C. Bernardin, Hydrodynamics for a system of harmonic oscillators perturbed by a conservative noise, Stochastic Processes and their Applications, vol.117, issue.4, pp.487-513, 2007.
DOI : 10.1016/j.spa.2006.08.006

C. Bernardin, Thermal Conductivity for a Noisy Disordered Harmonic Chain, Journal of Statistical Physics, vol.12, issue.8, pp.417-433, 2008.
DOI : 10.1007/s10955-008-9620-1

URL : https://hal.archives-ouvertes.fr/ensl-00309070

C. Bernardin and S. Olla, Non-equilibrium macroscopic dynamics of chains of anharmonic oscillators, in preparation

F. Bonetto, J. L. Lebowitz, J. Lukkarinen, and S. Olla, Heat Conduction and Entropy Production in??Anharmonic Crystals with Self-Consistent Stochastic Reservoirs, Journal of Statistical Physics, vol.233, issue.4, pp.5-6, 2009.
DOI : 10.1007/s10955-008-9657-1

URL : https://hal.archives-ouvertes.fr/hal-00318755

G. Da-prato and J. Zabczyk, Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, pp.0-521, 1992.

A. Faggionato and F. Martinelli, Hydrodynamic limit of a disordered lattice gas, Probability Theory and Related Fields, vol.127, issue.4, pp.535-608, 2003.
DOI : 10.1007/s00440-003-0305-z

A. Faggionato, Bulk diffusion of 1D exclusion process with bond disorder. Markov Process, pp.519-542, 2007.

A. Faggionato, Random walks and exclusion processes among random conductances on random infinite clusters: homogenization and hydrodynamic limit, Electronic Journal of Probability, vol.13, issue.0, pp.2217-2247, 2008.
DOI : 10.1214/EJP.v13-591

URL : http://arxiv.org/abs/0704.3020

A. Faggionato, M. Jara, and C. Landim, Hydrodynamic behavior of 1D subdiffusive exclusion processes with random conductances, Probability Theory and Related Fields, vol.7, issue.2, pp.3-4, 2009.
DOI : 10.1007/s00440-008-0157-7

URL : https://hal.archives-ouvertes.fr/hal-00453672

J. Fritz, Hydrodynamics in a symmetric random medium, Communications in Mathematical Physics, vol.58, issue.1, pp.13-25, 1989.
DOI : 10.1007/BF01217766

J. Fritz, T. Funaki, and J. L. Lebowitz, Stationary states of random Hamiltonian systems, Probab. Theory Related Fields 99, pp.211-236, 1994.

P. Gonçalves and M. Jara, Scaling Limits for Gradient Systems in??Random??Environment, Journal of Statistical Physics, vol.33, issue.5, pp.691-716, 2008.
DOI : 10.1007/s10955-008-9509-z

E. Hsu, Characterization of Brownian motion on manifolds through integration by parts Stein's method and applications, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap, vol.5, 2005.

M. Jara and C. Landim, Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.44, issue.2, pp.341-361, 2008.
DOI : 10.1214/07-AIHP112

C. Kipnis and C. Landim, Scaling limits of interacting particle systems, 1999.
DOI : 10.1007/978-3-662-03752-2

K. Nagy, Symmetric random walk in random environment in one dimension, Periodica Mathematica Hungarica, vol.45, issue.1/2, pp.101-120, 2002.
DOI : 10.1023/A:1022354131403

S. Olla, Central limit Theorems for tagged particles and for diffusions in random environment. Milieux aléatoires, Panor. Synthèses, vol.12, pp.75-100, 2001.

S. Olla, S. R. Varadhan, and H. T. Yau, Hydrodynamical limit for a Hamiltonian system with weak noise, Communications in Mathematical Physics, vol.129, issue.3, pp.523-560, 1993.
DOI : 10.1007/BF02096727

M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, pp.0-12, 1980.

S. R. Varadhan, Nonlinear diffusion limit for a system with nearest neighbor interactions. II Asymptotic problems in probability theory: stochastic models and diffusions on fractals, Longman Sci. Tech. Pitman Res. Notes Math. Ser, pp.283-75128, 1990.