The number of topological generators for full groups of ergodic equivalence relations
Abstract
We completely elucidate the relationship between two invariants associated with an ergodic probability measure-preserving (pmp) equivalence relation, namely its cost and the minimal number of topological generators of its full group. It follows that for any free pmp ergodic action of the free group on $n$ generators, the minimal number of topological generators for the full group of the action is $n+1$, answering a question of Kechris.
Origin : Files produced by the author(s)
Loading...