H. A. Dye, On Groups of Measure Preserving Transformations. I, American Journal of Mathematics, vol.81, issue.1, pp.119-159, 1959.
DOI : 10.2307/2372852

]. H. Dye63 and . Dye, On groups of measure preserving transformations, II. Amer. J. Math, vol.85, pp.551-576, 1963.

I. Epstein, Some results on orbit inequivalent actions of non-amenable groups, Thesis (Ph.D.)?University of California, 2008.

D. Gaboriau, Co??t des relations d?????quivalence et des groupes, Inventiones mathematicae, vol.139, issue.1, pp.41-98, 2000.
DOI : 10.1007/s002229900019

D. Gaboriau, Orbit Equivalence and Measured Group Theory, Proceedings of the International Congress of Mathematicians 2010 (ICM 2010), pp.1501-1527, 2010.
DOI : 10.1142/9789814324359_0108

URL : https://hal.archives-ouvertes.fr/ensl-00512729

D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann???s problem, Inventiones mathematicae, vol.99, issue.1, pp.533-540, 2009.
DOI : 10.1007/s00222-009-0187-5

T. Giordano and V. Pestov, SOME EXTREMELY AMENABLE GROUPS RELATED TO OPERATOR ALGEBRAS AND ERGODIC THEORY, Journal of the Institute of Mathematics of Jussieu, vol.6, issue.02, pp.279-315, 2007.
DOI : 10.1017/S1474748006000090

A. Ioana, Orbit inequivalent actions for groups containing a??copy of?? $\mathbb{F}_{2}$, Inventiones mathematicae, vol.71, issue.1, pp.55-73, 2011.
DOI : 10.1007/s00222-010-0301-8

A. S. Kechris, Global aspects of ergodic group actions, Mathematical Surveys and Monographs, vol.160, 2010.
DOI : 10.1090/surv/160

A. S. Kechris and B. D. Miller, Topics in orbit equivalence, Lecture Notes in Mathematics, vol.1852, 2004.
DOI : 10.1007/b99421

J. Kittrell and T. Tsankov, Topological properties of full groups. Ergodic Theory Dynam, Systems, vol.30, issue.2, pp.525-545, 2010.

G. Levitt, On the cost of generating an equivalence relation. Ergodic Theory Dynam, Systems, vol.15, issue.6, pp.1173-1181, 1995.

H. Matui, SOME REMARKS ON TOPOLOGICAL FULL GROUPS OF CANTOR MINIMAL SYSTEMS, International Journal of Mathematics, vol.17, issue.02, pp.231-251, 2006.
DOI : 10.1142/S0129167X06003448

H. Matui, Some remarks on topological full groups of Cantor minimal systems II. to appear in Ergodic Theory Dynam, Systems, 2011.

S. Donald, B. Ornstein, and . Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.), vol.2, issue.1, pp.161-164, 1980.