
Table-based division by small integer constants

Florent de Dinechin, Laurent-Stéphane Didier

LIP, Université de Lyon (ENS-Lyon/CNRS/INRIA/UCBL)
46, allée d’Italie, 69364 Lyon Cedex 07
{Florent.de.Dinechin}@ens-lyon.fr

LIP6, Université Pierre etMarie Curie (UPMC, CNRS)
4 place Jussieu, 75252 Paris Cedex 05
{Laurent-Stephane.Didier}@upmc.fr

Abstract. Computing cores to be implemented on FPGAs may involve
divisions by small integer constants in fixed or floating point. This article
presents a family of architectures addressing this need. They are derived
from a simple recurrence whose body can be implemented very efficiently
as a look-up table that matches the hardware resources of the target
FPGA. For instance, division of a 32-bit integer by the constant 3 may
be implemented by a combinatorial circuit of 48 LUT6 on a Virtex-
5. Other options are studied, including iterative implementations, and
architectures based on embedded memory blocks. This technique also
computes the remainder. An efficient implementation of the correctly
rounded division of a floating-point constant by such a small integer is
also presented.

1 Introduction

When porting applications to FPGAs, arithmetic operations should be opti-
mized in an application-specific way whenever possible. This is the goal of the
FloPoCo project [1]. This article considers division by a small integer constant,
and demonstrates operators for it that are more efficient than approaches based
on standard division [2] or on multiplication by the inverse [3, 4].

Division by a small integer constant is an operation that occurs often enough
to justify investigating a specific operator for it. This work, for instance, was
motivated by the Jacobi stencil algorithm, whose core computes the average of
3 values: this involves a division by 3. Small integer constants are quite common
in such situations. Division by 5 also occurs in decimal / binary conversions. The
proposed approach could also be used to interleave memory banks in numbers
that are not powers of two: if we have d memory banks, an address A must be
translated to address A/d in bank A mod d.

Division by a constant in a hardware context has actually been studied quite
extensively [3, 5, 4], with good surveys in [6, 7]. There are two main families
of techniques: those based on additions and subtractions, and those based on
multiplication by the inverse. In this article we introduce a technique that is,
to our knowledge, new, although it is in essence a straightforward adaptation



of the paper-and-pencil division algorithm in the case of small divisors. The
reason why this technique is not mentioned in the literature is probably that
the core of its iteration itself computes a (smaller) division: it doesn’t reduce to
either additions, or multiplications. However, it is very well suited to FPGAs,
whose logic is based on look-up tables (LUTs): they may implement such complex
operations very efficiently, provided the size in bits of the input numbers matches
the number of inputs to the hardware LUTs.

Let us introduce this technique with the help of usual decimal arithmetic.
Suppose we want to divide an arbitrary number, say 776, by 3. Figure 1 describes
the paper-and-pencil algorithm in this case.

7 7 6

1 7

2 6

2

2 5 8

3

We first computes the Euclidean division of 7 by 3. This
gives the first digit of the quotient, here 2, and the re-
mainder is 1. We now have to divide 176 by 3. In the
second iteration, we divide 17 by 3: the second quotient
digit is 5, and the remainder is 2. The third iteration
divides 26 by 3: the third quotient digit is 8 and the
remainder is 2, and this is also the remainder of the di-
vision of 776 by 3.

Fig. 1. Division by 3 in decimal

The key observation is that in this example, the iteration body consists in the
Euclidean division of a 2-digit decimal number by 3. The first of these two digits
is a remainder from previous iteration: its value is 0, 1 or 2. We may therefore
implement this iteration with a look-up table that, for each value from 00 to
29, gives the quotient and the remainder of its division by 3. This small look-up
table will allow us to divide by 3 numbers of arbitrary size.

In Section 2 we adapt this radix-10 algorithm to a radix that is a power of two,
then chose this radix so that the look-up table matches well the fine structure
of the target FPGA. We study the case of floating-point inputs in Section 3: it
is possible to ensure correct rounding to the nearest for free. Section 4 provides
a few results and comparisons.

2 Euclidean division of an integer by a small constant

2.1 Notations

Let d be the constant divisor, and let α be a small integer. We will use the
representation of x in radix β = 2α, which may also be considered as breaking
down the binary decomposition of x into k chunks of α bits (see Figure 3):

x =

k−1
∑

i=0

xi.2
−αi where xi ∈ {0, ..., 2

α − 1}

2



In all this section, we assume that d is not a multiple of 2, as division by 2
resumes to a constant shift which is for free in FPGAs.

2.2 Algorithm

The following algorithm computes the quotient q and the remainder r0 of the high
radix euclidean division of x by the constant d. At each step of this algorithm,
the partial dividend yi, the partial remainder ri and one radix-2α digit of the
quotient are computed.

Algorithm 1 LUT-based computation of x/d

1: procedure ConstantDiv(x, d)
2: rk ← 0
3: for i = k − 1 down to 0 do

4: yi ← xi + 2αri+1 (this + is a concatenation)
5: (qi, ri)← (⌊yi/d⌋, yi mod d) (read from a table)
6: end for

7: return q =
∑

k

i=0
qi.2

−αi, r0
8: end procedure

Theorem 1. Algorithm 1 computes the Euclidean division of x by d. It outputs
the quotient q =

∑k

i=0
qi.2

−αi and the remainder r0 so that x = q × d+ r0. The
radix-2α representation of the quotient q is also a binary representation, each

iteration producing α bits of this quotient.

The proof of this theorem is in appendix. The line yi ← xi+2αri+1 is simply
the concatenation of a remainder and a radix-2α digit. Let us define γ as the
size in bits of the largest possible remainder: γ = ⌈log2(d− 1)⌉ – this is also the
size of d as d is not a power of two. Then, yi is of size α + γ bits. The second
line of the loop body, (qi, ri) ← (⌊yi/d⌋, yi mod d), computes a radix-2α digit
and a remainder: it may be implemented as a look-up table with α + γ bits of
input and α + γ bits of output (Fig. 2). Here, α is a parameter which may be
chosen to match the target FPGA architecture, as we show below. The algorithm
computes α bits of the quotient in one iteration: the larger α, the fewer iterations
are needed for a given input number size n.

The iteration may be implemented sequentially as depicted on Fig. 2, al-
though in all the following we will focus on the fully unrolled architecture de-
picted on Fig. 3, which enables high-throughput pipelined implementations.

It should be noted that, for a given d, the architecture grows linearly with
the input size n, where general division or multiplication architectures grow
quadratically.

3



LUT

clk

reset

α

α

xi

γγ

qi

ri+1 ri

Fig. 2. LUT-based squential division by a constant of a radix-2α digit extended by a
remainder.

LUT LUTLUTLUT

q0q1q2q3

2 2 2 2

4444

4 4 4x3 x2 x1 x0
r3 r2 r1

r0 = r

4

r4 = 0

Fig. 3. LUT-based division by 3 of a 16-bit number written in radix 24 (α = 4, γ = 2)

2.3 Memory structures in current FPGAs

Current FPGAs offer two main memory structures. The first is the 4- to 6- input
LUT used in the logic fabric. In the following we note LUTk a k-bit input, 1-bit
output LUT. In each FPGA family, there are restrictions on LUT utilization. Let
us review recent FPGAs with the motivation to build k-input, k-output LUTs.

The Altera Stratix IV arithmetic and logic module (ALM) can be used as
two arbitrary LUT4, but may also implement two LUT5 or two LUT6 under
the condition that they share some of their inputs. This is the case for our
architectures: a 6-input, 6-output LUT may be built as 3 ALMs.

In Xilinx Virtex-5 and Virtex-6, the logic slice includes 4 registers and 4
LUT6, each of which is fractionable as two LUT5 with independent outputs.
The soft spot here is therefore to build 5-input tables, unless we need to register
all the outputs, in which case 6-input tables should be preferred.

We may use, for instance, 6-input LUTs to implement division by 3 (γ = 2)
in radix 16 (α = 4). Implementing the core loop costs 6 LUTs (for a 6 bits in, 6
bits out table). The cost for a fully combinatorial (or unrolled) divider by 3 on n
bits is ⌈n/4⌉ × 6 LUT6s, for instance 36 LUT6s for 24 bits (single precision), or
78 LUTs for 53 bits (double precision). The best shift-and-add algorithm to date
needs respectively 118 and 317 full-adders (FA), each FA consuming one LUT
both in Xilinx and in Altera devices. The approach proposed here is four times
as efficient on division by 3. The larger d, the more inefficient this approach
becomes, as we need more bits to represent the ri.

For larger constants, a second option is the embedded memory block, from
9Kbits to 144 Kbits depending on the architecture. We will use them as 29 × 9

4



(9Kbits), 210× 10 (18Kbits or 36KBits) or 213× 13 (144 KBits). For division by
3, we may now use α = 7 to α = 11, but these larger memories also push the
relevance of this technique to larger constants.

These memories are not combinatorial, their inputs must be registered: they
are best suited to either sequential, or unrolled but pipelined implementation.
In the latter case, we may exploit the fact that all these embedded memories
are dual-ported: two iterations may be unrolled in one single memory block
as depicted on Figure 4. Again for division by 3, exploiting the M9K blocks
of a Stratix IV (using α = 7), a fully pipelined single-precision divider by 3
could be impemented in 2 M9K only (2*2*7=28 bits) and run in 4 cycles at the
maximal practical speed supported by these devices. We have no experimental
data to support these claims as we implemented only the logic-based dividers so
far. Indeed, results in Section 4 suggest that architectures based on embedded
RAMs would not be very competitive.

LUT LUTLUT LUT

x3 x2 x1 x0

q0q1q2q3 r

Fig. 4. A pipelined divider using two dual-ported embedded RAMs

3 Division of a floating-point number by a small integer

constant

A floating-point input X is given by its mantissa m and exponent e:

x = 2em with m ∈ [1, 2).

Similarly, the floating-point representation of our integer divisor d is:

d = 2sd′ with d′ ∈ [1, 2)

with s = γ − 1 if d is not a power of two.

As the mantissa has a fixed number of bits, its normalization and rounding
have to be performed for almost each floating-point operation [8].

5



3.1 Normalization

Let us write the division

x

d
=

m.2e

d
=

2sm

d
2e−s.

As 2
sm
d

= m
d′
∈ [0.5, 2), this is almost the normalized mantissa of the floating-

point representation of the result:

– if m ≥ d′, then m
d′
∈ [1, 2), the mantissa is correctly normalized and the

floating-point number to be returned is

y = ◦

(

2sm

d

)

2e−s

where ◦(z) denotes the IEEE-standard rounding to nearest even of a real z.
– if m < d′, then m

d′
∈ [0.5, 1), the mantissa has to be shifted left by one. Thus,

the floating-point number to be returned is

y = ◦

(

2s+1m

d

)

2e−s−1 .

It can be observed that the comparison between m and d′ is extremely cheap
for small integers because d′ has only γ non-zero bits. Thus, the comparison is
reduced to the comparison of these γ bits to the leading γ bits of m. As both
m and d′ have a leading one, we need a comparator on γ − 1 bits. In terms of
latency, this is a very small delay using fast-carry propagation.

3.2 Rounding

Let us now address the issue of correctly rounding the mantissa fraction. If we
ignore the remainder, the obtained result is the rounding towards zero of the
floating-point division.

To obtain correct rounding to the nearest, a first idea is to consider the
final remainder. If it is larger than d/2, we should round up, i.e. increment the
mantissa. The comparison to d/2 would cost nothing (actually the last table
would hold the result of this comparison instead of the remainder value), but
this would mean an addition of the full mantissa size, which would consume
some logic and have a latency comparable to the division itself, due to carry
propagation.

A better idea is to use the identity ◦(z) = ⌊z+ 1

2
⌋, which in our case becomes

◦

(

2s+ǫm

d

)

=

⌊

2s+ǫm

d
+

1

2

⌋

=

⌊

2s+ǫm+ d/2

d

⌋

with ǫ being 0 if m ≥ d′, and 1 otherwise. In the floating-point context we may
assume that d is odd, since powers of two are managed as exponents. Let us
write d = 2h+ 1. We obtain

◦

(

2s+ǫm

d

)

=

⌊

2s+ǫm+ h

d
+

1

2d

⌋

=

⌊

2s+ǫm+ h

d

⌋

6



so instead of adding a round bit to the result, we may add h to the dividend
before its input into the integer divisor. It seems we haven’t won much, but this
pre-addition is actually for free: the addend h = d−1

2
is an s-bit number, and we

have to add it to the mantissa of x that is shifted left by s + ǫ bits, so it is a
mere concatenation. Thus, we spare on the adder area and the carry propagation
latency.

01

m < d′?

+1 h

div by d

1

me

−s− 1

ov
ftz

Exn

e m

≪ s ≪ s + 1

ξ

ξ

Fig. 5. Floating-point division by a small constant.

To sum up, the management of a floating-point input adds to the area and
latency of the mantissa divider those of one (small) exponent adder, and of one
(large) mantissa multiplexer, as illustrated by Figure 5. On this figure, ξ is a
2-bit exception vector used to represent 0, ±∞ and NaN (Not a Number).

The implementation in FloPoCo manages divisions by small integer con-
stants and all their powers of two. The only additional issues are in the over-
flow/underflow logic (the Exn box on Figure 5), but they are too straightforward
to be detailed here.

4 Results and comparison

All the results in this section are obtained for architectures generated by FloPoCo
2.3.0, using ISE 12.1 for an FPGA with 6-input LUTs (Virtex-5). These are
synthesis results (before place and route).

Table 1 provides some results for Euclidean division (integer division with
remainder). We only report the architecture obtained with the optimal value of
α.

7



n = 32 bits n = 64 bits
constant LUT6 (predicted) latency LUT6 (predicted) latency

d = 3 (α = 4, γ = 2) 47 (6*8=48) 7.14ns 95 (6*16=96) 14.8ns

d = 5 (α = 3, γ = 3) 60 (6*11=66) 6.79ns 125 (6*22=132) 13.8ns
d = 7 (α = 3, γ = 3) 60 (6*11=66) 7.30ns 125 (6*22=132) 15.0ns
Table 1. Synthesis results for combinatorial Euclidean division on Virtex-5

4.1 Integer division

One would believe that for such simple architectures, we can predict the syn-
thesis results, at least with respect to LUT count. However, there are still some
surprises, which we are currently investigating.

The first surprise is that the synthesis tools perform further optimization
out of our designs: the LUT numbers are not always those predicted (they are
always better). For instance, for the 64-bit divider by 3, we predict simply 96
LUT6, but the tool reports 15 LUT3, 18 LUT4, 16 LUT5, and only 45 LUT6,
then merges that into 95 LUTs. One of the reason could be that some remainder
values never occur, which means that there are “don’t care” in the logic tables
that enable further optimizations. This would explain that the results are better
for division by 5 than for division by 7 although they have the same α and β:
there are more “don’t care” in the table for 5. Such improvements should be
studied systematically.

Also, we have mentioned earlier that the soft spot on Virtex-5 should be to
use 5-input LUTs, but the synthesis tools seem to think otherwise: architectures
designed for 5-input LUTs actually consume more than those designed for 6-
input LUTs. This could come frome a coding style issue, or a misunderstanding
of the intricate details of the Virtex-5 logic block.

Table 2 provides some synthesis results for pipelined dividers by 3. Each line is
a different frequency/area tradeoff (incidentally, thanks to FloPoCo’s pipelining
framework [1], this flexible pipeline took less than ten minutes to implement out
of the combinatorial design). Here we have to investigate why the LUT number
is larger than the predicted size.

n = 32 bits n = 64 bits

FF + LUT6 performance FF + LUT6 performance

33 Reg + 47 LUT 1 cycle @ 230 MHz 122 Reg + 112 LUT 2 cycles @ 217 MHz

58 Reg + 62 LUT 2 cycles @ 410 MHz 168 Reg + 198 LUT 5 cycles @ 410 MHz

68 Reg + 72 LUT 3 cycles @ 527 MHz 172 Reg + 188 LUT 7 cycles @ 527 MHz
Table 2. Synthesis results for pipelined Euclidean division by 3 on Virtex-5

8



4.2 Floating-point division

Table 3 shows results for floating-point division by 3. The behaviour of these op-
erators, including the fact that they return correctly rounded results, has been
verified by simulation against millions of test vectors generated by an indepen-
dent floating-point division by 3 [1].

single precision double precision

FF + LUT6 performance FF + LUT6 performance

35 Reg + 69 LUT 1 cycle @ 217 MHz 122 Reg + 166 LUT 2 cycles @ 217 MHz

105 Reg + 83 LUT 3 cycles @ 411 MHz 245 Reg + 250 LUT 6 cycles @ 410 MHz
Table 3. Synthesis results for pipelined floating-point division by 3 on Virtex-5

4.3 Comparison with previous work

A review of several algorithms for division by a constant is available in [6].
Many of these algorithms require the division to be exact (null remainder) and
return wrong results otherwise. We will not consider them. Among the remaining
techniques, the most relevant is method 6 in [6].

In this method, the divisor has the form 2t±1, which corresponds to most of
the small divisor we are targeting. The quotient and the remainder are obtained
trough ⌈n

γ
⌉ − 1 additions and substractions involving n-digit numbers.

Table 4 summarizes the comparison of the size of our implementation and an
estimation of the area of an FPGA implementation of this previous technique. It
can be observed that in this implementation, the larger d, the fewer required ad-
ditions, therefore the smaller the implementation. This means that this method
is increasingly relevant for larger constants 2t± 1, and this is a method to inves-
tigate in the future. Our proposition remains very significally smaller for small
divisors.

n = 16 bits n = 32 bits n = 64 bits

Constant Our [6] Our [6] Our [6]

3 23 80 47 320 95 1344
5 29 48 60 192 125 768
7 29 32 60 128 125 640

Table 4. Comparison of the size in LUT between the implementation of our divider
and [6] on Virtex 5

The presented floating-point division by a small constant also largely out-
performs the best technique used so far, which are based on multiplication by

9



the constant 1/d using shift-and-add algorithm [4]. For instance, using this tech-
nique, a double-precision multiplication by 1/3, in the conditions of Table 3,
consumes 282 reg + 470 LUT and runs in 5 cycles @ 307 MHz.

5 Conclusion

This article adds division by a small integer constant such as 3 or 10 to the
bestiary of arithmetic operators that C-to-hardware compilers can use when
they target FPGAs. This operation can be implemented very efficiently, be it
for integer inputs, or for floating-point inputs. It is now part of the open-source
FloPoCo generator.

Some synthesis results suggest that a careful study of the tables could lead
to further optimizations. In addition, we should try to reformulate our tables so
that the propagation of the ri uses the fast-carry lines available on all modern
FPGAs: this would reduce the latency dramatically.

Another issue worth of interest is the case of larger constants that are product
of smaller constants, for which a cascaded implementation could be studied.

Due to routing pressure, the number of inputs to the FPGA LUTs keeps
increasing as technology progresses. This should make this technique increasingly
relevant in the future.

References

1. F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with
FloPoCo,” IEEE Design & Test of Computers, Aug. 2011.

2. M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann, 2003.
3. E. Artzy, J. A. Hinds, and H. J. Saal, “A fast division technique for constant divi-

sors,” Communications of the ACM, vol. 19, pp. 98–101, Feb. 1976.
4. F. de Dinechin, “Multiplication by rational constants,” IEEE Transactions on Cir-

cuits and Systems, II, 2011, to appear.
5. S.-Y. R. Li, “Fast constant division routines,” IEEE Transactions on Computers,

vol. C-34, no. 9, pp. 866–869, Sep. 1985.
6. P. Srinivasan and F. Petry, “Constant-division algorithms,” IEE Proc. Computers

and Digital Techniques, vol. 141, no. 6, pp. 334–340, Nov. 1994.
7. R. W. Doran, “Special cases of division,” Journal of Universal Computer Science,

vol. 1, no. 3, pp. 67–82, 1995.
8. J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,

G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of Floating-Point Arith-

metic. Birkhauser Boston, 2009.

A Proof of correctness of Algorithm 1

The proof proceeds in two steps. First, we establish that x = d
∑k

i=0
qi.2

−αi+r0
in lemma 1 below. This shows tha we compute some kind of Euclidean division,
but it is not enough: we also need to show that the qi form a binary representation
of the result. For this it is enough to show that they are radix-2α digits, which
is established thanks to lemma 2 below.

10



Lemma 1.

x = d

k
∑

i=0

qi.2
−αi + r0

Proof. To show this lemma, we use the definition of the Euclidean division of yi
by d: yi = dqi + ri.

x =
∑k−1

i=0
xi.2

−αi

=
∑k−1

i=0
(xi + 2αri+1).2

−αi −
∑k−1

i=0
(2αri+1).2

−αi

=
∑k−1

i=0
(dqi + ri).2

−αi −
∑k

i=1
ri.2

−αi

= d
∑k−1

i=0
qi.2

−αi + r0 − rk.2
−αk

and rk = 0.

Lemma 2. ∀i 0 ≤ yi ≤ 2αd− 1

Proof. The digit xi verifies by definition 0 ≤ xi ≤ 2α − 1; ri+1 is either 0
(initialization) or the remainder of a division by d, therefore 0 ≤ ri ≤ d − 1.
Therefore yi = xi+2αri+1 verifies 0 ≤ yi ≤ 2α−1+2α(d−1), or 0 ≤ yi ≤ 2αd−1.

We deduce from the previous lemma and the definition of qi as quotient of
yi by d that

∀i 0 ≤ qi ≤ 2α − 1

which shows that the qi are indeed radix-2α digits. Thanks to Lemma 1, they
are the digits of the quotient.

11


