G. Basile, C. Bernardin, and S. Olla, Momentum Conserving Model with Anomalous Thermal Conductivity in Low Dimensional Systems, Physical Review Letters, vol.96, issue.20, pp.96-204303, 2006.
DOI : 10.1103/PhysRevLett.96.204303

G. Basile, C. Bernardin, and S. Olla, Thermal Conductivity for a Momentum Conservative Model, Communications in Mathematical Physics, vol.28, issue.1, pp.67-98, 2009.
DOI : 10.1007/s00220-008-0662-7

G. Basile, L. Delfini, S. Lepri, R. Livi, S. Olla et al., Anomalous transport and relaxation in classical one-dimensional models, The European Physical Journal Special Topics, vol.151, issue.1, p.151, 2007.
DOI : 10.1140/epjst/e2007-00364-7

URL : https://hal.archives-ouvertes.fr/hal-00701639

C. Bernardin, Fluctuations in the occupation time of a site in the asymmetric simple exclusion process, The Annals of Probability, vol.32, issue.1B, pp.855-879, 2004.
DOI : 10.1214/aop/1079021466

C. Bernardin, Superdiffusivity of asymmetric energy model in dimensions 1 and 2, Journal of Mathematical Physics, vol.49, issue.10, p.103301, 2008.
DOI : 10.1063/1.3000580

C. Bernardin and S. Olla, Transport Properties of a Chain of Anharmonic Oscillators with Random Flip of Velocities, Journal of Statistical Physics, vol.126, issue.3???4, p.145, 2011.
DOI : 10.1007/s10955-011-0385-6

URL : https://hal.archives-ouvertes.fr/ensl-00589672

C. Bernardin and G. Stoltz, Anomalous diffusion for a class of systems with two conserved quantities, Nonlinearity, vol.25, issue.4, 10991133.
DOI : 10.1088/0951-7715/25/4/1099

URL : https://hal.archives-ouvertes.fr/ensl-00909792

F. Bonetto, J. L. Lebowitz, and R. , FOURIER'S LAW: A CHALLENGE TO THEORISTS, Mathematical Physics, pp.128-150, 2000.
DOI : 10.1142/9781848160224_0008

C. Chang, C. Landim, and S. Olla, Equilibrium Fluctuations of asymmetric simple exclusion processes in dimension d ? 3, Probability Theory and Related Fields 119, pp.81-409, 2001.

A. Dhar, Heat transport in low-dimensional systems, Advances in Physics, vol.151, issue.5, p.457, 2008.
DOI : 10.1103/PhysRevLett.95.104302

R. L. Dobrushin and J. Fritz, Non-equilibrium dynamics of one-dimensional infinite particle systems, Commun. Math. Phys, pp.55-275, 1977.

J. Fritz, Stochastic dynamics of two-dimensional infinite-particle systems, Journal of Statistical Physics, vol.2, issue.4, pp.351-359, 1979.
DOI : 10.1007/BF01011777

J. Fritz, Some remarks on nonequilibrium dynamics of infinite particle systems, Journal of Statistical Physics, vol.11, issue.3-4, pp.3-4, 1984.
DOI : 10.1007/BF01018557

J. Fritz, Gradient Dynamics of Infinite Point Systems, The Annals of Probability, vol.15, issue.2, pp.478-514, 1987.
DOI : 10.1214/aop/1176992156

J. Fritz, Entropy pairs and compensated compactness for weakly asymmetric systems, Advanced Studies in Pure Mathematics, vol.39, pp.143-172, 2004.

J. Fritz, T. Funaki, and J. L. Lebowitz, Stationary states of random Hamiltonian systems, Probab. Theory Related Fields, pp.99-211, 1994.

P. Gonçalves, Central limit theorem for a tagged particle in asymmetric simple exclusion, Stochastic Process and their Applications, pp.474-502, 2008.
DOI : 10.1016/j.spa.2007.05.002

A. Iacobucci, F. Legoll, S. Olla, and G. Stoltz, Thermal Conductivity of the Toda Lattice with??Conservative Noise, Journal of Statistical Physics, vol.126, issue.3???4, pp.336-348, 2010.
DOI : 10.1007/s10955-010-9996-6

URL : https://hal.archives-ouvertes.fr/hal-00442063

M. Jara and C. Landim, Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.42, issue.5, pp.567-577, 2006.
DOI : 10.1016/j.anihpb.2005.04.007

URL : https://hal.archives-ouvertes.fr/hal-00359759

M. Kac and P. Van-moerbeke, On an explicitly soluble system of nonlinear differential equations related to certain toda lattices, Advances in Mathematics, vol.16, issue.2, pp.160-169, 1975.
DOI : 10.1016/0001-8708(75)90148-6

C. Kipnis and C. Landim, Scaling limits of interacting particle systems, 1999.
DOI : 10.1007/978-3-662-03752-2

C. Landim, C. , J. Quastel, M. Salmhofer, and H. T. Yau, Superdiffusivity of Asymmetric Exclusion Process in Dimensions One and Two, Communications in Mathematical Physics, vol.244, issue.3, pp.455-481, 2004.
DOI : 10.1007/s00220-003-1020-4

S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Physics Reports, vol.377, issue.1, pp.1-80, 2003.
DOI : 10.1016/S0370-1573(02)00558-6

M. E. Vares and H. Rost, Hydrodynamics of a One-Dimensional Nearest Neighbor Model, pp.41-329, 1985.

T. Sasamoto and H. Spohn, Superdiffusivity of the 1D Lattice Kardar-Parisi-Zhang Equation, Journal of Statistical Physics, vol.114, issue.5-6, pp.5-6, 2009.
DOI : 10.1007/s10955-009-9831-0

S. Sethuraman, Central Limit Theorems for Additive Functionals of the Simple Exclusion Process, Ann. Probab, vol.28, pp.277-302, 2000.

H. Spohn, Large Scale Dynamics of Interacting Particles, 1991.
DOI : 10.1007/978-3-642-84371-6

H. Spohn, KPZ Scaling Theory and the Semi-discrete Directed Polymer Model, 2012.

P. Tarrès, B. Tóth, and B. Valkó, Diffusivity bounds for 1D Brownian polymers, The Annals of Probability, vol.40, issue.2, pp.695-713, 2012.
DOI : 10.1214/10-AOP630

H. Van-beijeren, Exact Results for Anomalous Transport in One-Dimensional Hamiltonian Systems, Physical Review Letters, vol.108, issue.18, 2012.
DOI : 10.1103/PhysRevLett.108.180601

X. Zotos, Ballistic transport in classical and quantum integrable systems, Journal of Low Temperature Physics, vol.126, issue.3/4, p.1185, 2002.
DOI : 10.1023/A:1013827615835