On Zagier's conjecture for base changes of elliptic curves

François Brunault 1
1 Algèbre. Théorie des nombres
UMPA-ENSL - Unité de Mathématiques Pures et Appliquées
Abstract : Let E be an elliptic curve over Q, and let F be a finite abelian extension of Q. Using Beilinson's theorem on a suitable modular curve, we prove a weak version of Zagier's conjecture for L(E/F,2), where E/F is the base extension of E to F.
Document type :
Journal articles
Complete list of metadatas

Cited literature [3 references]  Display  Hide  Download

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00684479
Contributor : François Brunault <>
Submitted on : Monday, April 2, 2012 - 11:21:15 AM
Last modification on : Thursday, December 13, 2018 - 1:11:29 AM
Long-term archiving on : Wednesday, December 14, 2016 - 7:56:46 PM

Files

zagierLEF.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : ensl-00684479, version 1
  • ARXIV : 1204.0374

Collections

Citation

François Brunault. On Zagier's conjecture for base changes of elliptic curves. Documenta Mathematica, Universität Bielefeld, 2013, 18, pp.395-412. ⟨ensl-00684479v1⟩

Share

Metrics

Record views

102

Files downloads

181