Confidence intervals for the critical value in the divide and color model - Archive ouverte HAL Access content directly
Journal Articles ALEA : Latin American Journal of Probability and Mathematical Statistics Year : 2013

Confidence intervals for the critical value in the divide and color model

(1) , (2) , (2)
1
2

Abstract

We obtain confidence intervals for the location of the percolation phase transition in Häggström's divide and color model on the square lattice $\mathbb{Z}^2$ and the hexagonal lattice $\mathbb{H}$. The resulting probabilistic bounds are much tighter than the best deterministic bounds up to date; they give a clear picture of the behavior of the DaC models on $\mathbb{Z}^2$ and $\mathbb{H}$ and enable a comparison with the triangular lattice $\mathbb{T}$. In particular, our numerical results suggest similarities between DaC model on these three lattices that are in line with universality considerations, but with a remarkable difference: while the critical value function $r_c(p)$ is known to be constant in the parameter $p$ for $p
Fichier principal
Vignette du fichier
Balint2013a.pdf (488.9 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

ensl-00843512 , version 1 (24-01-2018)

Identifiers

Cite

András Bálint, Vincent Beffara, Vincent Tassion. Confidence intervals for the critical value in the divide and color model. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2013, 10 (2), pp.667-679. ⟨ensl-00843512⟩
137 View
18 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More