Confidence intervals for the critical value in the divide and color model

Abstract : We obtain confidence intervals for the location of the percolation phase transition in Häggström's divide and color model on the square lattice $\mathbb{Z}^2$ and the hexagonal lattice $\mathbb{H}$. The resulting probabilistic bounds are much tighter than the best deterministic bounds up to date; they give a clear picture of the behavior of the DaC models on $\mathbb{Z}^2$ and $\mathbb{H}$ and enable a comparison with the triangular lattice $\mathbb{T}$. In particular, our numerical results suggest similarities between DaC model on these three lattices that are in line with universality considerations, but with a remarkable difference: while the critical value function $r_c(p)$ is known to be constant in the parameter $p$ for $p
Type de document :
Article dans une revue
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2013, 10 (2), pp.667-679
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00843512
Contributeur : Vincent Beffara <>
Soumis le : mercredi 24 janvier 2018 - 14:15:07
Dernière modification le : jeudi 25 janvier 2018 - 13:56:09
Document(s) archivé(s) le : jeudi 24 mai 2018 - 19:00:18

Fichier

Balint2013a.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : ensl-00843512, version 1
  • ARXIV : 1307.2755

Collections

Citation

András Bálint, Vincent Beffara, Vincent Tassion. Confidence intervals for the critical value in the divide and color model. ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2013, 10 (2), pp.667-679. 〈ensl-00843512〉

Partager

Métriques

Consultations de la notice

152

Téléchargements de fichiers

10