A one-dimensional coagulation-fragmentation process with a dynamical phase transition

Abstract : We introduce a reversible Markovian coagulation-fragmentation process on the set of partitions of $\{1,\ldots,L\}$ into disjoint intervals. Each interval can either split or merge with one of its two neighbors. The invariant measure can be seen as the Gibbs measure for a homogeneous pinning model \cite{cf:GBbook}. Depending on a parameter $\lambda$, the typical configuration can be either dominated by a single big interval (delocalized phase), or be composed of many intervals of order $1$ (localized phase), or the interval length can have a power law distribution (critical regime). In the three cases, the time required to approach equilibrium (in total variation) scales very differently with $L$. In the localized phase, when the initial condition is a single interval of size $L$, the equilibration mechanism is due to the propagation of two ''fragmentation fronts'' which start from the two boundaries and proceed by power-law jumps.
Type de document :
Article dans une revue
Stochastic Processes and their Applications, Elsevier, 2012, 122 (4), pp.35
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00608829
Contributeur : Cedric Bernardin <>
Soumis le : mardi 26 novembre 2013 - 19:30:52
Dernière modification le : mardi 16 janvier 2018 - 16:12:45
Document(s) archivé(s) le : jeudi 27 février 2014 - 11:01:34

Fichiers

rpd1307C_rev.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License

Identifiants

  • HAL Id : ensl-00608829, version 2
  • ARXIV : 1107.3227

Collections

Citation

Cedric Bernardin, Fabio Lucio Toninelli. A one-dimensional coagulation-fragmentation process with a dynamical phase transition. Stochastic Processes and their Applications, Elsevier, 2012, 122 (4), pp.35. 〈ensl-00608829v2〉

Partager

Métriques

Consultations de la notice

239

Téléchargements de fichiers

81