On Ziv's rounding test - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

On Ziv's rounding test

Abstract

A very simple test, introduced by Ziv, allows one to determine if an approximation to the value f (x) of an elementary function at a given point x suffices to return the floating-point number nearest f(x). The same test may be used when implementing floating-point operations with input and output operands of different formats, using arithmetic operators tailored for manipulating operands of the same format. That test depends on a "magic constant" e. We show how to choose that constant e to make the test reliable and efficient. Various cases are considered, depending on the availability of an fma instruction, and on the range of f (x).
Fichier principal
Vignette du fichier
ZivRounding_PreprintVersion.pdf (194.49 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

ensl-00693317 , version 1 (02-05-2012)
ensl-00693317 , version 2 (08-07-2013)

Identifiers

  • HAL Id : ensl-00693317 , version 1

Cite

Florent de Dinechin, Christoph Lauter, Jean-Michel Muller, Serge Torres. On Ziv's rounding test. 2012. ⟨ensl-00693317v1⟩
625 View
773 Download

Share

Gmail Facebook Twitter LinkedIn More