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HOMOGENIZATION RESULTS FOR A LINEAR DYNAMICS IN RANDOM

GLAUBER TYPE ENVIRONMENT

CÉDRIC BERNARDIN

Abstract. We consider an energy conserving linear dynamics that we perturb by a Glauber dynamics
with random site dependent intensity. We prove hydrodynamic limits for this non-reversible system in
random media. The diffusion coefficient turns out to depend on the random field only by its statistics.
The diffusion coefficient defined through the Green-Kubo formula is also studied and its convergence
to some homogenized diffusion coefficient is proved.

On considère un système d’équations differentielles linéaires couplées conservant une certaine énergie
et l’on perturbe ce système par une dynamique de type Glauber dont l’intensité varie aléatirement site
par site. Nous prouvons les limites hydrodyanmiques pour ce système non réversible en milieu aléatoire.
Le coefficient de diffusion dépend de l’aléa uniquement par sa loi. Nous étudions aussi le coefficient de
diffusion défini par la formule de Green-Kubo et montrons la convergence de celle-ci vers un coefficient
de diffusion homogénéisé.

1. Introduction

The derivation of hydrodynamic limits for interacting particle diffusive systems in random environment
has attracted a lot of interest in the last decade. One of the first paper to consider such question is
probably [10] where hydrodynamic behavior of a one-dimensional Ginzburg-Landau model in the presence
of random conductivities is studied. In [19], a lattice gas with random rates is considered and a complete
proof of hydrodynamic limits has been given in [6], [20]. Other systems have been investigated such as
exclusion processes and zero-range processes ([7, 8, 9, 12, 14, 16]). Interacting particle systems evolving
in random media are in general of non-gradient. Roughly speaking the gradient condition means that
the microscopic current associated to the conserved quantity is already of gradient form. Otherwise the
general non-gradient techniques ([15], [22]) consists in establishing a microscopic fluctuation-dissipation
equation which permits to replace the current by a gradient plus a fluctuation term. But, if the system
evolves in a randommedium, such a decomposition does not hold microscopically because the fluctuations
induced by the random medium are too large, and it is only in a mesoscopic scale that this fluctuation-
dissipation equation makes sense ([6], [20]).

In [12, 14], by extending some ideas of [16], a simpler approach is proposed. The idea is to introduce
a functional transformation of the empirical measure, which turns the system into a gradient-model,
in such a way that the transformed empirical measure is very close to the original empirical measure.
The advantage of the method is that it avoids the heavy machinery of the non-gradient tools but is
unfortunately restricted to specific models. Even if the techniques developed in [6], [20] seem to be more
robust than the precedent approach, it is not clear that in some situations, as in the situation considered
here, they can be applied without a substantial modification.
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2 CÉDRIC BERNARDIN

The interacting particle system we consider is the following. To a simple energy conserving linear
dynamics, flips with site dependent rates are superposed. Fix a sequence (γx)x of positive numbers and
denote by (η(t))t≥0 the Markov process with state space RZ and generator given by

(1) (Lf)(η) = (Af)(η) + (Sf)(η), f : RZ → R

where

(Af)(η) =
∑

x∈Z

(ηx+1 − ηx−1)∂ηxf

and

(Sf)(η) =
∑

x∈Z

γx [f(η
x)− f(η)]

with ηx the configuration obtained from η by flipping ηx: (η
x)z = ηz if z 6= x, (ηx)x = −ηx. This system

conserves the energy
∑

x ex, ex = η2x/2, and the product of centered Gaussian probability measures with
variance T > 0 are invariant for the dynamics.

Let (γx)x be a sequence satisfying (3) and (11). For example, the sequence (γx)x is a realization
of i.i.d. positive bounded below and above random variables with positive finite mean. We show (cf.
Theorem 1) that, starting from a local equilibrium state with temperature profile T0 = 1/β0, the system
evolves in a diffusive time scale following a temperature profile T , which is a solution of the heat equation

(2)

{

∂tT = γ̄−1∆T

T (0, ·) = β−1
0 (·)

where γ̄ is the average of the flip rates γx defined by (11).
One of the main interest of the model is its non-reversibility. To the best of our knowledge, it is

the first time that hydrodynamic limits are established for a non-reversible interacting particle system
evolving in a random medium. In fact, our first motivation was to work with a simplified version of the
energy conserving model of heat conduction with random masses ([2]) and we think that some of the
methods developed in this paper could be useful to study this model.

The derivation of the hydrodynamic limits presents three difficulties: the first is that the system is
non-gradient. The second one is that it is non-reversible and that the symmetric part S of the generator
is very degenerate and gives only few pieces of information on the ergodic properties of the system. The
third difficulty is more technical. The state space is non-compact and the control of high energies is
non-trivial. The first problem is solved by using the ”corrected empirical measure” method introduced
in [12], [14] and some special features of the model. For the second one, we apply in this context some
deep ideas introduced in [11] (see also [18]). The third problem is solved by observing that the set of
convex combinations of Gaussian measures is preserved by the dynamics. The control of large energies
is then reduced to the control of large covariances.

In the perspective to study heat conduction models with random masses our main interest lies in the
properties of the diffusion coefficient (given here by 1/γ̄).

The diffusion coefficient is also often expressed by the Green-Kubo formula, which is nothing but the
space-time variance of the current at equilibrium. The Green-Kubo expression is only formal in the
sense that a double limit (in space and time) has to be taken. For reversible systems, the existence is not
difficult to establish. But for non-reversible systems even the convergence of the formula is challenging
([17]). Let us remark that a priori the Green-Kubo formula depends on the particular realization of the
disorder.

If we let aside the existence problem, widely accepted heuristic arguments predict the equality between
the diffusion coefficient defined through hydrodynamics and the diffusion coefficient defined by the Green-
Kubo formula.

The second main theorem of our paper shows that the homogenization effect also occurs for the Green-
Kubo formula (see Theorem 2): for almost every realization of the disorder, the Green-Kubo formula
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exists and is independent of the disorder. Unfortunately we did not succeed to prove that the value of
the Green-Kubo formula is 1/γ̄.

The paper is organized as follows. In section 2 we define the system. The proof of hydrodynamic
limits is given in section 3. The two main technical steps which are the derivation of a one block lemma
and the control of high energies are postponed to sections 4 and 5. The study of the Green-Kubo formula
is the content of the last section.

2. The model

For any α > 0, let Ωα be the set composed of configurations η = (ηx)x∈Z such that ‖η‖α < +∞ where

‖η‖2α =
∑

x∈Z

e−α|x|η2x

Let Ω = ∩α>0Ωα be equipped with its natural product topology and its Borel σ-field. The set of Borel
probability measures on Ω will be denoted by P(Ω). We also introduce the set Ck0 (Ω), k ≥ 1, composed
of bounded local functions on Ω which are differentiable up to order k with bounded partial derivatives.

The time evolution of the process (η(t))t≥0 can be defined as follows. Let {Nx ; x ∈ Z} be a sequence
of independent Poisson processes. We shall denote by γx > 0 the intensity of Nx. We assume there exist
positive constants γ− and γ+ such that

(3) ∀x ∈ Z, γ− ≤ γx ≤ γ+

For every realization of the random element N = (Nx)x∈Z, consider the set of integral equations:

(4) ηx(t) = (−1)Nx(t)

(

ηx(0)−
∫ t

0

(−1)Nx(s)(ηx+1(s)− ηx−1(s))ds

)

For each initial condition σ ∈ Ω the equations (4) can be solved by a classical iterative scheme. The
solution η(·) := η(·, σ) defines a strong Markov process with càdlàg trajectories. Moreover each path
η(·, σ) is a continuous and differentiable function of the initial data σ ([5], [10], [11]). We define the
corresponding semigroup (Pt)t≥0 by (Ptf)(σ) = EN (f(η(t, σ))) where EN denotes the expectation with
respect to the Poisson clocks and f is a bounded measurable function on Ω.

Since the state space is not compact Hille-Yosida theory can not be applied directly. Nevertheless,
the differentiability with respect to initial conditions and stochastic calculus show that the Chapman-
Kolmogorov equations

(Ptf)(σ) = f(σ) +

∫ t

0

(LPsf)(σ)ds, f ∈ C1
0 (Ω)

and

(Ptf)(σ) = f(σ) +

∫ t

0

(PsLf)(σ)ds, f ∈ C1
0 (Ω)

are valid with L the formal generator defined by (1).
The two Chapman-Kolmogorov equations permit to deduce that the probability measures ν ∈ P(Ω),

which are invariant for (η(t))t≥0, are characterized by the stationary Kolmogorov equation
∫

(Lf)(η)dν(η) = 0 for all f ∈ C1
0 (Ω)

In particular, every Gibbs measure µβ with inverse temperature β > 0 is a stationary probability
measure. Observe that µβ is nothing but the product of centered Gaussian probability measures on R

with variance β−1. It is easy to show that (Pt)t≥0 defines a strongly continuous contraction semigroup
in L2(µβ) whose generator is a closed extension of L.
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In fact, the infinite volume dynamics is well approximated by the finite dimensional dynamics ηn(t) =
{ηnx (t) ; x ∈ Z}, n ≥ 2. It is defined by the generator Ln = An + Sn where, for any function f ∈ C1

0 (Ω),

Anf =

n−1
∑

x=−n+1

(ηx+1 − ηx−1)∂ηxf − ηn−1∂ηnf + η−(n−1)∂η−nf

and

(Snf)(η) =
n
∑

x=−n

γx [f(η
x)− f(η)]

Observe that ηnx (t), |x| > n, do not change in time. Moreover, the total energy
∑

x∈Z
ex is conserved

by the finite dimensional dynamics. We denote by (Pnt )t≥0 the corresponding semigroup. Let us fix a
positive time T > 0, a parameter α > 0 and a function φ ∈ C1

0 (Ω). One can prove there exist constants
Cn := C(n, α, T, φ), n ≥ 2, such that

(5) sup
t∈[0,T ]

|(Pnt φ)(η) − (Ptφ)(η)| ≤ Cn‖η‖2α

and
lim
n→∞

Cn = 0

This approximation is only used in the proof of Lemma 9. The proof of (5) in a similar context can
be found in [3], chapter 2 (see also [11]).

3. Hydrodynamic limits

For any function u : Z → R, the discrete gradient ∇u of u is the function defined on Z by

∀x ∈ Z, (∇u)(x) = u(x+ 1)− u(x)

The hydrodynamic limits are established in a diffusive scale. This means that we perform the time
acceleration t → N2t and the space dilatation x → x/N . In the rest of the paper, apart from section
6, the process (η(t))t≥0 is the Markov process defined above with this time change. The corresponding
generator is N2L.

The local conservation of energy ex = η2x/2 is expressed by the following microscopic continuity
equation

ex(t)− ex(0) = −N2

∫ t

0

(∇jx−1,x)(η(s))ds

where the current jx,x+1 := jx,x+1(η) is defined by

jx,x+1(η) = −ηxηx+1

We denote by C0(R) the space of continuous functions on R with compact support and by Ck0 (R),
k ≥ 1, the space of compactly supported functions which are differentiable up to order k. Let M (resp.
M+) be the space of Radon measures (resp. positive Radon measures) on R endowed with the weak
topology. If G ∈ C2

0 (R) and m ∈ M then 〈m,G〉 denotes the integral of G with respect to m.
The empirical positive Radon measure πNt ∈ M+, associated to the process e(t) := {ex(t) ; x ∈ Z}, is

defined by

πNt (du) =
1

N

∑

x∈Z

ex(t) δx/N (du)

Fix a strictly positive inverse temperature profile β0 : R → (0,+∞) and a positive constant β̄ such
that

(6) lim
N→∞

1

N2

∑

x∈Z

[

1

β0(x/N)
− 1

β̄

]2

= 0
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Denote by µN = µNβ0(·)
∈ P(Ω) the product probability measure defined by

µNβ0(·)
(dη) =

∏

x∈Z

gβ0(x/N)(ηx)dηx

where gβ(u)du is the centered Gaussian probability measure on R with variance β−1.
We assume that the initial state satisfies

(7) H(µN |µβ̄) ≤ C0N

for a positive constant C0 independent of N . Here H(·|·) is the relative entropy, which is defined, for
two probability measures P,Q ∈ P(Ω), by

(8) H(P |Q) = sup
φ

{∫

φdP − log

(∫

eφdQ

)}

with the supremum carried over all bounded measurable functions φ on Ω. Let us recall the entropy
inequality, which states that for every positive constant a > 0 and every bounded measurable function
φ,

(9)

∫

φdP ≤ a−1

{

log

(∫

eaφdQ

)

+H(P |Q)

}

Fix a positive time T > 0. The law of the process on the path space D([0, T ],Ω), induced by the
Markov process (η(t))t≥0 starting from µN , is denoted by PµN . For any time s ≥ 0, the probability

measure on Ω given by the law of η(s) is denoted by µNs .
Since entropy is decreasing in time, (7) implies that

(10) ∀s ≥ 0, H(µNs |µβ̄) ≤ C0N

The conditions (6) and (7) are introduced to get some moment bounds (see section 5). They are
satisfied by any continuous function β−1

0 going to β̄−1 at infinity sufficiently fast.

Theorem 1. Let (γx)x∈Z be a sequence of positive numbers satisfying (3) and such that

(11) lim
K→∞

1

K

K
∑

x=1

γx = γ̄, lim
K→∞

1

K

0
∑

x=−K

γx = γ̄

for some γ̄ ∈ (0,∞). Assume that the initial state µN = µNβ0(·)
satisfies (7) and β0 satisfies (6).

Then, under PµN , πNt converges in probability to Tt/2 where Tt is the unique weak solution of (2):
For every G ∈ C0(R), every t > 0, and every δ > 0,

lim
N→∞

PµN

[∣

∣

∣

∣

∣

〈πNt , G〉 −
1

2
〈Tt, G〉

∣

∣

∣

∣

∣

≥ δ

]

= 0

We follow the method of the “corrected empirical measure” introduced in [12, 14]. Since the state
space is not compact, technical adaptations are necessary. In particular, it is not given for free that
the corrected empirical measure and the empirical measure have the same limit points for the weak
convergence. It would be trivial if the state space was compact. Moreover, a replacement lemma,
reduced to a one-block estimate, has to be established (see section 4).

For any G ∈ C0(R), we define TγG : Z → R by

(TγG)(x) =
∑

j<x

(γj + γj+1)

{

G

(

j + 1

N

)

−G

(

j

N

)}

Observe that

N
1

γx + γx+1
[(TγG)(x + 1)− (TγG)(x)] = (∇NG)(x/N)
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where ∇N stands for the discrete derivative: (∇NG)(x/N) = N{G((x+ 1)/N)−G(x/N)}.
Since TγG may not belong to ℓ1(Z), we modify TγG in order to integrate it with respect to the

empirical measure. Fix 0 < θ < 1/2 and consider a C2 increasing nonnegative function g̃ defined on R

such that g̃(q) = 0 for q ≤ 0, g̃(q) = 1 for q ≥ 1 and g̃(q) = q for q ∈ [θ, 1− θ].
Fix an arbitrary integer ℓ > 0 and let g = gθ,ℓ : R → R be given by

g(q) = g̃(q/ℓ)

We define

(Tγ,ℓG)(x) = (TγG)(x) −
Tγ,G

Tγ,g
(Tγg)(x)

where

Tγ,h =
∑

x∈Z

(γx + γx+1) {h((x+ 1)/N)− h(x/N)}

In the rest of the paper we make the choice ℓ := ℓ(N) = N1/4.

Lemma 1. For each function G ∈ C2
0 (R), and each environment γ satisfying (3) and (11),

lim
N→∞

N1/4 sup
x∈Z

|Tγ,ℓG(x) − γ̄G(x/N)| = 0

and

lim
N→∞

N1/4Tγ,G = 0

Proof. This is a slight modification of Lemma 4.1 in [14]. �

We shall denote by XN
t ∈ M the corrected empirical measure defined by

XN
t (G) = XN,γ

t (G) =
1

N

∑

x∈Z

Tγ,ℓG(x) et(x)

The system is non-gradient but we have

jx,x+1 = − 1

γx + γx+1
∇
[

ex +
1

2
ηx−1ηx+1

]

+ L
(

1

2(γx + γx+1)
ηxηx+1

)

This implies that

N2L
[

XN(G)
]

=
1

N

∑

x∈Z

[

(∆NG)(x/N) − Tγ,G

Tγ,g
(∆Ng)(x/N)

](

ex +
1

2
ηx−1ηx+1

)

+
1

2
L
(

∑

x∈Z

[

(∇NG)(x/N) − Tγ,G

Tγ,g
(∇Ng)(x/N)

]

ηxηx+1

)

where ∆N stands for the discrete Laplacian:

(∆NG)(x/N) = N2 {G((x+ 1)/N) +G((x− 1)/N)− 2G(x/N)}
Therefore, we have

(12) XN
t (G)−XN

0 (G) = UNt (G) + V Nt (G) +MN
t (G)

with MN (G) a martingale and UN (G), V N (G), which are given by

UNt (G) =

∫ t

0

ds
1

N

∑

x∈Z

BGN (x/N)

(

ex(s) +
1

2
ηx−1(s)ηx+1(s)

)
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where

BGN (x/N) =

[

(∆NG)(x/N) − Tγ,G

Tγ,g
(∆Ng)(x/N)

]

and

V Nt (G) =
1

N2

∑

x

[

(∇NG)(x/N) − Tγ,G

Tγ,g
(∇Ng)(x/N)

]

(ηx(t)ηx+1(t)− ηx(0)ηx+1(0))

Lemma 2. The sequence
{(

XN
· ,
∫ ·

0
πNs ds

)

∈ D([0, T ],M)×D([0, T ],M+) ; N ≥ 1
}

is tight.

Proof. It is well known that the sequence
{(

XN
· ,

∫ ·

0

πNs ds

)

∈ D([0, T ],M)×D([0, T ],M+) ; N ≥ 1

}

is tight if and only if the sequence
{(

XN
· (G),

∫ ·

0

πNs (H)ds

)

∈ D([0, T ],R)×D([0, T ],R) ; N ≥ 1

}

is tight for every G,H ∈ C2
0 (R).

By Aldous criterion for tightness in D([0, T ],R)2, it is sufficient to show that

(1) For every t ∈ [0, T ] and every ε > 0, there exists a finite constant A > 0 such that

sup
N

PµN

(∣

∣Y Nt (G)
∣

∣ ≥ A
)

≤ ε

(2) For every δ > 0,

lim
ε→0

lim sup
N→∞

sup
τ∈Θ,θ≤ε

PµN

[∣

∣Y Nτ+θ(G)− Y Nτ (G)
∣

∣ ≥ δ
]

= 0

where Θ is the set of all stopping times bounded by T .

for Y N· (G) = XN
· (G) and Y N· (G) =

∫ ·

0
πNs (G)ds.

Since G has compact support, there exists a constant K > 0 (independent of t and N) such that

EµN

[∣

∣γ̄〈πNt , G〉 −XN
t (G)

∣

∣

]

(13)

≤
(

N1/4 sup
x∈Z

|γ̄G(x./N) − (Tγ,ℓG)(x)|
)

EµN





1

N5/4

∑

|x|≤KN5/4

ex(t)





and consequently

EµN

[

∫ T

0

dt
∣

∣γ̄〈πNt , G〉 −XN
t (G)

∣

∣

]

(14)

≤
(

N1/4 sup
x∈Z

|γ̄G(x./N) − (Tγ,ℓG)(x)|
)
∫ T

0

dtEµN





1

N5/4

∑

|x|≤KN5/4

ex(t)





By Lemma 1 and Lemma 10, the right-hand side of (13) (resp. of (14)) vanishes as N → ∞. Hence, it
is sufficient to show Aldous criterion for Y N· (G) = XN

· (G) and for Y N· (G) =
∫ ·

0 X
N
s (G)ds.

From the definition of the Skorohod topology, it is easy to show that the application Φ fromD([0, T ],R)
onto itself defined by

Φ : x := {x(t) ; 0 ≤ t ≤ T } → Φ(x) :=

{∫ t

0

x(s)ds ; 0 ≤ t ≤ T

}

is continuous. Thus, if (XN
· (G))N is tight, then (

∫ ·

0
XN
s (G))N is tight.

Therefore it just remains to show Aldous criterion for Y N· (G) = XN
· (G).
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Proof of (1) for XN
· (G):

PµN

[

|XN
t (G)| ≥ A

]

≤ 1

A
EµN

(

1

N

∑

x∈Z

|(Tγ,ℓG)(x)| ex(t)
)

We write (Tγ,ℓG)(x) = ((Tγ,ℓG)(x) − γ̄G(x/N)) + γ̄G(x/N) and we get that

PµN

[

|XN
t (G)| ≥ A

]

≤ 1

A
EµN





1

N

∑

|x|≤KN5/4

|(Tγ,ℓG)(x) − γ̄G(x/N)| ex(t)





+
γ̄

A
EµN





1

N

∑

|x|≤KN

|G(x/N)| ex(t)





The first term on the right-hand side of the previous inequality can be bounded above by the right-hand
side of (13), which vanishes. By Lemma 10, the second term is bounded above by C/A with a constant
C independent of N . Therefore, the first condition is satisfied.

Proof of (2) for XN
· (G):

Recall the decomposition (12). In order to estimate the term

EµN

[∣

∣UNτ+ε(G) − Uτ (G)
∣

∣

]

we observe that |BGN (x/N)| is bounded above by

C

[

1|x|≤KN +
|Tγ,G|
|Tγ,g|

(

ℓ−2 + (Nℓ−3)
)

1{x/(Nℓ)∈[1−2θ,1+2θ]∪[−2θ,2θ]}

]

where C,K are constants depending on θ and G but not on N . By Schwarz inequality, we are reduced
to estimate

EµN





∫ T+ε

0

ds
1

N

∑

|x|≤2KN

ex(s)





and

|Tγ,G|
|Tγ,g|

(

1

ℓ2
+

1

Nℓ3

)

EµN





∫ T+ε

0

ds
1

N

∑

|x|≤(1+3θ)Nℓ

ex(s)





By Lemma 10, the first term is of order one. It is not difficult to show that lim infN→∞ Tγ,g > 0, and
Lemma 1 gives ℓTγ,G → 0. Thus, by Lemma 10, the second one vanishes as N goes to infinity.

The two last terms of (12) are given by

∫ t

0
dsL

(

∑

x

[

(∇NG)(x/N) − Tγ,G

Tγ,g
(∇Ng)(x/N)

]

ηxηx+1

)

(s)

= V Nt (G) +MN
t (G)

By using Lemma 1 and Lemma 10, similar estimates as before show that

lim
N→∞

sup
t∈[0,T+ε]

EµN

[∣

∣V Nt (G)
∣

∣

]

= 0
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By computing the quadratic variation of the martingale MN (G), one obtains that (we recall that
supx γx ≤ γ+)

EµN

[

(

MN
τ+ε(G)−MN

τ (G)
)2
]

≤ 2γ+

N2
EµN





∫ τ+ε

τ
ds
∑

x

{

(∇NG)(x/N) − Tγ,G

Tγ,g
(∇Ng)(x/N)

}2

es(x)es(x+ 1)





Observe that
{

(∇NG)(x/N)− Tγ,G

Tγ,g
(∇Ng)(x/N)

}2

≤ C1|x|≤KN + ℓ−2(Tγ,G/Tγ,g)
21|x|≤KN5/4

Since lim infN→∞ Tγ,g > 0 and ℓTγ,G → 0, from Lemma 10, we get

sup
s≥0

EµN







1

N2

∑

|x|≤KN

e2x(s)







and

sup
s≥0

EµN







1

N3

∑

|x|≤KN5/4

e2x(s)







go to 0 with N (and are in particular bounded above by a constant independent of N). �

Lemma 3. Let (α, β) ∈ M×M+ be a limit point of the sequence
{(

XN
· ,

∫ ·

0

πNs ds

)

∈ D([0, T ],M)×D([0, T ],M+) ; N ≥ 1

}

.

For every G ∈ C2
0 (R) and every t ∈ [0, T ], we have

αt(G)− α0(G) = γ̄−1

∫ t

0

αs(∆G)ds, βt = γ̄−1

∫ t

0

αsds

Proof. In the proof of the tightness of XN
· we have seen that the term

EµN

[

∫ t

0

ds L
(

∑

x

[

(∇NG)(x/N) − Tγ,G

Tγ,g
(∇Ng)(x/N)

]

ηxηx+1

)

(s)

]

and the term

EµN

[

∫ t

0

ds
1

N

∑

x∈Z

Tγ,G

Tγ,g
(∆Ng)(x/N)

(

ex(s) +
1

2
ηx−1(s)ηx+1(s)

)]

vanish as N → ∞. By using Lemma 5, it implies that

αt(G)− α0(G) = βt(∆G)

Moreover, by (14), we have

βt = γ̄−1

∫ t

0

αsds

�

Lemma 4. Any limit point β of the sequence {
∫ ·

0
πNs ds ∈ D([0, T ],M+) ; N ≥ 1} is such that, for any

t ∈ [0, T ], βt is absolutely continuous with respect to the Lebesgue measure on R.
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Proof. Fix a positive time t and let RµN be the probability measure on M+ given by

RµN (A) = PµN

{

1

t

∫ t

0

πNs ds ∈ A

}

for every Borel subset A of M+. Let J : M+ → [0,+∞) be a continuous and bounded function. By the
entropy inequality (9) and by using (10) we have

(15)

∫

J(π)dRµN (π) ≤ C0 +
1

N
log

(∫

eNJ(π)dRµβ̄
(π)

)

By the Laplace-Varadhan theorem, the second term on the right hand side converges as N goes to infinity
to

sup
π∈M+

[J(π)− I0(π)]

where I0 is the large deviations rate function for the random measure π under Rµβ̄
. It is a simple exercise

to compute the rate function I0. We have

I0(π) = sup
f∈C0(R)

{∫

f(u)π(du)−
∫

logMβ̄(f(u))du

}

where Mβ̄(α) is the Laplace transform of η20/2 under µβ̄:

Mβ̄(α) = µβ̄(e
αη20/2) =

√

β̄/(β̄ − α)

if α < β̄, and +∞ otherwise.
The function I0 also takes the simple form

I0(π) =

{

∫

R
h(π(u))du if π(du) = π(u)du,

+∞ otherwise

where the Legendre transform h of Mβ̄ is given by h(α) = β̄α − 1/2 − 1/2 log(2αβ̄) ≥ 0 if α > 0, and
+∞ otherwise.

Let (fk)k≥1 be a dense sequence in C0(R) with f1 being the function identically equal to 0. Then I0
is the increasing limit of Jk ≥ 0 defined by

Jk(π) = sup
1≤j≤k

{∫

fj(u)π(du)−
∫

logMβ̄(fj(u))du

}

∧ k

By using (15) we have

lim sup
N→∞

∫

Jk(π)dRµN (π) ≤ C0

for each k. Since Jk is a lower semi-continuous function, any limit point R∗ of RµN is such that
∫

Jk(π)dR
∗(π) ≤ C0

By the monotone convergence theorem, we have
∫

I0(π)dR
∗(π) ≤ C0 < +∞. Since I0(π) is equal to +∞

if π is not absolutely continuous with respect to the Lebesgue measure, it implies that

R∗ {π;π(du) = π(u)du} = 1

and the lemma is proved. �
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We conclude as follows. Let (α, β) be a limit point of (XN
· (G),

∫ ·

0 π
N
s (G))N≥1. From the equation

α·(G)− α0(G) = γ̄−1

∫ ·

0

αs(∆G)ds

we see that α is time continuous. Moreover, if A is a subset of R with zero Lebesgue measure, then
βt(A) = 0 for any t ∈ [0, T ]. This implies that αt(A) = 0 for any t ∈ [0, T ], i.e. that αt is absolutely
continuous with respect to the Lebesgue measure on R.

By uniqueness of weak solution to the heat equation, we have that 2α is the Dirac mass concentrated
on the (smooth) solution of the heat equation (t, u) ∈ [0, T ] × R → T̃t(u) starting from γ̄β−1

0 : ∂tT̃t =

γ̄−1∆T̃t, T̃0 = γ̄β0
−1.

Hence we conclude that {XN
· ∈ D([0, T ],M) ; N ≥ 1} converges in distribution to (T̃·(u)/2) du. Since

the limit is continuous in time we have that {XN
t ; N ≥ 1} converges in distribution to the deterministic

limit (T̃t(u)/2) du. Since convergence in distribution to a deterministic variable implies convergence in
probability, this implies that

lim
N→∞

PµN

[∣

∣

∣

∣

∣

XN
t (G)− 1

2

∫

T̃t(u)G(u)du

∣

∣

∣

∣

∣

≥ ε

]

= 0

We use again (13) and the fact that γ̄−1T̃t = Tt to get

lim
N→∞

PµN

[∣

∣

∣

∣

∣

πNt (G)− 1

2

∫

Tt(u)G(u)du

∣

∣

∣

∣

∣

≥ ε

]

= 0

and the theorem is proved.

4. One-block estimate

The aim of this section is to prove the following so-called one block estimate ([15]).

Lemma 5 (One block estimate). For any G ∈ C2
0 (R), any t ≥ 0, and any δ > 0,

lim
N→∞

PµN

[∣

∣

∣

∣

∣

1

N

∑

x∈Z

(∆NG)(x/N)

∫ t

0

ds ηx−1(s)ηx+1(s)

∣

∣

∣

∣

∣

≥ δ

]

= 0

Since G ∈ C2
0 (R), we can replace (∆NG)(x/N) by

1

2k + 1

∑

|y−x|≤k

(∆NG)(y/N)

as soon as k ≪ N and we are left to prove that

lim
k→∞

lim
N→∞

EµN





1

2N + 1

∑

|x|≤N

∫ t

0

ds

∣

∣

∣

∣

∣

∣

1

2k + 1

∑

|x−y|≤k

ηy(s)ηy+1(s)

∣

∣

∣

∣

∣

∣



 = 0

Given two probability measures P,Q on Ω and Λ a finite subset of Z, HΛ(P |Q) denotes the relative
entropy of the projection of P on RΛ with respect to the projection of Q on RΛ. We shall denote the
projection of P on RΛ by P |Λ. If Λ = Λk = {−k, . . . , k}, we use the short notation Pk.

We define the space-time average of (µNs )0≤s≤t by

νN =
1

(2N + 1)t

∑

|x|≤N

∫ t

0

τxµ
N
s ds

Here τx denotes the shift by x: for any η ∈ Ω, the configuration τxη is defined by (τxη)z = ηx+z; for
any function g on Ω, τxg is the function on Ω given by (τxg)(η) = g(τxη); for any p ∈ P(Ω), τxp is the
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push-forward of p by τx. The probability measure p is said to be translation invariant if τxp = p for any
x ∈ Z.

We have to show

(16) lim
k→∞

lim
N→∞

∫

R
Λk

dνNk





∣

∣

∣

∣

∣

∣

1

2k + 1

∑

|y|≤k

ηyηy+1

∣

∣

∣

∣

∣

∣



 = 0

Lemma 6. For each fixed k, the sequence of probability measure (νNk )N≥k on RΛk is tight.

Proof. It is enough to prove that there exists a constant Ck <∞ independent of N such that

(17)

∫

∑

i∈Λk

ei dν
N
k ≤ Ck

We begin to prove that

(18) HΛk
(νN |µβ̄) = H

(

νNk

∣

∣

∣µβ̄ |Λk

)

≤ C0|Λk|

Fix a bounded measurable function φ depending only on the sites in Λ := Λk = {−k, . . . , k}. Assume
for simplicity that 2N +1 = (2k+1)(2p+1) for some p ≥ 1. Then we can index the elements of the set
{−N, . . . , N} in the following way

{−N, . . . , N} = {xj + y; j = −p, . . . , p ; y ∈ Λk}
where xj = 2kj + 1. Since φ depends only on the sites in Λ, it is clear that under µβ̄ , for each y ∈ Λ,

the random variables
(

τxj+yφ
)

j=−p,...,p
are i.i.d..

Let µ̄Nt = t−1
∫ t

0
µNs ds. By convexity of the entropy and (10), we have H(µ̄Nt |µβ̄) ≤ C0N .

We write

∫

φdνNk =

∫





1

2N + 1

∑

|x|≤N

τxφ



 dµ̄Nt

≤ |Λ|
2N + 1

H(µ̄Nt |µβ̄) +
|Λ|

2N + 1
log

(∫

dµβ̄ e
|Λ|−1

∑
|x|≤N τxφ

)

≤ C0|Λ|+
|Λ|

2N + 1
log

(∫

dµβ̄ e
|Λ|−1 ∑

y∈Λ
(
∑

|j|≤p τy+xj
φ)

)

≤ C0|Λ|+
|Λ|

2N + 1
|Λ|−1

∑

y∈Λ

log

(∫

dµβ̄ e
∑

|j|≤p τy+xj
φ

)

where we used the entropy inequality (9) and the convexity of the application f → log
(∫

dµβ̄ e
f
)

. By

independence, for each y, of
(

τxj+yφ
)

j=−p,...,p
and the translation invariance of µβ̄ , we get

(19)

∫

φdνNk ≤ C0|Λ|+ log

(∫

eφdµβ̄

)

This implies (18) and, by the entropy inequality (9), the inequality (17). �

For any k, let ν∗k be a limit point of the sequence (νNk )N≥k. The sequence of probability measures
(ν∗k)k≥0 forms a consistent family and, by Kolmogorov theorem, there exists a unique probability measure
ν on Ω such that νk = ν∗k . By construction, the probability measure ν is invariant by translations.

Lemma 7. There exists C0 such that for any box Λk = {−k, . . . , k}, k ≥ 0,

(20) HΛk
(ν|µβ̄) ≤ C0|Λk|
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Proof. We have seen in the proof of the previous lemma that

(21) HΛk
(νN |µβ̄) = H

(

νNk

∣

∣

∣ µβ̄ |Λk

)

≤ C0|Λk|

Since the entropy is lower semicontinuous, it follows that

HΛk
(ν|µβ̄) ≤ C0|Λk|

�

A translation invariant probability measure ν on Ω such that (20) is satisfied is said to have a finite
entropy density. By a super-additivity argument (see [3], [11]), the following limit

(22) H̄(ν|µβ̄) = lim
k→∞

HΛk
(ν|µβ̄)
|Λk|

exists and is finite. For any bounded local measurable function φ on Ω, we define the limit

F̄ (φ) = lim
k→∞

1

2k + 1
F̄k(φ), F̄k(φ) = log

∫

e
∑k

i=−k τiφdµβ̄

The entropy density H̄(ν|µβ̄) can be expressed by the variational formula

(23) H̄(ν|µβ̄) = sup
φ

{∫

φdν − F̄ (φ)

}

where the supremum is taken over all bounded local measurable functions φ on Ω.
We now show the following lemma

Lemma 8. For any function F ∈ C1
0 (Ω), we have

∫

LF dν = 0

Proof. Assume that F ∈ C1
0 (Ω) has a support included in RΛk−1 . We have

∫

LF dν =

∫

LF dνk = lim
N→∞

∫

LF dνNk

Define G = (2N + 1)−1
∑

|x|≤N τxF . By Itô formula

N−2

{∫

dµNt (η)G(η) −
∫

dµN (η)G(η)

}

=

∫ t

0

ds

∫

dµNs (η) (LG)(η)

= t

∫

dµ̄Nt (η) (LG)(η)

= t

∫

dνNk (η) (LF )(η)

Since F (and hence G) is bounded, the left-hand side goes to 0 as N goes to infinity and it follows that
∫

LF dν = 0

�
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Recall that we want to show (16). From the previous lemmas, it is sufficient to prove that

lim
k→∞

∫

dp(η)





∣

∣

∣

∣

∣

∣

1

2k + 1

∑

|y|≤k

ηyηy+1

∣

∣

∣

∣

∣

∣



 = 0

for any p ∈ P(Ω) such that p has finite entropy density, is stationary for L and translation invariant.
Proposition 1 gives the characterization of stationary probability measures, translation invariant, and

with finite entropy density. By using the notations of this proposition, to complete the proof of Lemma
5, we have to show that

lim
k→∞

∫

(0,+∞)

dλ(β)

∫

R2k+1

dµβ





∣

∣

∣

∣

∣

∣

1

2k + 1

∑

|y|≤k

ηyηy+1

∣

∣

∣

∣

∣

∣



 = 0

Since, under µβ , the random variables (
√
βηy)y are distributed according to standard independent Gauss-

ian variables, and
∫

β−1dλ(β) < +∞, it remains to prove

lim
k→∞

∫

R2k+1

dµ1





∣

∣

∣

∣

∣

∣

1

2k + 1

∑

|y|≤k

η(y)η(y + 1)

∣

∣

∣

∣

∣

∣



 = 0

By using Schwarz inequality, a simple computation gives the result.

Proposition 1. Let ν be an invariant measure for L which is translation invariant with finite entropy
density. Then, ν is a mixture of the Gaussian product measures µβ, β > 0,

ν =

∫

(0,+∞)

dλ(β)µβ

and the probability measure λ on (0,+∞) is such that
∫

(0,+∞)

β−1dλ(β) < +∞

In order to give the proof of this proposition, we need the following lemma

Lemma 9. Let ν be an invariant measure for L, translation invariant with finite entropy density. Then,
for any local measurable bounded function φ on Ω, we have

∀x ∈ Z,

∫

[φ(ηx)− φ(η)] dν = 0

Proof. We only give a sketch of the proof since the arguments are almost the same as in [11], Proposition
6.1 (see also chapter 2 of [3]).

The proof is divided in two steps. Let us first consider a generic probability measure ν∗, not necessarily
translation invariant, such that H(ν∗|µβ̄) < +∞ and let us denote by g the density of ν∗ with respect
to µβ̄ . We introduce, for any n, the Dirichlet forms

(24) Dn(ν∗) = sup
ψ

{

−
∫ Snψ

ψ
dν∗

}

where the supremum is carried over the set F composed of the positive functions ψ : Ω → (0,+∞) such
that 0 < M−1 ≤ ψ ≤M for some positive constant M .

It is easy to check that if Dn(ν∗) < +∞ then

(25) Dn(ν∗) =
1

2

n
∑

x=−n

γx

∫

(Yx
√
g)2 dµβ̄
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where for any function u : Ω → R, Yxu is the function defined by (Yxu)(η) = u(ηx)− u(η). Observe that
Y 2
x = −2Yx so that −Sn = (1/2)

∑n
x=−n γxY

2
x .

In fact, even if ν∗ is not absolutely continuous with respect to µβ̄ , the Dirichlet form Dn(ν∗) defined
by (24) makes sense in [0,+∞].

Recall that (Pnt )t≥0 is the semigroup generated by the finite dimensional dynamics introduced in
section 2. We have the following well known entropy production bound (see [3] or [15], Theorem 9.2)

H(ν∗P
n
t |µβ̄) + tDn(ν̄

n
∗,t) ≤ H(ν∗ |µβ̄)

where ν̄n∗,t = t−1
∫ t

0 ν∗P
n
s ds.

Let us denote the density of ν̄n∗,t with respect to µβ̄ by ḡnt . Since H(ν∗|µβ̄) < +∞, we have Dn(ν̄
n
∗,t) <

+∞ and, by the explicit formula (25) of the Dirichlet form,

(26) H(ν∗P
n
t |µβ̄) +

γ− t

2

n
∑

j=−n

∫

(

Yj
√

ḡnt

)2

dµβ̄ ≤ H(ν∗ |µβ̄)

The second term on the left-hand side of the previous inequality is composed by a sum of positive parts.
We can restrict this for any m ≤ n. By using (8) and the variational formula (24) for the Dirichlet form,
we get that, for any function φ ∈ C1

0 (Ω) and any functions ψj ∈ F , j ∈ {−m, . . . ,m},
∫

Pnt φdν∗ − log

∫

eφdµβ̄ +
γ− t

2

m
∑

j=−m

Y 2
j ψj

ψj
dν̄n∗,t ≤ H(ν∗|µβ̄)

We let n→ ∞ and, by (5), we have

(27)

∫

Ptφdν∗ − log

∫

eφdµβ̄ +
γ− t

2

m
∑

j=−m

Y 2
j ψj

ψj
dν̄∗,t ≤ H(ν∗|µβ̄)

where ν̄∗,t = t−1
∫ t

0 ν∗Psds.

In the second step of the proof we apply (27) to ν∗ = ν
(m)
∗ = ν

∣

∣

∣

Λm

⊗ µβ̄

∣

∣

∣

Λc
m

. We recall that Λm

denotes the box {−m, . . . ,m} and Λcm stands for Z\Λm. Observe that H(ν
(m)
∗ |µβ̄) = HΛm(ν|µβ̄) so that

lim
m→∞

(2m+ 1)−1H(ν
(m)
∗ |µβ̄) = H̄(ν|µβ̄)

By choosing φ =
∑m

i=−m τiφ0, ψi = τiψ0, with φ0 ∈ C1
0 (Ω) and ψ0 ∈ F , we get

m
∑

i=−m

∫

Pt(τiφ0)dν
(m)
∗ − F̄m(φ0) +

γ− t

2

m
∑

i=−m

∫

τi
Y 2
0 ψ0

ψ0
dν̄

(m)
∗,t ≤ H(ν

(m)
∗ |µβ̄)

We claim that

lim
m→∞

1

2m+ 1

m
∑

i=−m

∫

Pt(τiφ0)dν
(m)
∗ =

∫

Ptφ0dν =

∫

φ0dν,

lim
m→∞

1

2m+ 1

m
∑

i=−m

∫

τi
Y 2
0 ψ0

ψ0
dν̄

(m)
∗,t =

∫

Y 2
0 ψ0

ψ0
dν

(28)

Then, by using (23) and optimizing over φ0 and ψ0, we get

sup
ψ0

∫

Y 2
0 ψ0

ψ0
dν = 0
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It is clear that we can repeat the argument substituting Yj to Y0, and we obtain

sup
ψ0

∫

Y 2
j ψ0

ψ0
dν = 0

so that, by summing over j, we have Dn(ν) = 0 which implies that ν is invariant by any flip.
It remains to show (28). The difficulty comes from the fact that even if the function u is local Ptu is

not. But it is easy to see, by using (5), that we can replace the semigroup of the infinite dynamics Pt
by the semigroup of the finite dimensional dynamics Pnt , if n is sufficiently large. The function Pnt u is
then local and the ergodic theorem permits to conclude.

We refer the interested reader to [3] for the details of the arguments.
�

Proof of Proposition 1. By Lemma 9, we have
∫

Sg dν = 0 for any bounded measurable function g on
Ω. It follows that for any g ∈ C1

0 (Ω),

(29)

∫

Ag dν = 0

Since ν has finite entropy density, we have
∫

e0dν < +∞. By translation invariance, the ergodic
theorem gives the existence ν a.s., and in L1(ν), of

u(η) = lim
ℓ→∞

1

2ℓ+ 1

∑

|x|≤ℓ

ηx, E(η) = lim
ℓ→∞

1

2ℓ+ 1

∑

|x|≤ℓ

η2x

Since ν is invariant with respect to any flip, we have ν almost surely that u(η) = 0.
Assume first that ν is exchangeable.
For any z ∈ [0,∞) let νz be the probability measure

νz = ν (·|E = z)

If z = 0 then νz is the Dirac mass concentrated on the configuration δ0 with each coordinate equal to
0.

Let us now assume that z 6= 0.
Consider a test function g in (29) of the form

g(η) = f(η)χ





1

2ℓ+ 1

∑

|x|≤ℓ

η2x





with f, χ compactly supported and smooth. It is easy to show, by taking the limit ℓ → ∞ in (29) with
g as above, that

∫

Af dνz = 0

and this can be extended to any f ∈ C1
0 (Ω). We apply the previous equality with a function f of the

form

f(η) = ηxφ(η)
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with φ ∈ C1
0 (Ω) independent of ηx. Then we get

0 =

∫

(ηx+1 − ηx−1)φdνz(η) +
∑

y 6=x

∫

(ηy+1 − ηy−1)ηx∂ηyφdνz

=

∫

(ηx+1 − ηx−1)φdνz(η)

+

∫

(ηx − ηx−2)ηx∂ηx−1
φdνz +

∫

(ηx+2 − ηx)ηx∂ηx+1
φdνz

+
∑

y 6=x−1,x,x+1

∫

(ηy+1 − ηy−1)ηx∂ηyφdνz

We claim that the last term is equal to zero. This is a consequence of the exchangeability of νz. Let Λ
be the support of φ (which does not contain x by assumption). Observe that, for any y 6= x− 1, x, x+1,
the site x does not belong to the support of (ηy+1 − ηy−1)∂ηyφ. Let t be sufficiently large (e.g. t >
|x|+maxs∈Λ |s|+ 10). By exchangeability we have, for any k ≥ 0, that

∫

(ηy+1 − ηy−1)ηx∂ηyφdνz =

∫

(ηy+1 − ηy−1)ηt+k∂ηyφdνz

Hence, we get
∫

(ηy+1 − ηy−1)ηx∂ηyφdνz =
1

ℓ

ℓ−1
∑

k=0

∫

(ηy+1 − ηy−1)ηt+k∂ηyφdνz

Let ℓ go to infinity and use the convergence of ℓ−1
∑ℓ−1

k=0 ηt+k to u(η) = 0 to conclude.
The same argument shows that

∫

ηx−2ηx∂ηx−1
φdνz = 0,

∫

ηx+2ηx∂ηx+1
φdνz = 0

and, similarly, we have
∫

η2x∂ηx−1
φdνz = z

∫

∂ηx−1
φdνz,

∫

η2x∂ηx+1
φdνz = z

∫

∂ηx+1
φdνz,

Hence, we proved that, for any x ∈ Z and for any function φ ∈ C1
0 (Ω) such that x does not belong to

the support of φ,
∫

(ηx+1 − ηx−1)φdνz(η) + z

∫

(∂ηx−1
− ∂ηx+1

)φdνz = 0

We apply this for a function φ depending only on (η2k)k∈Z, so that, for any k, φ is independent of
η2k+1. We have

∫

(η2k+2 − η2k)φdνz(η) + z

∫

(∂η2k − ∂η2k+2
)φdνz = 0

This implies that the law of (η2k)k∈Z under νz is a product of centered Gaussian probability measures
on R with variance z (see e.g. [13]).

The same result occurs for the law of (η2k+1)k∈Z.
Let now ΦA(η) =

∏

s∈A φs(ηs) be a test function with A a finite arbitrary set of Z and φs real valued
bounded functions. We write the set A in the form A0 ∪A1 where A0 is the set composed of elements of
A which are even and A1 the set composed of elements of A which are odd. Let B0 be a set composed
of even sites such that |B0| = |A1| and A ∩B0 = ∅. Let σ be a permutation on Z such that σ(A1) = B0

and A0 is fixed under the action of σ. We denote by σ · η the configuration defined by (σ · η)x = ησ(x).
By exchangeability of νz we have

νz(ΦA(σ · η)) = νz(ΦA(η))
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and

ΦA(σ · η) =
∏

s∈A0

φs(ηs)
∏

s∈B0

φσ−1(s)(ηs)

Since the function ΦA(σ · η) is a function depending only on (η2k)k∈Z and A0 ∩B0 = ∅ we know that

νz(ΦA(σ · η)) =
∏

s∈A0

(∫

φs(x)g1/z(x)dx

)

∏

s∈B0

(∫

φσ−1(s)(x)g1/z(x)dx

)

We recall that g1/z is the density of the centered Gaussian probability measure on R with variance z.
Hence, we proved

νz(ΦA(η)) =
∏

s∈A

(∫

φs(x)g1/z(x)dx

)

which shows that dνz(η) is equal to
∏

x∈Z
g1/z(ηx)dηx.

We now show that ν is exchangeable. Let us consider the test function χ(η) = φ(ηx, ηx+1)ψ(ey; y 6=
x, x+ 1) with φ, ψ smooth and compactly supported functions. By (29), we have

∫

dνAχ = 0 =

∫

Aφψ dν +
∫

φAψ dν

Observe that the second term is given by

∑

y 6=x,x+1

∫

dν(η)ηy(∂eyψ)(η)(ηy+1 − ηy−1)φ(ηx, ηx+1)

This is equal to zero because ν is invariant by the flips and the function η → ηy(∂eyψ)(η)(ηy+1 −
ηy−1)φ(ηx, ηx+1) is an odd function of ηy for y 6= x, x+ 1.

Moreover we have that

(Aφ)(η) = (ηx+2 − ηx)∂ηx+1
φ+ (ηx+1 − ηx−1)∂ηxφ

Remark that ηx+2ψ∂ηx+1
φ is odd with respect to ηx+2 so that its integral with respect to ν is equal to

0, and similarly for ηx−1ψ∂ηxφ. Hence, we get
∫

dν(η) (ηx+1∂ηxφ− ηx∂ηx+1
φ)ψ = 0

This equation implies that ν(ηx, ηx+1|(ey; y 6= x, x+ 1)) is exchangeable.
Let now Φ be a local test function of the form

Φ(η) =
∏

s∈Z

φs(ηs)

where (φs)s is a sequence of bounded smooth functions equal to 1 for |s| ≥ A for a positive constant A.
Our aim is to prove that for any x we have

(30) ν(Φ(ηx,x+1)) = ν(Φ(η))

which implies the exchangeability of ν. We can assume that each φs is even or odd since every function
can be decomposed as the sum of an even and an odd function. Moreover each even function φs(ηs)

takes the form φ̃s(es) for a suitable function φ̃s.
If one of the φs is odd, since ν is invariant by all flip operators, (30) is trivial because the two terms

are equal to zero. We assume that all the φs are even so that Φ is in fact a function depending only of the
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energies es and we write Φ(η) = Φ̃(e) =
∏

s∈Z
φ̃s(es). We shall denote by ν̃ the law of e := {ey ; y ∈ Z}.

We have
∫

Φ(η)dν(η) =

∫

dν̃(e)Φ̃(e)

=

∫

dν̃(ey; y 6= x, x+ 1)

(∫

Φ̃(e)dν̃(ex, ex+1|ey, y 6= x, x+ 1)

)

=

∫

dν̃(ey; y 6= x, x+ 1)

(∫

Φ̃(ex,x+1)dν̃(ex, ex+1|ey, y 6= x, x+ 1)

)

=

∫

Φ(ηx,x+1)dν(η)

where we used the exchangeability of ν(ηx, ηx+1|(ey; y 6= x, x+1)) in the third equality. It concludes the
proof that ν is exchangeable.

Hence, we can express ν as a mixture of µβ , β ∈ (0,+∞], with the convention that µ∞ is the Dirac
mass concentrated on the configuration δ0:

ν =

∫

(0,+∞]

dλ(β)µβ

In fact, λ is the law under ν of the random variable 1/E(η). It remains to prove that ν(E(η) = 0) =
λ({+∞}) = 0. It is a simple consequence of the fact that HΛk

(ν|µβ̄) ≤ C0|Λk| for any k and in particular
for k = 0. By (8), we have that for any positive real M

C0 ≥M

∫

1{0}(x)dν
∣

∣

∣

{0}
(x)− log

(∫

eM1{0}(x)gβ̄(x)dx

)

=Mλ({+∞})

Since M is arbitrary large, it follows that λ({+∞}) = 0. �

5. Moments bounds

The aim of this section is to give the proof of the following lemma:

Lemma 10. Let µN be the probability measure µNβ0(·)
associated to a temperature profile bounded below

by a strictly positive constant such that (6) and (7) are valid. Let (MN )N≥1 be a sequence of positive
integers such that lim infN→∞MN/N > 0. Then, there exists a positive constant C, which is independent
of N , such that

sup
t≥0

EµN





1

MN

∑

|x|≤MN

ex(t)



 ≤ C

and

lim
N→∞

sup
t≥0

EµN





1

M2
N

∑

|x|≤MN

e2x(t)



 = 0

Let us first explain why the second equality of this lemma is nontrivial. The standard arguments
to get moment upper bounds are based on the entropy inequality (9) and the existence of exponential

moments. In our case it would be necessary to have µβ(e
αη40 ) < +∞ for α sufficiently small. This is

false since µβ is a Gaussian measure. In [1], following an idea of Varadhan, and despite the absence of
exponential moments, the use of the entropy inequality for the microcanonical measure was sufficient to
get a weak form of the lemma we want to prove. This approach cannot be carried here because we are
in infinite volume and because the Dirichlet form is too degenerate to reproduce the argument.
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Proof. The first statement is a simple consequence of the entropy inequality (9). Indeed, for any δ > 0,
we have

EµN





1

MN

∑

|x|≤MN

et(x)



 ≤ H(µNt |µβ̄)
δMN

+
1

δMN
log

(∫

eδ
∑

|x|≤MN
η2x/2dµβ̄(η)

)

The first term on the right-hand side is of order one by (10) and the second term is also of order one if
δ is sufficiently small. Hence the left-hand side is of order one in N uniformly in time.

The bound on the second moment of the energy is more difficult to obtain and the entropy inequality
is not sufficient. We exploit here the Gaussian structure of the initial state.

Recall the integral equations (4) defining the dynamics. Each Poisson process Nx is interpreted as
a clock and a jump of Nx as a ring of the clock. Conditionally to the realization of N = (Nx)x, the
dynamics is linear, thus the law remains Gaussian in the time interval between two successive rings.
When a clock rings the flip operation conserves the Gaussian property of the state. Hence, conditionally
to N , the state remains Gaussian for any time. It follows that the law µNt of the process at time t is a
convex combination of Gaussian measures Gm,C with mean m ∈ RZ and correlation matrix C ∈ SZ(R),
the space of symmetric matrices indexed by Z:

µNt =

∫

dρt(m,C)Gm,C

Moreover, the convex combination ρt(m,C) is the law at time t of the Markov process (m(t), C(t)) with
formal generator N2G where

(GF )(m,C) =
∑

x,y

(Cx+1,y − Cx−1,y + Cx,y+1 − Cx,y)∂Cx,yF

+
∑

x

(mx+1 −mx)∂mxF +
∑

x

[F (Cx,mx)− F (C,m)]

with Cx given by

(Cx)u,v =

{

Cu,v if [u 6= x and v 6= x] or [u = v = x],

−Cu,v otherwise

and

(mx)u = (−1)δ0(x−u)mu

In other words, (C(·),m(·)) are the solutions of the following integral equations














Cx,y(t
′) = (−1)Nx(t

′)+Ny(t
′) (Cx,y(0)

−
∫ t′

0 (−1)Nx(t
′)+Ny(t

′) [Cx+1,y(s)− Cx−1,y(s) + Cx,y+1(s)− Cx,y−1(s)] ds
)

mx(t
′) = (−1)Nx(t

′)
(

mx(0)−
∫ t′

0
(−1)Nx(t

′) [mx+1(s)−mx−1(s)] ds
)

with initial conditions

mx(0) = 0, Cx,y(0) = δ0(x − y)β−1
0 (x/N)

and t′ = tN2.
The existence and uniqueness of solutions is easily established (by the same methods as presented in

section 2) in the space ℵ = ℵ0 × ℵ1, where

ℵ0 =
⋂

α>0

{

m ∈ R
Z ;
∑

x

e−α|x|m2
x < +∞

}

ℵ1 =
⋂

α>0

{

C ∈ SZ(R) ;
∑

x,y

e−α(|x|+|y|)C2
x,y < +∞

}
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Observe that the initial condition belongs to ℵ. Moreover, for any (m,C) ∈ ℵ, the Gaussian measure
with mean m and correlation matrix C is meaningful (see e.g. chapter 2 of [5]).

This Markov process conserves the three quantities

(31)
∑

x∈Z

m2
x,

∑

x,y∈Z

C2
x,y,

∑

x∈Z

Cx,x

The initial condition µN is such that ρ0 is the Dirac mass concentrated on

m = 0, Cx,y = δ0(x − y)β−1
0 (x/N)

Therefore, we have m(t) = 0 for any t ≥ 0. By denoting, with abuse of notations, by ρt(C) the law of
C(t) at time t, we have by the two last conservation laws (31) that

∫

dρt(C)





1

M2
N

∑

x,y∈Z2

(Cx,y − β̄−1δ0(x− y))2



 =
1

M2
N

∑

x∈Z

[β−1
0 (x/N)− β̄−1]2

Moreover, we have

EµN





4

M2
N

∑

|x|≤MN

e2x(t)



 =MN
−2

∑

|x|≤MN

∫

dρt(C)G0,C(η
4
x)

=
3

MN
2

∑

|x|≤MN

∫

dρt(C)C
2
x,x

= 3

∫

dρt(C)







1

M2
N

∑

|x|≤MN

(Cx,x − β̄−1)2 +
2

β̄M2
N

∑

|x|≤MN

Cx,x







+O

(

1

MN

)

where we used the fact that, for a Gaussian centered variable, the fourth moment is given by three times
the square of the second one.

Observe that
∫

dρt(C)







1

M2
N

∑

|x|≤MN

Cx,x







= 2EµN





1

M2
N

∑

|x|≤MN

ex(t)





and this term is order M−1
N by the first part of the lemma.

Up to terms of order M−1
N , we are left with

∫

dρt(C)







1

M2
N

∑

|x|≤MN

(Cx,x − β̄−1)2







≤
∫

dρt(C)







1

M2
N

∑

x,y∈Z2

(Cx,y − β̄−1δ0(x − y))2







=

∫

dρ0(C)







1

M2
N

∑

x,y∈Z2

(Cx,y − β̄−1δ0(x − y))2







=
1

M2
N

∑

x∈Z

(β−1
0 (x/N)− β̄−1)2

since the penultimate sum is conserved by (C(t))t≥0. By the assumption (6), the last term goes to zero
as N goes to infinity. �
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6. Green-Kubo formula

In this section we study the homogenization properties for the diffusion coefficient in the linear response
theory framework. To present the results we have to introduce some notations.

Let (γx)x∈Z be a sequence of i.i.d. positive random variables satisfying the assumption

P [γ− ≤ γx ≤ γ+] = 1

whereP is the probability measure onRZ given by the law of the disorder γ = (γx)x∈Z. The corresponding
expectation is denoted by E.

In this section, time is not accelerated by a factor N2. We first consider the closed system of length
N ≥ 1 with periodic boundary conditions. Let TN = {0, . . . , N − 1} be the usual discrete torus of length
N . The generator LN of the system is given by (1) with the sums over x ∈ Z replaced by x ∈ TN .

Linear response theory predicts that the diffusion coefficient D := D({γ}, β) appearing in (2) is given
by

(32) D = lim
λ>0,λ→0

lim
N→∞

LN(λ)

where LN := Lγ,βN is the Laplace transform of the current-current correlation function. It is defined for
z ∈ H+, H+ = {z ∈ C ; R(z) > 0}, by

LN(z) =
β2

2N

∫ ∞

0

dte−zt
〈

∑

x∈TN

jx,x+1(t),
∑

y∈TN

jy,y+1(0)
〉

Here, 〈·, ·〉 := 〈·, ·〉β denotes the scalar product in L2(µNβ ) where

µNβ (dη) =
∏

x∈TN

gβ(ηx)dηx

is the Gibbs equilibrium measure with inverse temperature β > 0 on RTN . We also use the short notation
〈·〉β := 〈·〉 for the expectation with respect to µNβ .

The Laplace transform LN can be written as

LN(z) =
β2

2N

〈

∑

x∈TN

jx,x+1, (z − LN )−1





∑

y∈TN

jy,y+1





〉

Observe that the definition (32) is only formal since it is not clear a priori that the limits exist.
We also consider the homogenized Green-Kubo formula for the infinite volume dynamics. It is defined

by

(33) D̄(β) = lim
λ>0,λ→0

Lβ(λ)

where L := Lβ is the Laplace transform of the averaged current-current correlation function. It is defined
for z ∈ H+ by

L(z) =
β2

2

∫ ∞

0

dte−zt ≪ j0,1(t), j0,1(0) ≫

where ≪ ·, · ≫=≪ ·, · ≫β is the inner product defined for bounded local functions f and g by

≪ f, g ≫β= E

(

∑

x∈Z

[〈τxf, g〉β − 〈f〉β〈g〉β ]
)

We shall denote by L2(≪ · ≫) the Hilbert space generated by the set of bounded local functions and
the inner product ≪ ·, · ≫.

The aim of this section is to show the following homogenization result
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Theorem 2. For almost every realization of the disorder γ, the Green-Kubo formulas (32) and (33)
converge and are equal: D({γ}, β) = D̄(β). Moreover, D̄ is independent of β.

We recall that the functions LN and L are analytical functions on H+ (see e.g. [21], Theorem VIII.2).

Lemma 11. There exists a constant C := C(β, γ+), independent of N , γ and z ∈ H+, such that

|LN (z)| ≤ C

Proof. The proof is a simple consequence of Proposition 6.1 in [15] and of the fact that Sjx,x+1 =
−2(γx + γx+1)jx,x+1 (see also Theorem 2 in [2]). �

Let hNz := hNz (η;β, γ) be the solution of the resolvent equation in L2(〈·〉):
(z − LN )hNz =

∑

x∈TN

jx,x+1

We have

LN (z) =
β2

2

〈

hNz ,
1

N

∑

y∈TN

jy,y+1

〉

Let hz := hz(η;β) be the solution of the resolvent equation in L2(≪ · ≫):

(z − L)hz = j0,1

We have

L(z) =
β2

2
≪ hz, j0,1 ≫

Observe that if η is distributed according to µβ then β1/2η is distributed according to µ1. Since
hz(η; 1) = hz(η;β) and jx,x+1 is an homogeneous function of degree two in η, it follows that Lβ(z) =
L1(z). This implies the independence of the diffusion coefficient with respect to β.

In the following lemma we give an explicit formula for L(z) if R(z) is sufficiently large.
We shall denote by PR.W. the law of the two-dimensional simple symmetric random walk (Sj)j≥0 =

(S1
j , S

2
j )j≥0 starting from (0, 1) and by ER.W. the corresponding expectation. Let Ẽ be the annealed

expectation EER.W..

For any path {Sj}{j=0,...,k} of length k, we define ε({S}k) =
∏k−1
j=0 ((Sj+1 − Sj) ·w) ∈ {±1}, where w

is the vector (1, 1) and x · y denotes the usual scalar product of the two vectors x and y of R2. We also
introduce the random potential

exp(−Vz(x, y)) =
1

z + 1x 6=y(γx + γy)

Lemma 12. There exists λ0 > 0 such that, for any z ∈ H+ with R(z) ≥ λ0, the Laplace transform L(z)
is given by

(34) L(z) = −1

2

∞
∑

k=0

(−4)kẼ
[

ε({S}k) e−
∑k

j=0 Vz(Sj)δ±1(S
2
k − S1

k)
]

Proof. Since the generator L maps a polynomial function to a polynomial function of the same degree,
the solution of the resolvent equation is expected to be of the form

hz(η) =
∑

x,y∈Z2

φz(x, y)ηxηy

where φz(x, y), (x, y) ∈ Z2, is the (symmetric) solution of

(35) (z + (γx + γy)1x 6=y)φz(x, y) + (∇̃φz)(x, y) = −δ1(x)δ0(y) + δ0(x)δ1(y)

2
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with, for any function u : Z2 → R,

(∇̃u)(x, y) = (u(x, y + 1)− u(x, y − 1)) + (u(x+ 1, y)− u(x− 1, y))

We shall denote by λ the real part of z ∈ H+. In the sequel we show that, if λ is sufficiently large, a
solution to (35) exists, so that hz is of the form given above. In fact, it is not difficult to show that a
solution to (35) exists for every z ∈ H+.

The Laplace transform L(z) is equal to

L(z) =
β2

2
≪ hz, j0,1 ≫=

1

2
≪







∑

x,y∈Z2

φz(x, y)ηxηy







, j0,1 ≫

= −β
2

2

∑

x,y

E



φz(x, y) lim
n→∞

1

2n+ 1

∑

|k|≤n

〈ηxηyηkηk+1〉





=
1

2

∑

x,y

E [φz(x, y)(δ1(x− y) + δ−1(x − y)]

= E

[

∑

x∈Z

φz(x, x+ 1)

]

We define the operator Tz, acting on the set of real valued functions u on Z2, by

(36) (Tzu)(x, y) =
1

(z + (γx + γy)1x 6=y)
(∇̃u)(x, y)

Then (35) can be written in the following form

φz + Tzφz = ρz

where ρz is the function given by

ρz(x, y) = − (δ1(x)δ0(y) + δ0(x)δ1(y))

2(z + (γx + γy)1x 6=y)

Observe that ‖Tzφ‖∞ ≤ (4/λ)‖φ‖∞ so that if λ > 4 then Tz is contractive for the ‖ · ‖∞ norm. It
follows that for λ sufficiently large

φz =

∞
∑

k=0

(−1)kT kz ρz

For any x ∈ Z2, we have the following representation of the operator T kz

(T kz u)(x)

=
∑

|e1|=1

. . .
∑

|ek|=1

(e1 ·w) . . . (ek ·w)e−
∑k−1

j=0 Vz(x+e1+...+ej)u(x+ e1 + . . .+ ek)
(37)

with the convention that the term in the exponential corresponding to j = 0 is Vz(x). We obtain

φz(x, x + 1)

= −1

2
ER.W.

[

∞
∑

k=0

(−4)kε({S}k)e−
∑k

j=0 Vz(Sj+(x,x))×

[

δ1(x+ S1
k)δ0(x+ S2

k) + δ0(x+ S1
k)δ1(x+ S2

k)
]

]
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By summing over x ∈ Z and by taking the expectation with respect to the disorder, we obtain

L(z) = −1

2

∞
∑

k=0

(−4)kẼ
[

ε({S}k)e−
∑k

j=0
Vz(Sj−(S2

k,S
2
k))1S2

k+1=S1
k

]

− 1

2

∞
∑

k=0

(−4)kẼ
[

ε({S}k)e−
∑k

j=0 Vz(Sj−(S1
k,S

1
k))1S2

k−1=S1
k

]

By taking first the expectation with respect to γ, we see that we can translate the environment and
hence the potential by (S2

k, S
2
k) in the first expectation and by (S1

k, S
1
k) in the second one. Therefore, we

get (34).
�

Lemma 13. There exists λ0 > 0 such that, for any z ∈ H+ with R(z) ≥ λ0 and almost every disorder
γ, the limit of LN(z) as N goes to infinity exists and is given by

(38) − 1

2

∞
∑

k=0

(−4)kẼ
[

ε({S}k) e−
∑k

j=1 Vz(Sj)δ±1(S
2
k − S1

k)
]

Proof. The proof is very similar to the previous one. We look for a solution in the form

hNz (η) =
∑

x,y

φz(x, y)ηxηy

with φz(x, y), (x, y) ∈ T
2
N , the solution of

(39) (z + (γx + γy)1x 6=y)φz(x, y) + (∇̃φz)(x, y) = −δ1(x− y) + δ−1(x− y)

2

Let λ be the real part of z ∈ H+ and define the operator Tz, acting on the real valued functions on
T2
N , according to (36). Then (39) can be written in the form φz + Tzφz = ρz, where ρz is the function

given by

ρz(x, y) = − (δ1(x− y) + δ−1(x− y))

2(z + (γx + γy)1x 6=y)

Observe that ‖Tzu‖∞ ≤ (4/λ)‖u‖∞ so that if λ > 4 then Tz is contractive for the ‖ · ‖∞ norm.
Therefore we have the following representation of φz

φz =
∞
∑

k=0

(−1)kT kz ρz

For any x ∈ T2
N we have

(T kz u)(x)

=
∑

|e1|=1

. . .
∑

|ek|=1

(e1 ·w) . . . (ek ·w)e−
∑k−1

j=0
Vz(x+e1+...+ej)u(x+ e1 + . . .+ ek)

Hence, we obtain

(T kz ρz)(x, x + 1) = −1

2
(−4)kER.W.

[

ε({S}k)e−
∑k

j=1
Vz((x,x)+Sj)δ±1(S

2
k − S1

k)
]

Since Vz((x, x) + Sj) = τxVz(Sj), the ergodic theorem implies

lim
N→∞

1

N

∑

x∈TN

φz(x, x + 1) = −1

2

∞
∑

k=0

(−4)kẼ
[

ε({S}k) e−
∑k

j=1 Vz(Sj)δ±1(S
2
k − S1

k)
]

This completes the proof.
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�

Since the sequence (Lγ,βN (z))N is a bounded sequence of analytical functions on H+, Montel theorem

implies it forms a compact sequence in the Banach space of analytical functions. Let Lγ
1,β

∞ , Lγ
2,β

∞ be any
(analytical) limit points corresponding to the realizations of γ1 and γ2 of the disorder. For any z ∈ H+

such that {R(z) ≥ λ0}, we have

Lγ1,β∞ (z) = Lβ(z) = Lγ2,β∞ (z)

Since the two analytical functions Lγ1,β∞ and Lγ2,β∞ on H+ coincide on {z ; R(z) ≥ λ0} with Lβ, they
are equal on H+ to Lβ. It follows that, for almost every realization of the disorder and every z ∈ H+, the

limit as N goes to infinity of Lγ,βN (z) exists and is equal to Lβ(z). The theorem is a trivial consequence
of the following non trivial fact:

Lemma 14. The limit, as λ ∈ (0,+∞) goes to 0, of Lβ(λ) exists.

Proof. The proof is similar to the proof of Theorem 1 in [2] (see also [4]). �
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