Crack in the frictional interface as a solitary wave

Abstract : We introduce and investigate a multiscale model for the propagation of rupture fronts in friction. Taking advantage of the correlation length for the motion of individual contacts in elastic theory, we introduce collective contacts which can be characterized by a master equation approach. The problem of the dynamics of a chain of those effective contacts under stress is studied. We show that it can be reduced to an analog of the Frenkel-Kontorova model. In some limits this allows us to derive analytical solutions for kinks describing the rupture fronts. Numerical simulations are used to study more complex cases.
Type de document :
Article dans une revue
Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2012, 85, pp.026111-1-10. 〈10.1103/PhysRevE.85.026111〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00673957
Contributeur : Michel Peyrard <>
Soumis le : vendredi 24 février 2012 - 15:46:08
Dernière modification le : jeudi 18 octobre 2018 - 20:50:03
Document(s) archivé(s) le : vendredi 25 mai 2012 - 02:26:40

Fichier

PhysRevE.85.026111.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Oleg Braun, Michel Peyrard. Crack in the frictional interface as a solitary wave. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2012, 85, pp.026111-1-10. 〈10.1103/PhysRevE.85.026111〉. 〈ensl-00673957〉

Partager

Métriques

Consultations de la notice

130

Téléchargements de fichiers

85