then
6: $\text{label}_u ← \text{Index}(\text{labeling}, u)$
7: $\text{label}_v ← \text{Index}(\text{labeling}, v)$
8: CBS ← CBS + min($|\text{label}_u - \text{label}_v|, n - |\text{label}_u - \text{label}_v|$)
9: end if
10: end for
11: end for
12: return CBS