An Introduction to Topological Insulators

Abstract : Electronic bands in crystals are described by an ensemble of Bloch wave functions indexed by momenta defined in the first Brillouin Zone, and their associated energies. In an insulator, an energy gap around the chemical potential separates valence bands from conduction bands. The ensemble of valence bands is then a well defined object, which can possess non-trivial or twisted topological properties. In the case of a twisted topology, the insulator is called a topological insulator. We introduce this notion of topological order in insulators as an obstruction to define the Bloch wave functions over the whole Brillouin Zone using a single phase convention. Several simple historical models displaying a topological order in dimension two are considered. Various expressions of the corresponding topological index are finally discussed.
Type de document :
Article dans une revue
Comptes rendus de l’Académie des sciences. Série IV, Physique, astrophysique, Elsevier, 2013, 14 (9), pp.779-815. 〈10.1016/j.crhy.2013.09.013〉
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00868307
Contributeur : Michel Fruchart <>
Soumis le : dimanche 3 novembre 2013 - 16:06:55
Dernière modification le : mardi 16 janvier 2018 - 16:22:31
Document(s) archivé(s) le : vendredi 7 avril 2017 - 20:09:02

Fichiers

CRAS_Fruchart_2013-11-03.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michel Fruchart, David Carpentier. An Introduction to Topological Insulators. Comptes rendus de l’Académie des sciences. Série IV, Physique, astrophysique, Elsevier, 2013, 14 (9), pp.779-815. 〈10.1016/j.crhy.2013.09.013〉. 〈ensl-00868307v2〉

Partager

Métriques

Consultations de la notice

172

Téléchargements de fichiers

2058