Hidden cliques and the certification of the restricted isometry property
Pascal Koiran, Anastasios Zouzias

To cite this version:

HAL Id: ensl-00747908
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00747908
Submitted on 2 Nov 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Hidden Cliques and the Certification of the Restricted Isometry Property

Pascal Koiran∗ Anastasios Zouzias†

November 2, 2012

Abstract

Compressed sensing is a technique for finding sparse solutions to underdetermined linear systems. This technique relies on properties of the sensing matrix such as the restricted isometry property. Sensing matrices that satisfy this property with optimal parameters are mainly obtained via probabilistic arguments. Deciding whether a given matrix satisfies the restricted isometry property is a non-trivial computational problem. Indeed, we show in this paper that restricted isometry parameters cannot be approximated in polynomial time within any constant factor under the assumption that the hidden clique problem is hard.

Moreover, on the positive side we propose an improvement on the brute-force enumeration algorithm for checking the restricted isometry property.

1 Introduction

Let Φ be a $n \times N$ matrix with $N \geq n$. A vector $x \in \mathbb{C}^N$ is said to be k-sparse if it has at most k nonzero coordinates. Given $\delta \in]0,1[, \phi$ is said to satisfy the Restricted Isometry Property (RIP) of order k with parameter δ if it approximately preserves the Euclidean norm in the following sense: for every k-sparse vector x, we have

$$(1 - \delta)||x||^2 \leq ||\Phi x||^2 \leq (1 + \delta)||x||^2.$$

Clearly, for this to be possible we must have $k \leq n$. Given δ, n and N, the goal is to construct RIP matrices with k as large as possible. This problem is motivated by its applications to compressed sensing: it is known from Candès, Romberg and Tao [9, 10, 11] that the restricted isometry property enables the efficient recovery of sparse signals using linear programming techniques. For that purpose one can take any fixed $\delta < \sqrt{2} - 1$ [9].

∗LIP, UMR 5668, ENS de Lyon – CNRS – UCBL – INRIA, École Normale Supérieure de Lyon, Université de Lyon. A part of this work was done when visiting the Department of Computer Science at the University of Toronto. Email: Pascal.Koiran@ens-lyon.fr.
†Department of Computer Science, University of Toronto. Email: zouzias@cs.toronto.edu.
Various probabilistic models are known to generate random matrices that satisfy the RIP with a value of k which is (almost) linear in n. See for instance Theorem 2 in Section 3 for the case of matrices with entries that are independent symmetric (± 1) Bernoulli matrices. The recent survey [22] provides additional results of this type and extensive references to the probabilistic literature. Some significant effort has been devoted to the construction of explicit (rather than probabilistic) RIP matrices, but this appears to be a difficult problem. As pointed out by Bourgain et al. in a recent paper [7, 8], most of the known explicit constructions [18, 3, 14] are based on the construction of systems of unit vectors with a small coherence parameter (see section 2 for a definition of this parameter and its connection to the RIP). Unfortunately, this method cannot produce RIP matrices of order $k > \sqrt{n}$ [7, 8]. Bourgain et al. still manage to break through the \sqrt{n} “barrier” using techniques from additive combinatorics: they construct RIP matrices of order $k = n^{1/2+\epsilon_0}$ where $\epsilon_0 > 0$ is an unspecified “explicit constant”. Note that this is still far from the order achieved by probabilistic constructions.

Here we study the restricted isometry property from the point of view of computational complexity: what is the complexity of deciding whether a matrix satisfies the RIP, and of computing or approximating its order k or its RIP parameter δ? An efficient (deterministic) algorithm would have applications to the construction of RIP matrices. One would draw a random matrix Φ from one of the well-established probabilistic models mentioned above, and run this hypothetical algorithm on Φ to compute or approximate k and δ. The result would be a matrix with certified restricted isometry properties (see Section 3 for an actual result along those lines). This may be the next best thing short of an explicit construction (and as mentioned above, the known explicit constructions are far from optimal).

The definition of the restricted isometry property suggests an exhaustive search over $\binom{N}{k}$ subspaces, but prior to this work there was little evidence that checking the RIP is computationally hard (more on this in Section 1.2). There has been more work from the algorithm design side. In particular, it was shown that semi-definite programming can be used to verify the restricted isometry property [12] and other related properties from compressed sensing [13, 17]. Unfortunately, as pointed out in [13] these methods are unable to certify the restricted isometry property for k larger than $O(\sqrt{n})$, even for matrices that satisfy the RIP up to order $\Omega(n)$. As we have seen, $k = O(\sqrt{n})$ is also the range where coherence-based methods reach their limits.

In this paper we provide both positive and negative results on the computational complexity of the RIP, including the range $k > \sqrt{n}$.

1.1 Positive Results

In Section 2 we study the relation between the RIP parameters of different orders for a given matrix Φ. Very roughly, we show in Theorem 1 that the RIP parameter is at most proportional to the order. We therefore have a trade-off between order and RIP parameter: in order to construct a matrix of given order and RIP parameter, it suffices to construct a matrix of lower order and smaller
RIP parameter. We illustrate this point in Section 3. Our starting point is the above-mentioned (very naive) exhaustive search algorithm, which enumerates all \(\binom{N}{k} \) subspaces generated by \(k \) column vectors. We obtain a “lazy algorithm” which enumerates instead all subspaces generated by \(l \) basis vectors for some \(l < k \). We show that the lazy algorithm can go slightly beyond the \(\sqrt{n} \) barrier if a quasi-polynomial running time is allowed.

1.2 Negative Results: the Connection to Hidden Cliques

We show that RIP parameters are hard to approximate within any constant factor under the assumption that the hidden clique problem is hard. In fact, we need an assumption (spelled out at the end of this subsection) which is somewhat weaker than the usual one. Our hardness result applies to any order of the form \(k = n^\alpha \), where \(\alpha \) is any constant in the interval \([0, 1] \). It applies to square as well as to rectangular matrices. We gave similar results in the unpublished manuscript [19] under a (nonstandard) assumption on the complexity of detecting dense subgraphs. By contrast, as explained below the hypothesis that we use in this paper is well established. Prior to our work, little was known on the hardness of checking the restricted isometry property. It was pointed out by Terence Tao [21] that “there is no fast (e.g. sub-exponential time) algorithm known to test whether any given matrix is UUP or not.”\(^1\) As to hardness results, one can mention the NP-hardness proof of [6], which is based on the following (known) fact: it is NP-hard to distinguish a matrix with a nonzero \(k \)-sparse vector in its kernel from a matrix without any such vector in its kernel. In the first case, the matrix does not satisfy the RIP of order \(k \), while in the second case it does satisfy the RIP of order \(k \) for some parameter \(\delta \). Since \(\delta \) may be very close to 1, this result does not say much on the complexity of approximating the RIP parameters. A similar result was obtained in [20].

The size of the largest clique in a typical graph drawn from the \(G(n, 1/2) \) distribution is roughly \(2 \log_2 n \). In the hidden clique problem, one must find a clique of size \(t \gg 2 \log_2 n \) which was planted at random in a random graph. This problem is solvable in polynomial time for a clique of size \(t = \Theta(\sqrt{n}) \) [4]. It is widely believed, however, that the problem cannot be solved in polynomial time for a planted clique of size \(t = n^c \), where \(c \) is any constant in the open interval \([0, 1/2] \). Even the more modest goal of distinguishing between a random graph and a random graph with a planted clique of size \(n^c \) is believed to require more than polynomial time [2] (see appendix B.4 of [1] for a comparison of distinguishing versus finding hidden cliques).

In the last few years, several hardness results have been obtained under the assumption that the hidden clique problem is not polynomial time solvable [2] [1] [16]. We refer to [2] for more information on the history of this problem.

In this paper, we show hardness of approximation for RIP parameters under the following assumption. We actually have a family of assumptions, parameterized by the clique size (in keeping with the tradition in this area [4], we omit floor and ceiling signs to simplify the presentation).

\(^1\)In his blog post, Tao uses the notation “UUP” for the RIP.
Hypothesis \((H_\epsilon)\). There is no polynomial time algorithm \(A\) which, given as input a graph \(G\) on \(n\) vertices:

- always outputs “yes” if \(G\) contains a clique of size \(n^{1/2-\epsilon}\).
- Outputs “no clique” on most graphs \(G\) when \(G\) is drawn from the uniform distribution \(G(n,1/2)\).

In other words, \((H_\epsilon)\) asserts that no polynomial time algorithm can certify the absence of a clique of size \(n^{1/2-\epsilon}\) from most graphs on \(n\) vertices (where “most graphs” means: with probability approaching 1 as \(n \to +\infty\)). Note that this is a one-sided hypothesis: algorithm \(A\) is allowed to err (rarely) but only on input graphs that do not contain a a clique of size \(n^{1/2-\epsilon}\). Note also that Hypothesis \(H_\epsilon\) becomes increasingly stronger as \(\epsilon \to 0\) (and it becomes false for \(\epsilon < 0\): if \(\alpha > 1/2\), a simple spectral algorithm can certify that most graphs on \(n\) vertices do not contain any clique of size \(n^\alpha\). For completeness, we give a proof in the appendix). Hypothesis \(H_\epsilon\) is clearly true if it is hard to distinguish between a random graph and a random graph with a planted clique of size \(n^{1/2-\epsilon}\). It is therefore consistent with current knowledge to assume that \((H_\epsilon)\) holds true for all constants \(\epsilon \in]0,1/2[\).

1.3 Organization of the Paper

As explained above, the next two sections are devoted to positive results. In Section 4 we work out some bounds on the eigenvalues of random matrices, for later use in our reductions from hidden clique to the approximation of RIP parameters. We rely mainly on the classical work of Füredi and Komlós [15] as well as on a more recent concentration inequality due to Alon, Krivelevich and Vu [5]. In Section 5 we use these eigenvalue bound to show that approximating RIP parameters is hard even for square matrices. In Section 6 we derive similar results for matrices of “strictly rectangular” format (which is the case of interest in compressed sensing). We proceed by reduction from the square case. Interestingly, this last reduction relies on the known constructions (deterministic [7, 8] and probabilistic [22]) of matrices with good RIP parameters mentioned earlier in the introduction. We therefore turn these positive results into negative results. The table at the end of Section 6 gives a summary of our hardness results.

2 Increasing the Order by Decreasing the RIP Parameter

As explained at the beginning of [7, 8], certain (suboptimal) constructions are based on the construction of systems of unit vectors \((u_1, \ldots, u_N) \in \mathbb{C}^n\) with small coherence. The coherence parameter \(\mu\) is defined as \(\max_{i \neq j} |\langle u_i, u_j \rangle|\).

Indeed, we have the following proposition.

Proposition 1. Assume that the column vectors \(u_1, \ldots, u_N\) of \(\Phi\) are of norm 1 and coherence \(\mu\). Then \(\Phi\) satisfies the RIP of order \(k\) with parameter \(\delta = (k - 1)\mu\).
We reproduce the proof from [7, 8] since it fits in one line: for any k-sparse vector x,

\[|||\Phi x|||^2 - ||x||^2 \leq 2 \sum_{i<j} |x_i x_j \langle u_i, u_j \rangle| \leq \mu((\sum_i |x_i|)^2 - ||x||^2) \leq (k-1)\mu||x||^2. \]

We now give a result, which (as we shall see) generalizes Proposition 1.

Theorem 1. Assume that Φ has unit column vectors and satisfies the RIP of order m with parameter ϵ. For $k \geq m$, Φ also satisfies the RIP of order k with parameter $\delta = \epsilon(k-1)/(m-1)$.

Proof. Let u_1, \ldots, u_N be the column vectors of Φ. Let x be a k-sparse vector, and write $x = \sum_{i \in T} x_i u_i$ where T is a subset of $\{1, \ldots, N\}$ of size k. Since $||\Phi x||^2 = ||x||^2 + 2 \sum_{i<j} x_i x_j \langle u_i, u_j \rangle$, to check the RIP of order k we need to show that

\[|\sum_{i<j} x_i x_j \langle u_i, u_j \rangle| \leq \delta||x||^2/2, \tag{1} \]

where $\delta = \epsilon(k-1)/(m-1)$. To estimate the left hand side, we compare it to the sum of the similar quantity taken over all subsets of size m of T, namely:

\[\sum_{|S|=m} \sum_{i,j \in S, i<j} x_i x_j \langle u_i, u_j \rangle. \tag{2} \]

Since each pair (i, j) appears in exactly $\binom{k-2}{m-2}$ subsets of size m, this sum is equal to $\binom{k-2}{m-2}$ times the left-hand side of (1). But we can also estimate (2) using the RIP of order m. For each subset S of size m, we have

\[|\sum_{i,j \in S, i<j} x_i x_j \langle u_i, u_j \rangle| \leq \epsilon \sum_{i \in S} x_i^2/2. \]

This follows from (1), replacing δ by ϵ (the RIP parameter of order m). Since each term x_i^2 will appear exactly in $\binom{k-1}{m-1}$ subsets, we obtain $\epsilon \binom{k-1}{m-1}||x||^2/2$ as an upper bound for (2). We conclude that the left-hand side of (1) is bounded by $\frac{\epsilon}{2} \binom{k-1}{m-1}||x||^2/\binom{k-2}{m-2} = \epsilon \frac{k-1}{m-1}||x||^2/2$. □

We claim that Proposition 1 is the case $m = 2$ of Theorem 1. This follows from the following observation.

Remark 1. For a matrix Φ with unit column vectors, the coherence parameter μ is equal to the RIP parameter of order 2.

Proof. Let δ be the RIP parameter of order 2. We have $\delta \leq \mu$ by Proposition 1. It remains to show that $\delta \geq \mu$. Consider therefore two column vectors u_i and u_j with $|\langle u_i, u_j \rangle| = \mu$. Let $x = u_i + u_j$. We have $||x||^2 = 2$ and $||\Phi x||^2 = 2 \pm 2\mu$, so that $\delta \geq \mu$ indeed. □
3 A Matrix Certification Algorithm

The naive algorithm for computing the RIP parameter of order \(k\) will involve the enumeration of the \(\binom{N}{k}\) submatrices of \(\Phi\) made up of \(k\) column vectors of \(\Phi\). For each \(T \subseteq \{1, \ldots, N\}\) of size \(k\) let us denote by \(\Phi_T\) the corresponding \(n \times k\) matrix. We need to compute (or upper bound) \(\delta = \max_T \delta_T\), where

\[
\delta_T = \sup_{x \in \mathbb{C}^k} \frac{||\Phi_T x||^2}{||x||^2} - 1.
\]

For each \(T\), \(\delta_T\) can be computed efficiently by linear algebra. For instance, \(\delta_T\) is the spectral radius of the self-adjoint matrix \(\Phi_T^* \Phi_T - I_k\). The cost of the computation is therefore dominated by the combinatorial factor \(\binom{N}{k}\) due to the enumeration of all subsets of size \(k\).

Here we analyze what the naive algorithm can gain from Theorem 1. We therefore consider the following lazy algorithm. The correctness of the algorithm follows immediately from Theorem 1. We now analyze its behavior on random matrices, which are in many cases known to satisfy the RIP with high probability. Consider for instance the case of a matrix whose entries are independent symmetric Bernouilli random variables.

Theorem 2. Let \(A\) be a \(n \times N\) matrix whose entries are independent symmetric Bernouilli random variables and assume that \(n \geq C \epsilon^{-2} m \log(eN/m)\). With probability at least \(1 - 2 \exp(-c \epsilon^2 n)\), the normalized matrix \(\Phi = \frac{1}{\sqrt{n}} A\) satisfies the RIP of order \(m\) with parameter \(\epsilon\). Here \(C\) and \(c\) are absolute constants.

In fact the same theorem holds for a very large class of random matrix models, namely, subgaussian matrices with either independent rows or independent columns ([22], Theorem 64).

Proposition 2. Let \(A\) be a random matrix as in Theorem 2 and \(\delta \in [0, 1]\). With probability at least \(1 - 2(eN/m)^{-cCm}\), the lazy algorithm presented above will certify that \(A\) satisfies the RIP of order \(k\) with parameter \(\delta\) for all \(k \geq m\) such that:

\[
k \leq \delta \sqrt{\frac{mn}{c \log(eN/m)}}.
\]

Here \(c\) and \(C\) are the absolute constants from Theorem 2.

Proof. All parameters being fixed we take \(\epsilon\) as small as allowed by Theorem 2 so that \(ne^2 = Cm \log(eN/m)\). This yields the announced probability estimate, and the upper bound on \(k\) is \(\delta m/\epsilon\). \(\square\)
To compare the lazy algorithm to the naive algorithm, set for instance $m = \sqrt{n}$. In applications to compressed sensing one can set δ to a small constant value (any $\delta < \sqrt{2} - 1$ will do). Thus, disregarding constant and logarithmic factors, with high probability the lazy algorithm will certify the RIP property for k of order roughly $n^{3/4}$. This is achieved by enumerating $\binom{N}{n^{3/4}}$ subspaces, whereas the naive algorithm would enumerate roughly $\binom{N}{n^{3/4}}$ subspaces.

Another choice of parameters in Proposition 2 shows that one can beat the \sqrt{n} bound by a logarithmic factor with a quasi-polynomial time algorithm. For instance:

Corollary 1. If we set $m = (\log N)^3$, the lazy algorithm runs in time $2^{O((\log^4 N))}$ and, with probability at least $1 - 2^{-\Omega((\log N)^4)}$ certifies that A satisfies the RIP of order k with parameter δ for all $k \leq K\delta \log N \sqrt{n}$, where K is an absolute constant.

4 Eigenvalues of Random Symmetric Matrices

Proposition 4 is the main probabilistic inequality that we derive in this section. It shows that square matrices obtained by Cholesky decomposition from a certain class of random matrices have good RIP parameters with high probability. This result is then used in Section 5 to give a reduction from hidden clique to the approximation of RIP parameters.

4.1 Model A

Consider the following random matrix model: A is a symmetric $k \times k$ matrix with $a_{ii} = 0$, and for $i < j$ the a_{ij} are independent symmetric Bernoulli random variables.

Let $\lambda_1(A) \geq \lambda_2(A) \geq \ldots \lambda_k(A)$ be the eigenvalues of A. Let m_s be the median of $\lambda_s(A)$. From the main result of [5] (bottom of p. 263) we have for $t \geq 0$ the inequality:

$$\Pr[\lambda_s(A) - m_s \geq t] \leq 2e^{-t^2/32s^2}.$$

From Füredi and Komlós ([13], Theorem 2) we know that $m_1 \leq 3\sigma \sqrt{k}$ for k large enough, where $\sigma = 1$ is the standard deviation of the a_{ij} in the case $i < j$. Therefore we have

$$\Pr[\lambda_1(A) \geq 3\sqrt{k} + t] \leq 2e^{-t^2/32}.$$

Since $\lambda_k(A) = -\lambda_1(-A)$ and $-A$ has same distribution as A, we also have

$$\Pr[\lambda_k(A) \leq -3\sqrt{k} - t] \leq 2e^{-t^2/32}$$

(one could also apply directly the bound on $\lambda_k(A)$ for the more general model considered in [5]). As a result:

Proposition 3. There is an integer k_0 such that for all $k \geq k_0$ and for all $t \geq 0$ we have:

$$\Pr[\max_i |\lambda_i(A)| \geq 3\sqrt{k} + t] \leq 4e^{-t^2/32}.$$
Remark 2. The constant 3 in Proposition 3 can be replaced by any constant bigger than 2 (see Theorem 2 in [15]).

4.2 Model B

Next we consider the model where B is a symmetric $k \times k$ matrix satisfying the following condition: $b_{ii} = 1$, and $b_{ij} = c \cdot a_{ij} / \sqrt{n}$ for $i < j$, where the a_{ij} are independent symmetric Bernouilli random variables. Here $c > 0$ is a fixed constant, and n is an additional parameter which should be thought of as going to infinity with k.

Corollary 2. Assume that $k \geq k_0$ and that $\delta \sqrt{n} \geq 3c \sqrt{k}$. Then the eigenvalues of B all lie in the interval $[1 - \delta, 1 + \delta]$ with probability at least

$$1 - 4 \exp[-(\delta \sqrt{n} / c - 3 \sqrt{k})^2 / 32].$$

Proof. We have $B = I_k + cA / \sqrt{n}$, where A follows the model of Proposition 3. The result therefore follows from that proposition by choosing t so that $c(3 \sqrt{k} + t) / \sqrt{n} = \delta$, i.e., $t = \delta \sqrt{n} / c - 3 \sqrt{k}$.

In the next corollary we look at the case $n = k$ of this model.

Corollary 3. Assume that $n \geq k_0$ and $3c < 1$. Then B is positive semi-definite with probability at least

$$1 - 4 \exp[-(1/c - 3)^2 n / 32].$$

Proof. Set $n = k$ and $\delta = 1$ in Corollary 2.

In the last result of this subsection we consider again the model $B = I_n + cA / \sqrt{n}$. Given a $n \times n$ matrix M and two subsets $S, T \subseteq \{1, \ldots, n\}$ of size k, let us denote by $M_{S,T}$ the $k \times k$ sub-matrix made up of all entries of M of row number in S and column number in T.

Corollary 4. Consider the random matrix $B = I_n + cA / \sqrt{n}$ where A is drawn from the uniform distribution on the set $n \times n$ symmetric matrices with null diagonal entries and ± 1 off-diagonal entries.

If $n \geq k \geq k_0$, then with probability at least

$$1 - 4 \exp\left[k \ln(ne/k) - \left(\frac{\delta \sqrt{n}}{c} - 3 \sqrt{k}\right)^2 / 32\right]$$

the submatrices $B_{S,S}$ have all their eigenvalues in the interval $[1 - \delta, 1 + \delta]$ for all subsets $S \subseteq \{1, \ldots, n\}$ of size k.

Proof. By Corollary 3 for each fixed S matrix $B_{S,S}$ has an eigenvalue outside of the interval $[1 - \delta, 1 + \delta]$ with probability at most $4 \exp[-(\delta \sqrt{n} / c - 3 \sqrt{k})^2 / 32]$. The result follows by taking a union bound over the $\binom{n}{k}$ ≤ $(ne/k)^k$ subsets of size k.

8
4.3 Model C

In Corollaries 3 and 4 we considered the following random model for B: set $B = I_n + cA/\sqrt{n}$, where A is chosen from the uniform distribution on the set S_n of all symmetric matrices with null diagonal entries and ± 1 off-diagonal entries. If B is positive semi-definite, we can find by Cholesky decomposition an $n \times n$ matrix C such that $C^TC = B$. If B is not positive semi-definite, we set $C = 0$. This is the random model for C that we study in this subsection.

Proposition 4. Assume that $n \geq k \geq k_0$ and that $3c < \min(1, \delta \sqrt{n}/\sqrt{k})$. With probability at least

$$1 - 4 \exp \left[k \ln(ne/k) - \left(\frac{\delta \sqrt{n}}{c} - 3\sqrt{k} \right)^2/32 \right] - 4 \exp[-(1/c - 3)^2 n/32],$$

C satisfies the RIP of order k with parameter δ.

Proof. If $B = I_n + cA/\sqrt{n}$ is not positive semi-definite then $C = 0$ and this matrix obviously does not satisfy the RIP. By Corollary 3, B can fail to be positive semi-definite with probability at most $4 \exp[-(1/c - 3)^2 n/32]$.

If B is positive semi-definite then $C^TC = B$. Using the notation of Corollary 4, matrix C satisfies the RIP of order k with parameter δ if for all subsets S of size k, the eigenvalues of the $k \times k$ matrices $(C^TC)_{S,S}$ all lie in the interval $[1 - \delta, 1 + \delta]$. Since $C^TC = B$, by Corollary 4 this can happen with probability at most $4 \exp[k \ln(ne/k) - (\delta \sqrt{n}/c - 3\sqrt{k})^2/32]$.

5 Large Cliques and the Restricted Isometry Property

In this section we show (in Theorems 3 and more generally in Theorem 5) that RIP parameters are hard to approximate even for square matrices. We establish connections between hidden clique problems and the RIP thanks to a generic reduction which we call the Cholesky reduction. This reduction maps a graph G on n vertices to an $n \times n$ matrix $C(G)$. Let A be the signed adjacency matrix of G: we have $a_{ii} = 0$ and for $i \neq j$, $a_{ij} = 1$ if $ij \in E$; $a_{ij} = -1$ if $ij \notin E$. We construct $C = C(G)$ from A using the procedure described in Section 4.3. That is, we first compute $B = I_n + cA/\sqrt{n}$. Here c is some absolute constant smaller for $1/3$, for instance $c = 0.3$. If B is not positive semi-definite, we set $C = 0$. Otherwise, we find by Cholesky decomposition a matrix C such that $C^TC = B$.

For suitable values of k, $C(G)$ satisfies the RIP of order k for most graphs G. This was made precise in Proposition 4. On the other hand, if G has a k-clique then $C(G)$ cannot satisfy the RIP of order k for a small value of the parameter δ. In order to show this, we first need a simple lemma.

Lemma 1. Let A be the signed adjacency matrix of a graph G. If G has a clique of size k then there is a unit vector supported by k basis vectors such that $x^TAx = k - 1$. 9
Proof. Let H be the k-clique. Here is a suitable vector: set $x_i = 1/\sqrt{k}$ if $i \in H$ and $x_i = 0$ otherwise.

Proposition 5. If G has a clique of size k and $\delta < c(k - 1)/\sqrt{n}$ then $C(G)$ does not satisfy the RIP of order k with parameter δ.

Proof. If B is not semi-definite positive, $C(G) = 0$ does not satisfy the RIP. Otherwise $C^TC = B$. Let x be the vector of Lemma 1. We have $||Cx||^2 = x^TC^TCx = x^TBx = 1 + cx^TAx/\sqrt{n} > 1 + \delta$.

We can now prove our first hardness results. We first illustrate our method on two examples, and then prove a general result at the end of this section.

Theorem 3. Assume hypothesis $(H_{1/6})$, that is: no polynomial time algorithm can certify that most graphs do not contain a clique of size $n^{1/3}$. Then, no polynomial time algorithm can distinguish a matrix with RIP parameter of order $n^{1/3}$ at most $n^{-1/4}$ from a matrix with RIP parameter of order $n^{1/3}$ at least $n^{-1/6}/4$.

Proof. We show the contrapositive: assuming the existing of a distinguishing algorithm A, we construct an algorithm that contradicts hypothesis $(H_{1/6})$. Fix a constant $c < 1/3$, for instance $c = 0.3$. On input G, this algorithm first construct $C(G)$.

If G contains a clique of size $k = n^{1/3}$ then by Proposition 5 the matrix $C(G)$ does not satisfy the RIP of order k with parameter $c'n^{-1/6}$. Here $c' < c$ is another constant (for n large enough we can take $c' = 1/4$).

We consider now the case where G was drawn from the $G(n, 1/2)$ distribution. Set $\delta = n^{-1/4}$. We can apply Proposition 3 since $\delta\sqrt{n}/\sqrt{k} = n^{1/12} > 1 > 3c$. This proposition shows that with probability approaching 1 as $n \to +\infty$, $C(G)$ satisfies the RIP of order k with parameter δ.

We can therefore call algorithm A to certify the absence of a clique of size $n^{1/3}$. More precisely, if G contains a k-clique our algorithm always finds out. On the other hand, if G was drawn from $G(n, 1/2)$ our algorithm answers correctly with high probability.

This theorem implies in particular than RIP parameters cannot be approximated within any constant factor. We can obtain a similar result for an order $k > \sqrt{n}$ under the same hypothesis. This is possible essentially because a matrix that doesn’t satisfy the RIP for a given order k cannot satisfy the RIP for any order $k' > k$.

Theorem 4. Assume Hypothesis $(H_{1/6})$ as in the previous theorem. Then no polynomial time algorithm can distinguish a matrix with RIP parameter of order $n^{0.6}$ at most $n^{-0.19}$ from a matrix with RIP parameter of order $n^{0.6}$ at least $n^{-1/6}/4$.

Proof. We proceed as in the proof of the previous theorem: assuming the existing of a distinguishing algorithm A, we construct an algorithm that contradicts the hypothesis.
If G contains a clique of size $n^{1/3}$ then we saw that $C(G)$ does not satisfy the RIP of order $n^{1/3}$ with parameter $n^{-1/6}/4$. It is a fortiori the case that this matrix does not satisfy the RIP of order $k = n^{0.6} > n^{1/3}$ with parameter $n^{-1/6}/4$.

We consider now the case where G was drawn from the $G(n, 1/2)$ distribution. Set $\delta = n^{-0.19}$. We can apply Proposition 4 since $\delta \sqrt{n}/\sqrt{k} = n^{0.01} > 1 > 3c$. Consider the argument of the first exponential in the probability bound of Proposition 4. The positive term $k \ln(ne/k)$, which is of order $n^{0.6} \ln n$, is dominated by the negative term $(\delta \sqrt{n} - 3\sqrt{k})^2/32$, which is of order $n^{0.62}$. We conclude that with probability approaching 1 as $n \to +\infty$, $C(G)$ satisfies the RIP of order k with parameter δ.

We can therefore call algorithm \mathcal{A} to certify the absence of a clique of size $n^{1/3}$. More precisely, if G contains a clique of size $n^{1/3}$ our algorithm always finds out. On the other hand, if G was drawn from $G(n, 1/2)$ our algorithm answers correctly with high probability.

More generally, we have the following result.

Theorem 5. Set $k = n^{(1-2\epsilon)(1-\epsilon)}$ where $\epsilon \in]0, 1/2]$. Set also $\delta = n^{-5\epsilon/4+\epsilon^2/2}$.

Hypothesis (H_ϵ) implies that no polynomial time algorithm can distinguish a matrix with RIP parameter of order k at most δ from a matrix with RIP parameter of order k at least $n^{-\epsilon}/4$.

In particular, since $\delta = o(n^{-\epsilon}/4)$, it follows that no polynomial time algorithm can approximate the RIP parameter of order k within any constant factor.

Remark 3. The exponent $\alpha = (1 - 2\epsilon)(1 - \epsilon)$ ranges over $]0, 1]$ as ϵ ranges over the interval $]0, 1/2]$. This theorem therefore shows that for any exponent $\alpha \in]0, 1]$, the RIP parameter of order $k = n^\alpha$ cannot be approximated within any constant factor in polynomial time.

Proof of Theorem 5. That $\delta = o(n^{-\epsilon}/4)$ follows from the inequality $-5\epsilon/4 + \epsilon^2/2 < -\epsilon/4$. This inequality holds true for all $\epsilon \in]0, 2[$, and in particular for all ϵ in the range $]0, 1/2[$ that is of interest here.

We now prove the main part of the theorem. Assuming the existence of a distinguishing algorithm \mathcal{A}, we construct again an algorithm that refutes hypothesis (H_ϵ).

We set as usual $c = 0.3$. If G contains a clique of size $n^{1/2-\epsilon}$ then by Proposition 5 $C(G)$ does not satisfy the RIP of order $n^{1/2-\epsilon}$ with parameter $n^{-\epsilon}/4$. It is a fortiori the case that this matrix does not satisfy the RIP of order $k = n^{(1-2\epsilon)(1-\epsilon)} > n^{(1-2\epsilon)/2}$ for the same parameter value.

Consider now the case where G is drawn from the $G(n, 1/2)$ distribution. We can apply Proposition 4 since $\delta \sqrt{n}/\sqrt{k} = n^{0.01} > 1 > 3c$. Consider the argument of the first exponential term in the probability bound of Proposition 4. The positive term $k \ln(ne/k)$, which is of order $k \ln n = n^{1-2\epsilon}(1-\epsilon) \ln n$, is dominated by the negative term $(\delta \sqrt{n} - 3\sqrt{k})^2/32$, which is of order $\delta^2 n = n^{1-5\epsilon/2+\epsilon^2}$. Indeed, the difference in the two exponents is

$$1 - \frac{5\epsilon}{2} + \epsilon^2 - (1 - 2\epsilon)(1 - \epsilon) = \frac{\epsilon}{2} - \epsilon^2 > 0.$$
As a result, with probability approaching 1 as \(n \to +\infty \), \(C(G) \) satisfies the RIP of order \(k \) with parameter \(\delta \). We can therefore refute hypothesis \((H_\epsilon)\) by running algorithm \(A \) on input \(C(G) \).

\[
6 \quad \text{Hardness for Rectangular Matrices}
\]

In this section we show that the RIP parameters of rectangular matrices are hard to approximate. This is the case of interest in compressed sensing. In a sense this was already done in Section 5: we have shown that the special case of square matrices is already hard. Nevertheless, it is of interest to know that the problems remains hard for *strictly rectangular* matrices. This is what we do in this section. Proofs are essentially by reduction from the square case. We begin with a simple lemma.

Lemma 2. Consider a matrix \(\Phi \) with the block structure

\[
\Phi = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix},
\]

where \(A \) and \(B \) both have at least \(k \) columns. This matrix satisfies the RIP of order \(k \) with parameter \(\delta \) if and only if the same is true for both \(A \) and \(B \).

Proof. For an input vector \(x \) with the corresponding block structure \(x = (u \ v) \) we have \(||x||^2 = ||u^2|| + ||v||^2 \) and \(||\Phi x||^2 = ||Au||^2 + ||Bv||^2 \). Therefore, if \(\Phi \) satisfies the RIP of order \(k \) with parameter \(\delta \) then the same is true for \(A \) (take \(v = 0 \) and \(u \) \(k \)-sparse). The same argument applies also to \(B \).

Conversely, assume that \(A \) and \(B \) satisfy the RIP of order \(k \) with parameter \(\delta \). Let \(x = (u \ v) \) be a \(k \)-sparse vector. We have \(||x||^2 - ||x||^2 = (||Au||^2 - ||u||^2) + (||Bv||^2 - ||v||^2) \). Both \(u \) and \(v \) must be \(k \)-sparse, so the first term is bounded in absolute value by \(\delta ||u||^2 \) and the second one by \(\delta ||v||^2 \). The result follows since \(||u||^2 + ||v||^2 = ||x||^2 \).

\[
7 \quad \text{Theorem 6. There are absolute constants } \epsilon_0, \epsilon > 0 \text{ such that under hypothesis } (H_\epsilon) \text{ and the choice of parameters:}
\]

\[
k = n^{\frac{1}{2} + \epsilon_0}, \delta = n^{-5\epsilon/4 + \epsilon^2/2}
\]

no polynomial time algorithm can distinguish a matrix with RIP parameter of order \(k \) at most \(\delta \) from a matrix with RIP parameter of order \(k \) at least \(n^{-\epsilon}/4 \).

Moreover, polynomial-time distinction between these two cases remains impossible even for matrices of size \(2n \times (n + N) \) where \(N = n^{1 + \epsilon_0} \). As a result, for matrices of this size the RIP parameter of order \(k \) cannot be approximated in polynomial time within any constant factor.

The first part of the theorem follows from Theorem 5. The point of Theorem 6 is that it establishes hardness of approximation for strictly rectangular matrices.
Proof of Theorem 6. The claim on constant factor approximation follows as in Theorem 5 from the relation $\delta = o(n^{-\epsilon/4})$. To prove the remainder of the theorem, we build on the proof of Theorem 5. From a graph G on n vertices we construct the matrix

$$C'(G) = \begin{pmatrix} C(G) & 0 \\ 0 & B_n \end{pmatrix}$$

where $C(G)$ is as in the previous section and B_n is a matrix with good restricted isometry properties. Its role is to ensure the rectangular format that we need for $C'(G)$. Our specific choice for B_n is the matrix constructed in [7, 8]. It is of size $n \times N$ where $N = n^{1+\epsilon_0}$, and it satisfies the RIP of order $n^{1+\epsilon_0}$ with parameter $n^{-\epsilon_0}$. Moreover, B_n can be constructed deterministically in time polynomial in n. Note that $C'(G)$ is of size $2n \times (n + N)$ as required in the statement of Theorem 6.

Choose ϵ so small that $(1 - 2\epsilon)(1 - \epsilon) \geq \frac{1}{2} + \epsilon_0$ and $-5\epsilon/4 + \epsilon^2/2 \geq -\epsilon_0$. We thus have $\delta \geq n^{-\epsilon_0}$. It then follows from Lemma 2 that $C'(G)$ satisfies the RIP of order k with parameter δ if and only if $C(G)$ does.

To complete the proof, let us assume that we have a distinguishing algorithm A which works for matrices of size $2n \times (n + N)$. We use it to refute hypothesis (H_ϵ).

If G contains a clique of size $n^{1/2-\epsilon}$, we saw in the proof of Theorem 5 that $C(G)$ does not satisfy the RIP of order $n^{1/2-\epsilon}$ with parameter $n^{-\epsilon/4}$ (by Proposition 5). It is a fortiori the case that this matrix does not satisfy the RIP of order $k = n^{1/2+\epsilon_0}$ for the same parameter value, and the same is true of $C'(G)$.

Consider now the case where G is drawn from the $G(n, 1/2)$ distribution. We saw in the proof of Theorem 5 that for most G, $C(G)$ satisfies the RIP of order $n^{1-2\epsilon}(1-\epsilon)$ with parameter δ. That order is at least as large as $k = n^{1/2+\epsilon_0}$, so it is a fortiori the case that $C(G)$ satisfies the RIP of order k with parameter δ for most G. As pointed out above, the same is then true for $C'(G)$. We can therefore refute hypothesis (H_ϵ) by running algorithm A on $C'(G)$.

Theorem 6 establishes hardness of approximation for an order k which is only slightly above $n^{1/2}$. We can bring k much closer to n, but for this we need a randomized version of hypothesis (H_ϵ):

Hypothesis (H'_ϵ). There is no polynomial time randomized algorithm which, given as input a graph G on n vertices:

- always outputs “yes” if G contains a clique of size $n^{1/2-\epsilon}$.
- Outputs “no” with probability at least (say) $3/4$ on most graphs G when G is drawn from the uniform distribution $G(n, 1/2)$.

Note that the probability bound $3/4$ in H'_ϵ refers to the internal coin tosses of the algorithm.
Theorem 7. Set \(k = n^{(1-2\epsilon)(1-\epsilon)} \) where \(\epsilon \in]0, 1/2[\). Set also \(\delta = n^{-5\epsilon/4+\epsilon^2/2} \).

Hypothesis \((H'_\epsilon) \) implies that no polynomial time algorithm can distinguish a matrix with RIP parameter of order \(k \) at most \(\delta \) from a matrix with RIP parameter of order \(k \) at least \(n^{-\epsilon}/4 \).

Moreover, polynomial-time distinction between these two cases remains impossible even for matrices of size \(2n \times 100n \). Since \(\delta = o(n^{-\epsilon}/4) \), it follows that for matrices of this size no polynomial time algorithm can approximate the RIP parameter of order \(k \) within any constant factor.

Proof. As in the proof of Theorem 6 we construct from a graph \(G \) a matrix of the form

\[
C'(G) = \begin{pmatrix} C(G) & 0 \\ 0 & B_n \end{pmatrix}.
\]

For \(B_n \), instead of of the deterministic construction from [7, 8] we will use a \(n \times 99n \) random matrix given by Theorem 2. As before, we will certify that \(G \) does not contain a clique of size \(n^{1/2-\epsilon} \) if the hypothetical distinguishing algorithm \(A \) for matrices of size \(2n \times 100n \) accepts \(C'(G) \). This will yield a contradiction with Hypothesis \((H'_\epsilon) \).

If \(G \) contains a clique of size \(n^{1/2-\epsilon} \), we saw in the proof of Theorem 5 that \(C(G) \) does not satisfy the RIP of order \(k \) with parameter \(n^{-\epsilon}/4 \). By Lemma 2, the same is true of \(C'(G) \).

Consider now the case where \(G \) is drawn from the \(G(n, 1/2) \) distribution. We saw in the proof of Theorem 5 that for most \(G \), \(C(G) \) satisfies the RIP of order \(k \) with parameter \(\delta \). As to \(B_n \), note that \(n\delta^2 = n^{\epsilon^2-5\epsilon/2+1} \) and the exponent \(\epsilon^2 - 5\epsilon/2 + 1 = (2-\epsilon)(1/2-\epsilon) \) is positive. Hence it follows from Theorem 2 that with probability approaching 1 as \(n \to +\infty \), \(B_n \) satisfies the RIP of order \(k \) with parameter \(\delta \). We conclude from Lemma 2 that in this case, \(C'(G) \) satisfies the RIP of order \(k \) with parameter \(\delta \) for most \(G \).

The constant 100 in Theorem 7 can be replaced by any constant larger than 2. Note also that the hypothetical polynomial-time algorithm in this theorem remains deterministic: it is only the (hypothetical) algorithm for certifying the absence of large cliques which is randomized. It is clear, however, that Theorem 7 can be adapted to randomized approximation algorithms with one-sided error (or even with two-sided error under a suitable adaptation of hypothesis \(H'_\epsilon \)).

The following table gives a summary of our hardness results. They do not rule out the existence of a polynomial-time algorithm distinguishing between matrices with a small RIP parameter and matrices with a RIP parameter larger than say 0.1. Here small means as in Theorems 3 to 7 that the RIP parameter goes to 0 as \(n \to +\infty \). If convergence to 0 is not too fast then we could still use such a weak distinguishing algorithm for certifying most random matrices.
Hardness Results

<table>
<thead>
<tr>
<th>k</th>
<th>(k, δ_1) vs. (k, δ_2) - hard</th>
<th>Result</th>
<th>Assumptions</th>
<th>Dimensions $(n \times N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^{1/3}$</td>
<td>$\delta_1 = n^{-1/4}, \delta_2 = n^{-1/6}/4$</td>
<td>Theorem [3]</td>
<td>$H_1/6$</td>
<td>$n \times n$</td>
</tr>
<tr>
<td>$n^{0.6}$</td>
<td>$\delta_1 = n^{-0.19}, \delta_2 = n^{-1/6}/4$</td>
<td>Theorem [3]</td>
<td>$H_1/6$</td>
<td>$n \times n$</td>
</tr>
<tr>
<td>$n^{(1-2\epsilon)(1-\epsilon)}$</td>
<td>$\delta_1 = n^{5\epsilon/4+\epsilon^2/2}, \delta_2 = n^{-\epsilon}/4$</td>
<td>Theorem [6]</td>
<td>H_ϵ</td>
<td>$n \times n$</td>
</tr>
<tr>
<td>$n^{1/2+\epsilon_0}$</td>
<td>$\delta_1 = n^{-5\epsilon/4+\epsilon^2/2}, \delta_2 = n^{-\epsilon}/4$</td>
<td>Theorem [7]</td>
<td>H_ϵ</td>
<td>$2n \times (n + n^{1+\epsilon_0})$</td>
</tr>
<tr>
<td>$n^{(1-2\epsilon)(1-\epsilon)}$</td>
<td>$\delta_1 = n^{-5\epsilon/4+\epsilon^2/2}, \delta_2 = n^{-\epsilon}/4$</td>
<td>Theorem [7]</td>
<td>H_ϵ'</td>
<td>$2n \times 100n$</td>
</tr>
</tbody>
</table>

Table 1: We say that a matrix Φ has the (k, δ)-RIP iff $(1-\delta) \leq \|\Phi x\|^2 \leq (1+\delta)$ for every k-sparse unit vector x. By (k, δ_1) vs. (k, δ_2)-hard we abbreviate the following: no polynomial time algorithm can distinguish matrices Φ that satisfy the (k, δ_1)-RIP from matrices that do not satisfy the (k, δ_2)-RIP. The absolute constant $\epsilon_0 > 0$ comes from [7, 8].

References

Appendix: Refuting H_ϵ for negative ϵ

Set $k = n^\alpha$ where $\alpha > 1/2$. In this section, we describe an algorithm which:

(i) always outputs “yes” if G contains a clique of size k.

(ii) Outputs “no clique” on most graphs G when G is drawn from the uniform distribution $G(n, 1/2)$.

The algorithm is as follows.

1. Let G be the input graph and A its signed adjacency matrix. Compute $\lambda_1(A)$, the largest eigenvalue of A.

2. Output “yes” if $\lambda_1(A) \geq k - 1$. Otherwise, output “no clique”.

If G contains a clique of size k, Lemma 1 shows that $\lambda_1(A) \geq k - 1$ since $\lambda_1(A) = \sup_{\|x\|_1=1} x^T Ax$ for any symmetric matrix. This algorithm therefore satisfies condition (i). On the other hand, for most G the largest eigenvalue of A is of order $2\sqrt{n}$ by Theorem 2 in [15]. Since $\alpha > 1/2$, it follows that most G satisfy the inequality $\lambda_1(A) < k - 1$ and condition (ii) is satisfied as well.