A SIMPLE PARTICLE MODEL FOR A SYSTEM OF COUPLED EQUATIONS WITH ABSORBING COLLISION TERM - Archive ouverte HAL Access content directly
Journal Articles Kinetic and Related Models Year : 2011

A SIMPLE PARTICLE MODEL FOR A SYSTEM OF COUPLED EQUATIONS WITH ABSORBING COLLISION TERM

(1) , (2)
1
2
Cedric Bernardin
Valeria Ricci
  • Function : Author
  • PersonId : 838591

Abstract

We study a particle model for a simple system of partial differential equations describing, in dimension $d\geq 2$, a two component mixture where light particles move in a medium of absorbing, fixed obstacles; the system consists in a transport and a reaction equation coupled through pure absorption collision terms. We consider a particle system where the obstacles, of radius $\var$, become inactive at a rate related to the number of light particles travelling in their range of influence at a given time and the light particles are instantaneously absorbed at the first time they meet the physical boundary of an obstacle; elements belonging to the same species do not interact among themselves. We prove the convergence (a.s. w.r.t. to the product measure associated to the initial datum for the light particle component) of the densities describing the particle system to the solution of the system of partial differential equations in the asymptotics $ a_n^d n^{-\kappa}\to 0$ and $a_n^d \var^{\zeta}\to 0$, for $\kappa\in(0,\frac 12)$ and $\zeta\in (0,\frac12 - \frac 1{2d})$, where $a_n^{-1}$ is the effective range of the obstacles and $n$ is the total number of light particles.
Fichier principal
Vignette du fichier
reacdifFIN8.pdf (401.71 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

ensl-00870165 , version 1 (05-10-2013)

Identifiers

Cite

Cedric Bernardin, Valeria Ricci. A SIMPLE PARTICLE MODEL FOR A SYSTEM OF COUPLED EQUATIONS WITH ABSORBING COLLISION TERM. Kinetic and Related Models , 2011, 4 (3), pp.633 - 668. ⟨10.3934/krm.2011.4.xx⟩. ⟨ensl-00870165⟩
184 View
155 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More