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HOMOGENIZATION RESULTS FOR A LINEAR DYNAMICS IN RANDOM
GLAUBER TYPE ENVIRONMENT

CEDRIC BERNARDIN

ABSTRACT. We consider an energy conserving linear dynamics that we perturb by a Glauber dynamics
with random site dependent intensity. We prove hydrodynamic limits for this non-reversible system in
random media. The diffusion coefficient turns out to depend on the random field only by its statistics.
The diffusion coefficient defined through the Green-Kubo formula is also studied and its convergence
to some homogenized diffusion coefficient is proved.

On considére un systéme d’équations differentielles linéaires couplées conservant une certaine énergie
et 'on perturbe ce systéme par une dynamique de type Glauber dont I'intensité varie aléatirement site
par site. Nous prouvons les limites hydrodyanmiques pour ce systéme non réversible en milieu aléatoire.
Le coefficient de diffusion dépend de ’aléa uniquement par sa loi. Nous étudions aussi le coefficient de
diffusion défini par la formule de Green-Kubo et montrons la convergence de celle-ci vers un coefficient
de diffusion homogénéisé.

1. INTRODUCTION

The derivation of hydrodynamic limits for interacting particle diffusive systems in random environment
has attracted a lot of interest in the last decade. One of the first paper to consider such question is
probably [E] where hydrodynamic behavior of a one-dimensional Ginzburg-Landau model in the presence
of random conductivities is studied. In ,a lattme gas with random rates is considered and a complete
proof of hydrodynamic limits has been glven 1n Other systems have been investigated such as
exclusion processes and zero-range processes ( E ). Interacting particle systems evolving
in random media are in general of non- gradlent. Roughly speakmg the gradient condition means that
the microscopic current associated to the conserved quantity is already of gradient form. Otherwise the
general non-gradient techniques ([[[g], [BF]) consists in establishing a microscopic fluctuation-dissipation
equation which permits to replace the current by a gradient plus a fluctuation term. But, if the system
evolves in a random medium, such a decomposition does not hold microscopically because the fluctuations
induced by the random medium are too large, and it is only in a mesoscopic scale that this fluctuation-
dissipation equation makes sense ([, [q])

In [@, B], by extending some ideas of ], a simpler approach is proposed. The idea is to introduce
a functional transformation of the empirical measure, which turns the system into a gradient-model,
in such a way that the transformed empirical measure is very close to the original empirical measure.
The advantage of the method is that it avoids the heavy machinery of the non-gradient tools but is
unfortunately restricted to specific models. Even if the techniques developed in [ﬂ], [@] seem to be more
robust than the precedent approach, it is not clear that in some situations, as in the situation considered
here, they can be applied without a substantial modification.
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2 CEDRIC BERNARDIN

The interacting particle system we consider is the following. To a simple energy conserving linear
dynamics, flips with site dependent rates are superposed. Fix a sequence (7, ), of positive numbers and
denote by (1(t))i>0 the Markov process with state space R” and generator given by

(1) (L)) = (Af)(m) + (Sf)(m), f:R* =R
where
(AN = et —10-1)0y, f
TEZ
and
(SN =D 7 [F0") = f()]
TEZ
with n* the configuration obtained from » by flipping 7,: (9*), =0, if 2 # 2, (n*)x = —n,. This system
conserves the energy > e, e, = n2/2, and the product of centered Gaussian probability measures with
variance 1" > 0 are invariant for the dynamics.

Let (72)z be a sequence satisfying () and (). For example, the sequence (v,) is a realization
of i.i.d. positive bounded below and above random variables with positive finite mean. We show (cf.
Theorem m) that, starting from a local equilibrium state with temperature profile Ty = 1/, the system
evolves in a diffusive time scale following a temperature profile 7', which is a solution of the heat equation

oI = ’7_1AT
T(0.-) =55 ()
where 7 is the average of the flip rates v, defined by (DI)

One of the main interest of the model is its non-reversibility. To the best of our knowledge, it is
the first time that hydrodynamic limits are established for a non-reversible interacting particle system
evolving in a random medium. In fact, our first motivation was to work with a simplified version of the
energy conserving model of heat conduction with random masses ([ff]) and we think that some of the
methods developed in this paper could be useful to study this model.

The derivation of the hydrodynamic limits presents three difficulties: the first is that the system is
non-gradient. The second one is that it is non-reversible and that the symmetric part S of the generator
is very degenerate and gives only few pieces of information on the ergodic properties of the system. The
third difficulty is more technical. The state space is non-compact and the control of high energies is
non-trivial. The first problem is solved by using the ”corrected empirical measure” method introduced
in [@], and some special features of the model. For the second one, we apply in this context some
deep ideas introduced in [[L1] (see also [i§]). The third problem is solved by observing that the set of
convex combinations of Gaussian measures is preserved by the dynamics. The control of large energies
is then reduced to the control of large covariances.

In the perspective to study heat conduction models with random masses our main interest lies in the
properties of the diffusion coefficient (given here by 1/7).

The diffusion coefficient is also often expressed by the Green-Kubo formula, which is nothing but the
space-time variance of the current at equilibrium. The Green-Kubo expression is only formal in the
sense that a double limit (in space and time) has to be taken. For reversible systems, the existence is not
difficult to establish. But for non-reversible systems even the convergence of the formula is challenging
([f7). Let us remark that a priori the Green-Kubo formula depends on the particular realization of the
disorder.

If we let aside the existence problem, widely accepted heuristic arguments predict the equality between
the diffusion coefficient defined through hydrodynamics and the diffusion coeflicient defined by the Green-
Kubo formula.

The second main theorem of our paper shows that the homogenization effect also occurs for the Green-
Kubo formula (see Theorem E) for almost every realization of the disorder, the Green-Kubo formula
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exists and is independent of the disorder. Unfortunately we did not succeed to prove that the value of
the Green-Kubo formula is 1/%.

The paper is organized as follows. In section E we define the system. The proof of hydrodynamic
limits is given in section E The two main technical steps which are the derivation of a one block lemma
and the control of high energies are postponed to sectionsE and E The study of the Green-Kubo formula
is the content of the last section.

2. THE MODEL

For any a > 0, let ), be the set composed of configurations n = (1;)ez such that ||n]l, < 400 where

Inll2 =" emlly2

TEL

Let © = Ny>08 20 be equipped with its natural product topology and its Borel o-field. The set of Borel
probability measures on Q will be denoted by P(£2). We also introduce the set C§ (), k > 1, composed
of bounded local functions on 2 which are differentiable up to order k with bounded partial derivatives.

The time evolution of the process (n(t)):>o0 can be defined as follows. Let {N,; x € Z} be a sequence
of independent Poisson processes. We shall denote by 7, > 0 the intensity of N,. We assume there exist
positive constants y_ and ~y4 such that

(3) VeeZ, - <7<y

For every realization of the random element A" = (N ).ez, consider the set of integral equations:

(1) ne(t) = (— 1) <nz(o> - / (M) (g (5) — n“(s))ds)

For each initial condition o € €2 the equations (@) can be solved by a classical iterative scheme. The
solution 7(-) := n(-,0) defines a strong Markov process with cadlag trajectories. Moreover each path
n(-,0) is a continuous and differentiable function of the initial data o ([f], [L0], [1]). We define the
corresponding semigroup (P)i>0 by (Pif)(0) = Ex(f(n(t,0))) where Ex denotes the expectation with
respect to the Poisson clocks and f is a bounded measurable function on f).

Since the state space is not compact Hille-Yosida theory can not be applied directly. Nevertheless,
the differentiability with respect to initial conditions and stochastic calculus show that the Chapman-
Kolmogorov equations

(Bf)(o) = f(0) + / (CP.f)(o)ds, feCHQ)
and
(Bf)(o) = f(o) + / (P.LP)(0)ds, feCHEQ)

are valid with £ the formal generator defined by (El)
The two Chapman-Kolmogorov equations permit to deduce that the probability measures v € P(Q),
which are invariant for (n(t)):>0, are characterized by the stationary Kolmogorov equation

/ (Lf)(n)dv(n) =0 forall f € C3(Q)

In particular, every Gibbs measure pug with inverse temperature 8 > 0 is a stationary probability
measure. Observe that ug is nothing but the product of centered Gaussian probability measures on R
with variance 371. It is easy to show that (P;);>0 defines a strongly continuous contraction semigroup
in L?(5) whose generator is a closed extension of L.
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In fact, the infinite volume dynamics is well approximated by the finite dimensional dynamics 1™ (t) =
{n™(t); x € Z}, n > 2. Tt is defined by the generator £,, = A, + S,, where, for any function f € C}(Q),
n—1
Anf = Z (7796+1 - 77171>877:f - nnflannf + n—(n—nan,nf
z=—n+1

and
n

(Snf) ) = > vlf(0") = f()]
r=—n
Observe that 7 (t), |z| > n, do not change in time. Moreover, the total energy > ., e, is conserved
by the finite dimensional dynamics. We denote by (P/"):>¢ the corresponding semigroup. Let us fix a
positive time 7' > 0, a parameter a > 0 and a function ¢ € C§(Q2). One can prove there exist constants
Cp:=C(n,a,T,$), n > 2, such that

(5) sup [(P/'¢)(n) — (Ped)(n)| < Culinll2
te[0,T)
and
lim C, =0
n— o0

This approximation is only used in the proof of Lemma E The proof of (E) in a similar context can
be found in [ff], chapter 2 (see also [L1]).

3. HYDRODYNAMIC LIMITS

For any function u : Z — R, the discrete gradient Vu of u is the function defined on Z by
VeeZ, (Vu)(z)=u(r+1)—u(x)

The hydrodynamic limits are established in a diffusive scale. This means that we perform the time
acceleration ¢ — N2t and the space dilatation z — x/N. In the rest of the paper, apart from section
B, the process (7(t))¢>o is the Markov process defined above with this time change. The corresponding
generator is N2L.

The local conservation of energy e, = 72/2 is expressed by the following microscopic continuity
equation

ex(t) — ea(0) = —N? / (Vjamr.0) (1(s))ds

where the current j; 441 := jzz+1(n) is defined by

j95196+1(77) = NzNz+1
We denote by Cy(R) the space of continuous functions on R with compact support and by C§(R),
k > 1, the space of compactly supported functions which are differentiable up to order k. Let M (resp.
MT) be the space of Radon measures (resp. positive Radon measures) on R endowed with the weak
topology. If G € CZ(R) and m € M then (m,G) denotes the integral of G with respect to m.

The empirical positive Radon measure 7)Y € M™, associated to the process e(t) := {e.(t); z € Z}, is
defined by

1
N (du) = ~ > ex(t) b, yn (du)
TEZ
Fix a strictly positive inverse temperature profile 3y : R — (0, +00) and a positive constant 3 such
that

1 1 117
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Denote by uN = Mé\{) ¢ € P(Q) the product probability measure defined by

Mévo(.)(dﬁ) = H gﬂo(z/N)(nz)dnx
TEZL

where gg(u)du is the centered Gaussian probability measure on R with variance 571.
We assume that the initial state satisfies
(7) H(pN|pz) < CoN

for a positive constant Cp independent of N. Here H(-|-) is the relative entropy, which is defined, for
two probability measures P,Q € P(Q), by

(8) H(PIQ) = st { JEa ( / e¢dQ) }

with the supremum carried over all bounded measurable functions ¢ on 2. Let us recall the entropy
inequality, which states that for every positive constant a > 0 and every bounded measurable function

o

(9) / $dP < a" {log ( / e“¢dQ) + H(Pl@)}

Fix a positive time T' > 0. The law of the process on the path space D([0,T],(?), induced by the
Markov process (n(t))¢>0 starting from z”, is denoted by P,~. For any time s > 0, the probability
measure on ) given by the law of 7(s) is denoted by u.

Since entropy is decreasing in time, () implies that

(10) Vs >0, H(pl|ug) < CoN
The conditions () and () are introduced to get some moment bounds (see section ). They are
satisfied by any continuous function S ! going to B! at infinity sufficiently fast.

Theorem 1. Let (v;)zez be a sequence of positive numbers satisfying (B) and such that

1 & 1
11 im —Y =5 lim — > =7
(11) Ko K& =1 K 2 0T
= r=—

for some 7 € (0,00). Assume that the initial state p~ = Mé\{)(.) satisfies (ﬁ) and By satisfies (@)
Then, under P,~, 7N converges in probability to T,/2 where Ty is the unique weak solution of (ﬁ)

For every G € Cy(R), every t > 0, and every d > 0,

(¥, @) ~ 3 (10, 0)

lim P~ l > 6] =0
N—o0

We follow the method of the “corrected empirical measure” introduced in [@, @] Since the state
space is not compact, technical adaptations are necessary. In particular, it is not given for free that
the corrected empirical measure and the empirical measure have the same limit points for the weak
convergence. It would be trivial if the state space was compact. Moreover, a replacement lemma,

reduced to a one-block estimate, has to be established (see section @)
For any G € Cy(R), we define T,G : Z — R by

(T,G)(x) = Z(%‘ +Yj+1) {G <%> -G <%>}

Observe that )
Nm[(TwG)(x +1) - (1,G)(2)] = (VNG)(z/N)
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where V stands for the discrete derivative: (VyG)(xz/N) = N{G((x +1)/N) — G(z/N)}.

Since TG may not belong to ¢1(Z), we modify T,G in order to integrate it with respect to the
empirical measure. Fix 0 < 6 < 1/2 and consider a C? increasing nonnegative function § defined on R
such that g(gq) =0 for ¢ <0, g(q) =1 for ¢ > 1 and g(q) = q for ¢ € [#,1 — 0].

Fix an arbitrary integer £ > 0 and let g = gg,» : R — R be given by

g(q) = 9(q/?)

We define
T,c
(T,0G)(z) = (T,G)(x) — T, g(ng)(z)
where

Ty =D (%o + Yas1) {P((z + 1)/N) = h(z/N)}

In the rest of the paper we make the choice ¢ := ¢(N) = N/4.
Lemma 1. For each function G € C3(R), and each environment vy satisfying (B) and @),
lim NY*sup|T, ,G(z) — 3G (x/N)| =0
z

N—oo z€
and
Jim NYAT, 6 =0
Proof. This is a slight modification of Lemma 4.1 in [[L4]. O

We shall denote by XN € M the corrected empirical measure defined by

X(@) = XMUE) = 30T (Gl eala)
TEL

The system is non-gradient but we have

1
V (9 + _nz—lnl-‘rl

jm,z-{-l - — 9

Y + Yax+1

1
+ L ————NzMNz+1
(2(%+%+1> " )

This implies that

N2r [XN(G)] = %Q;Z (ANG)(z/N) — g’j(ANg)(:c/N)] (ez + %ﬁxlnerl)
T (Z (VNG)(x/N) - ?’vag)(x/m] W?mﬂ)
TE€EZ .9

where Ay stands for the discrete Laplacian:
(ANG)(z/N) = N*{G((z +1)/N) + G((z = 1)/N) - 2G(«/N)}
Therefore, we have
(12) XM(G) = X' (G) = UM(G) + Vi (G) + M (G)
with M7 (G) a martingale and UN (G), VN (G), which are given by
0@ = [ ds 13 Ba/) (ez<s> + énz_ms)nm(s))

TEZ



where
G Tya
BS(x/N) = | (AnG)(z/N) - mmw)(zm}
and
V(6 = 53 X | (TNG)w/N) = FET )@/ N)| 0O (8) = 101 0)

Lemma 2. The sequence { (XY, [;7Nds) € D([0,T], M) x D([0,T], M*); N > 1} is tight.

Proof. 1t is well known that the sequence

{<X,N,/O‘ Wévds> € D([0,T], M) x D([0,T], M*); N > 1}

is tight if and only if the sequence

{(X,N(G),/ w;V(H)ds) € D([0,T],R) x D([0,T],R); N > 1}
0
is tight for every G, H € C3(R).
By Aldous criterion for tightness in D([0,T],R)?, it is sufficient to show that
(1) For every t € [0,T] and every ¢ > 0, there exists a finite constant A > 0 such that

sup P~ (’YtN(G)‘ >A)<e
N

(2) For every ¢ > 0,
lim limsup sup P~ HYT]X_B(G) - YTN(G)‘ >6]=0

€20 Nooo 1€0,6<e
where O is the set of all stopping times bounded by T'.
for YN(G) = XN (G) and YN(G) = [, 7l (G)ds.
Since G has compact support, there exists a constant K > 0 (independent of ¢ and N) such that

(13) E,x [|7(m), G) = X7(G)]]

1
S (N1/4 sup |’7G(.’L‘/N) — (TVJG)(.’L'”) EHN W Z €z(t)
TEL |z| <K N5/4

and consequently

(14) E,~

/Tdth<7r£V,G> - XNG)|
0

1/4 - g 1
< (Nt sup G /N) — (TG @)) [ dtB | 3 elt)
TEZL 1 0 N5/4
|| <K N5/4

By Lemma [] and Lemma [L0], the right-hand side of () (resp. of ([14)) vanishes as N — oco. Hence, it
is sufficient to show Aldous criterion for YN(G) = XV (G) and for YN (G) = [; XN (G)ds.

From the definition of the Skorohod topology, it is easy to show that the application ® from D([0,T], R)
onto itself defined by

@:x::{x(t);0§t§T}—><I>(m)::{/Otx(s)ds;OgtST}

is continuous. Thus, if (XN(G))y is tight, then ([; XV (G))n is tight.
Therefore it just remains to show Aldous criterion for YV(G) = XN(G).
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Proof of (1) for XN (G):

Py [|XtN(G)| 2 A]

IA
|

E, (%Z (T,.46)() em<t>>

TEL

We write (Ty,,G)(z) = ((T5,6G)(z) — ¥G(x/N)) + ¥G(x/N) and we get that

Pov [IXY(@) 2 A] < B |50 D) [(TG)(@) = 3G (@/N) ex(?)
lz| <K N5/4

¥ 1
+ B [ D 1G@/N)|ea(t)
el <KN

The first term on the right-hand side of the previous inequality can be bounded above by the right-hand
side of (), which vanishes. By Lemma E, the second term is bounded above by C'/A with a constant
C independent of N. Therefore, the first condition is satisfied.

Proof of (2) for XN (G):

Recall the decomposition ([). In order to estimate the term

By [[U5.(G) - V(@)
we observe that |B$ (x/N)| is bounded above by

|T%G|

T, 4 (672 + (NL72)) Lz y(veye[1—26,14+20101 26,261}
Y9

Clz<kn +

where C, K are constants depending on # and G but not on N. By Schwarz inequality, we are reduced
to estimate

T+He 1
E,~ / dSN Z ex(s)
0 le|<2K N

and

el (1 1 Tve 1
. —+ —|E ds — z
Ev] DR TS P YIS
' || <(1+36) N ¢
By Lemma E, the first term is of order one. It is not difficult to show that liminfy_,. 75 4 > 0, and
Lemma ﬂ gives {1, ¢ — 0. Thus, by Lemma E, the second one vanishes as N goes to infinity.

The two last terms of (E) are given by

Ty g
T

7.9

(VNG)(z/N) -

(VNg)(fE/N)] 77177I+1> (s)

=VM(G) + MY(G)

fg ds L <Zm

By using Lemma EI and Lemma E, similar estimates as before show that

li E vV =0
Ngnoote[il,ligrs] e H ‘ ( )H
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By computing the quadratic variation of the martingale M (G), one obtains that (we recall that
Supg Vx < ’YJr)

By |(M2.(G) - MY (G))?]

< 37 B f:*sdszm{wwx:c/m

Observe that

2
{(VNG)(x/N) - %j(VNg)(x/N)} < Cligicin + 02 (Ty.0/ Ty 0)* 1 jp < i novs
Since liminf y 00 T, > 0 and €T, ¢ — 0, from Lemma @, we get
sup E, ~ 1 Z e2(s)
>0 N2|Z|§KN ¢
and
supE  ~ L Z e2(s)
s>0 | VP Sl<KNA
go to 0 with N (and are in particular bounded above by a constant independent of N). O

Lemma 3. Let (a,3) € M x M™T be a limit point of the sequence
{< ;Vds) eD([o,T],M)xD([o,T],M+);Nz1}.
For every G € C3(R) and every t € [0,T)], we have
(@ - @ =77 [ oG, 5i=7" [ auts

Proof. In the proof of the tightness of XV we have seen that the term

E,~ Votds,c<z

x

(VNG)(z/N) -

Ty a
T, (VNQ)(ZE/N)] 77177I+1> (5)1

and the term

By l/ ds NZ WG (Ang)(z/N) ( «(8) + %ﬁxl(smzﬂ(s))]

TEZ 'y,g
vanish as N — co. By using Lemma E, it implies that

at(G) — ao(G) = Bt(AG)
Moreover, by ([14), we have

O

Lemma 4. Any limit point 3 of the sequence { [, 7Y ds € D([0,T], M*); N > 1} is such that, for any
t €[0,T), Bt is absolutely continuous with respect to the Lebesgue measure on R.
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Proof. Fix a positive time ¢ and let ;v be the probability measure on MT given by

1 t
R,n(A) =P~ {2/0 mds € A}

for every Borel subset A of M™. Let J : M™ — [0, +00) be a continuous and bounded function. By the
entropy inequality (§) and by using (L0) we have

(15) [ Imars ) < ot gios ([N Oam, )

By the Laplace-Varadhan theorem, the second term on the right hand side converges as N goes to infinity
to

sup [J(m) = Io(m)]
TeMt

where Iy is the large deviations rate function for the random measure 7 under R, ;. It is a simple exercise
to compute the rate function Iy. We have

()= sup { [ rtmtan) - [rogpay(swnau

where Mz(«) is the Laplace transform of 7§ /2 under pz:

My(a) = up(e™/?) = \/B/(5 -

if o < B, and 400 otherwise.
The function Iy also takes the simple form

(r) = {fR ))du if m(du) = 7(u)du,

400 otherwise

where the Legendre transform h of Mj is given by h(a) = B —1/2 — 1/2log(2a3) > 0 if a > 0, and
400 otherwise.

Let (fx)r>1 be a dense sequence in Co(R) with f; being the function identically equal to 0. Then I
is the increasing limit of J; > 0 defined by

Juln 1335k{/fj 0~ [ 1o My(s; i p 1k

By using ([15]) we have
1imsup/Jk(7r)dRMN (m) < Cy

N—o00

for each k. Since Ji is a lower semi-continuous function, any limit point R* of R~ is such that

/Jk(ﬁ)dR*(ﬁ) S Co

By the monotone convergence theorem, we have [ Io(m)dR*(m) < Cy < +o0. Since Io() is equal to +oo
if 7 is not absolutely continuous with respect to the Lebesgue measure, it implies that

R* {m;m(du) = m(u)du} =1

and the lemma is proved. (I
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We conclude as follows. Let (a, 3) be a limit point of (XN ( fo ))n>1. From the equation

a.(G) —ap(G) = ﬁ_l/o as(AG)ds

we see that « is time continuous. Moreover, if A is a subset of R with zero Lebesgue measure, then
Bt(A) = 0 for any t € [0,7]. This implies that a;(A4) = 0 for any ¢ € [0,7T], i.e. that oy is absolutely
continuous with respect to the Lebesgue measure on R.

By uniqueness of weak solution to the heat equation, we have that 2« is the Dirac mass concentrated
on the (smooth) solution of the heat equation (t,u) € [0,T] x R — Ty(u) starting from 38, ': 8;T; =
FIATy, To =380

Hence we conclude that { X~ e D([0,T], M); N > 1} converges in distribution to (T (u)/2) du. Since
the limit is continuous in time we have that {X}¥; N > 1} converges in distribution to the deterministic
limit (7}(u)/2) du. Since convergence in distribution to a deterministic variable implies convergence in
probability, this implies that

> E‘| =0

251 =0

hmIP’Nl

N—o00

xN@G) - %/Tt(u)G(u)du

We use again (B) and the fact that ﬁ_lft =T} to get

1
lim P~ ||V (G) - 2 / Ty(w)G(w)du
N—o0 2

and the theorem is proved.

4. ONE-BLOCK ESTIMATE
The aim of this section is to prove the following so-called one block estimate ([[L]).

Lemma 5 (One block estimate). For any G € C§(R), any t > 0, and any § > 0,

25]:()

iZ(ANG)(x/N) t ds 1e—1(8)Nz+1(8)
e J

TEZ

N —oc0

lim IP’ [

Since G € C3(R), we can replace (AnG)(z/N) by

1
e, 2 (GO

as soon as k < N and we are left to prove that

o, B AN +1, Z / 2k+1‘ Z<k77y(8)77y+1(8) =0
YIS

Given two probability measures P, @ on € and A a finite subset of Z, Hx(P|Q) denotes the relative
entropy of the projection of P on R* with respect to the projection of Q@ on R*. We shall denote the
projection of P on RA by P|s. If A = Ay = {—k,...,k}, we use the short notation Pj.

We define the space-time average of (u2 )0<S<t by

N _
v 2N+1 Z/Tmﬂs ds

|z| <N

Here 7, denotes the shift by x: for any 7 € Q, the configuration 7,7 is defined by (7.7), = Nz.; for
any function g on €2, 7,¢ is the function on Q given by (7.9)(n) = g(7.n); for any p € P(Q), 7.p is the
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push-forward of p by 7,.. The probability measure p is said to be translation invariant if 7,.p = p for any
x €Z.
We have to show

1
(16) e P PR |
Y=

Lemma 6. For each fixed k, the sequence of probability measure (V]]Cv)Nzk on RM s tight.

Proof. Tt is enough to prove that there exists a constant Cj < oo independent of N such that

(17) Y edvy <Gy

P€EANE

We begin to prove that
(18) Ha, (¥ g) = H (v | sl ) < ColAl

Fix a bounded measurable function ¢ depending only on the sites in A := Ay, = {—k,...,k}. Assume
for simplicity that 2N +1 = (2k +1)(2p+ 1) for some p > 1. Then we can index the elements of the set
{=N,..., N} in the following way

{=N,....N}=A{a; +y;j=—p,....p; y € Ai}
where z; = 2kj + 1. Since ¢ depends only on the sites in A, it is clear that under ug, for each y € A,

the random variables (sz_,_y(b)j:_p , are iid..

Let pl¥ =t71 fot p2ds. By convexity of the entropy and ([L0), we have H (i)Y |15) < CoN.
We write

1
N _ —N
/ pdvy, = / ON 71 E T2 ¢ | diiy

|lz| <N
< 2]\|7A_||_ 1H(ﬂ£v|MB) + 2]\|[A_i|_ 11og (/dﬂﬁ elAlZISNnﬁ)
< GOl + gpirtog ([ g o Brer Sz )
< ColA| + 2}&' A S log </ duz eZiss ry+mj¢)
yeEA

where we used the entropy inequality (E) and the convexity of the application f — log ( i dug ef ) By

independence, for each y, of (sz+y¢) and the translation invariance of uz, we get

J==DssP
(19) /¢dy,fj < Co|A| + log (/e%uﬁ)
This implies (@) and, by the entropy inequality (E), the inequality () O

For any k, let v be a limit point of the sequence (Z/,ICV )n>k. The sequence of probability measures
(V) k>0 forms a consistent family and, by Kolmogorov theorem, there exists a unique probability measure
v on () such that v;, = v;. By construction, the probability measure v is invariant by translations.

Lemma 7. There exists Cy such that for any box A, = {—k,...,k}, k>0,
(20) Ha, (v|pg) < ColAg|
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Proof. We have seen in the proof of the previous lemma that
(21) Ha, (VN |ug) = H (Vziv ‘ uglAk) < ColA|
Since the entropy is lower semicontinuous, it follows that
Ha, (vpg) < ColAg|
O

A translation invariant probability measure v on 2 such that (@) is satisfied is said to have a finite
entropy density. By a super-additivity argument (see [, [EI]), the following limit

_ . Ha(v]pg)
(22) H(v|pg) = lim A

exists and is finite. For any bounded local measurable function ¢ on 2, we define the limit

_ ) 1 _ - .
F(¢) = lim T TFe(9),  Fi(o) = 10g/627.:7k Cdpg

The entropy density H(v|uz) can be expressed by the variational formula

(23) A(vluz) = sup { [ oar—rio)}

where the supremum is taken over all bounded local measurable functions ¢ on 2.
We now show the following lemma

Lemma 8. For any function F € C}(2), we have

/EFdeO

Proof. Assume that F' € C}(f2) has a support included in R**~1. We have

/Lde:/ﬁdek = lim /,Cde,QV
—00

Define G = (2N +1)~! > jzj<n ToF. By It6 formula
N2 {/duiv(n)G(n) - /duN(n)G(n)}
_ / ds [ du ) (£6))
- / il (n) (£G) ()
—t [ d ) (£F) o)

Since F' (and hence G) is bounded, the left-hand side goes to 0 as N goes to infinity and it follows that

/EFdeO
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Recall that we want to show () From the previous lemmas, it is sufficient to prove that

, 1
lim [ dp(n) %—HZ%WH =0

k—o0
ly| <k

for any p € P(Q2) such that p has finite entropy density, is stationary for £ and translation invariant.

Propositionﬂl gives the characterization of stationary probability measures, translation invariant, and
with finite entropy density. By using the notations of this proposition, to complete the proof of Lemma
E, we have to show that

1
I dA dp ||sm 3 L
kggo (0,+00) (ﬁ) /]R2k+1 a 2k +1 MyMy+1

ly|<k

Since, under g, the random variables (1/Bn, ), are distributed according to standard independent Gauss-
ian variables, and [ 7'd\(8) < 400, it remains to prove

1
li d e T
kl)nolo R2k+1 ot 2k +1

> iy +1)]| =0

ly|<k

By using Schwarz inequality, a simple computation gives the result.

Proposition 1. Let v be an invariant measure for L which is translation invariant with finite entropy
density. Then, v is a mizture of the Gaussian product measures pug, 5 > 0,

= d\
v /(Oﬁm) (8) s

and the probability measure X on (0,+00) is such that
/ BrAN(B) < +o0
(0,400)

In order to give the proof of this proposition, we need the following lemma

Lemma 9. Let v be an invariant measure for L, translation invariant with finite entropy density. Then,
for any local measurable bounded function ¢ on 2, we have

Vi ez, / (6% — b)) dv = 0

Proof. We only give a sketch of the proof since the arguments are almost the same as in [, Proposition
6.1 (see also chapter 2 of [H]).

The proof is divided in two steps. Let us first consider a generic probability measure v,, not necessarily
translation invariant, such that H (v /ng) < +o0 and let us denote by g the density of v, with respect
to 3. We introduce, for any n, the Dirichlet forms

=supy — Sn v
(24) D, (vi) = wp{ m d *}

where the supremum is carried over the set F composed of the positive functions ¢ : Q — (0, +00) such
that 0 < M1 < 1) < M for some positive constant M.
It is easy to check that if D, (v.) < +oco then

(25) Dav) =5 3 2 [ (o) dus

r=—"n
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where for any function u: Q — R, Yyu is the function defined by (Yyu)(n) = u(n®) —u(n). Observe that
Y2 = —2Y, so that —S,, = (1/2) Eszn Ve Y2,

In fact, even if v, is not absolutely continuous with respect to pz, the Dirichlet form D,,(v«) defined
by (R4) makes sense in [0, +00c].

Recall that (P]*):>o is the semigroup generated by the finite dimensional dynamics introduced in
section f]. We have the following well known entropy production bound (see [f] or [, Theorem 9.2)

H(. Pl | pg) + tDn (V1) < H(va | pp)

where 7}, = t~! fot v Plds.
Let us denote the density of 7}, with respect to uz by gf*. Since H (v.|ug) < +oo, we have Dy, (7)) <
+o00 and, by the explicit formula (@) of the Dirichlet form,

n -t O __\ 2
(26) B2 )+ 250 S [ (VVaF) dus < v g)

Jj=-n

The second term on the left-hand side of the previous inequality is composed by a sum of positive parts.
We can restrict this for any m < n. By using (F) and the variational formula (R4) for the Dirichlet form,
we get that, for any function ¢ € C}(2) and any functions ¢; € F,j € {—m,...,m},

m 21/}
/Ptn¢dV*_10g/ ¢d,u5+ 5 Z ¢jdft<H(V*|M,@)

J

j=—-m
We let n — oo and, by (E), we have

27 Pi¢dv, — 1 e?d o~ Y dv., < H

(27) r¢dv, — log % + 5 j_z_m v Ut (vilpg)

_ gt
where 7, ; =t~ [ v, Psds.

In the second step of the proof we apply (@) to v, = ™ = 1/‘

3 . We recall that A,,
Am Afn

denotes the box {—m, ..., m} and AS, stands for Z\A,,. Observe that H(V,gm) lng) = Ha,, (V|pg) so that

lim (2m + 1) ' HW™ |ug) = H(vlps)

m—0o0

By choosing ¢ = Y"1 T;¢0, i = Titpo, with ¢g € C§(Q) and ¢y € F, we get

m)  F L= Y3y m
Z /Pt Tido)ds™ = Fn (6 TZ/ C2dn < Hw™ |ug)

i=—m 1=—m

We claim that

(28)
lim

Yo 7/)0 Yo 7/)0
m—oo 2m + 1, Z / ARTE

Then, by using ) and optimizing over ¢y and ¥y, we get

Y2
sup / 0 wodu =0
Yo 1/)0
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It is clear that we can repeat the argument substituting Y; to Yp, and we obtain

Yo
sup

dv =10
Yo 1/)0

so that, by summing over j, we have D, (v) = 0 which implies that v is invariant by any flip.

It remains to show (@) The difficulty comes from the fact that even if the function w is local Piu is
not. But it is easy to see, by using @), that we can replace the semigroup of the infinite dynamics P;
by the semigroup of the finite dimensional dynamics P;*, if n is sufficiently large. The function P;*u is
then local and the ergodic theorem permits to conclude.

We refer the interested reader to @] for the details of the arguments.

O

Proof of Proposition E By Lemma E, we have [Sgdv = 0 for any bounded measurable function g on
Q. Tt follows that for any g € CL(Q),

(29) / Agdy =0

Since v has finite entropy density, we have [egdv < +oco. By translation invariance, the ergodic
theorem gives the existence v a.s., and in L!(v), of

1
= lim —— = lim —— 2
u) = Jim g > e E0) = Jm s D
lz|<e x| <e
Since v is invariant with respect to any flip, we have v almost surely that u(n) = 0.
Assume first that v is exchangeable.
For any z € [0,00) let v, be the probability measure
v, =v(-|€ = 2)

If z = 0 then v, is the Dirac mass concentrated on the configuration §p with each coordinate equal to

Let us now assume that z # 0.
Consider a test function g in (R9) of the form

1
g(m) = f(n) x w1 Z s
] <t

with f, x compactly supported and smooth. It is easy to show, by taking the limit £ — oo in (E) with
g as above, that

/Afduz:0

and this can be extended to any f € C3(Q). We apply the previous equality with a function f of the
form
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with ¢ € C3 () independent of 7,. Then we get

0 = /(7796+1 - nz—1)¢de(U) + Z /(Uerl - ny71)nz<9ny¢dvz

yFT
_ / (os1 — To—1) g ()

+

/(nz - 771—2)7716779“1 ¢dv, + /(nz+2 - nm)nzanm+1¢dyz

+ Z /(ny-i-l - ny—l)nzany Pdvy,

y#r—1,x,x+1

We claim that the last term is equal to zero. This is a consequence of the exchangeability of v,. Let A
be the support of ¢ (which does not contain x by assumption). Observe that, for any y # . — 1,2,z + 1,
the site x does not belong to the support of (9,41 — ny—1)9y,¢. Let t be sufficiently large (e.g. ¢ >
|z| + maxsen |s| + 10). By exchangeability we have, for any & > 0, that

/(ny-i-l - ny—l)nmany¢dyz = /(ny-i-l - 77y—1)77t+kany¢dyz

Hence, we get
=
/(Uy+1 — Ny—1)N20n, ¢dv, = ZZ/(ny-H — Ny—1)Ne+k0, Pdv,
k=0

Let £ go to infinity and use the convergence of £~! Zi;t Nk 1o u(n) = 0 to conclude.
The same argument shows that

/7796727796877:71‘7&17/2 =0, /7796+27718m:+1 pdv, =0

and, similarly, we have

/nianzfl‘bdyz :Z/anzflfbdym /nianzﬂﬁbdl/z :Z/anx+1¢dl/za

Hence, we proved that, for any = € Z and for any function ¢ € C}(£2) such that = does not belong to
the support of ¢,

/ (Mot — Mo—1)ddva(n) + 2 / (O s — Oy )by = 0

We apply this for a function ¢ depending only on (12x)kez, so that, for any k, ¢ is independent of
Nok+1. We have

/ (Maere — 7o) bdva(n) + 2 / (Oae — Oa )l = 0

This implies that the law of (n2x)kez under v, is a product of centered Gaussian probability measures
on R with variance z (see e.g. [[L3]).

The same result occurs for the law of (92x+1)kez-

Let now ®4(n) = [[,c4 ¢s(ns) be a test function with A a finite arbitrary set of Z and ¢, real valued
bounded functions. We write the set A in the form Ay U A; where Ay is the set composed of elements of
A which are even and A; the set composed of elements of A which are odd. Let By be a set composed
of even sites such that |By| = |A1]| and AN By = 0. Let o be a permutation on Z such that o(A;) = By
and Ay is fixed under the action of 0. We denote by o - 7 the configuration defined by (o - 1)z = 5(z)-
By exchangeability of v, we have

Va(®alo 1)) = va(®a(n))
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and

Palo-n) = H ¢s(ns) H d)a*l(s)(nS)

s€EAg s€Bo

Since the function ® (o - 1) is a function depending only on (n2x)rez and Ag N By = () we know that
(@ato ) = [T ([ o@e@ac) TT ([ orso@umutarie)
sEAQ s€Bo

We recall that g1/, is the density of the centered Gaussian probability measure on R with variance z.

Hence, we proved
va(®a(n) = [ ( / ass(x)gl/z(x)dx)

seA

which shows that dv,(n) is equal to [], .5 91/2(02)dn..
We now show that v is exchangeable. Let us consider the test function x (1) = ¢(Ng, Net1)V(ey; y #
x,2 + 1) with ¢, 1 smooth and compactly supported functions. By (@), we have

/dqu:O:/Agbwdqu/qﬁAwdz/

Observe that the second term is given by

3 / A ()11 Doy ) (1) (1. — 1) (01 T11)

y#z,r+1

This is equal to zero because v is invariant by the flips and the function n — n,(9.,%)(n)(Ny+1 —
Ny—1)P(Nz, Net1) is an odd function of n, for y # x, z + 1.
Moreover we have that

(A¢)(77) = (7795-',-2 - nz)anm+1¢ + (7795-',-1 - nz—l)anm(b

Remark that 1,420, ., ¢ is odd with respect to 1,42 so that its integral with respect to v is equal to
0, and similarly for 7,110, ¢. Hence, we get

/dl/(n) (Na410n, & — N20n,,, 0) Y =0

This equation implies that v(n;, nz+1|(ey; y # z, x + 1)) is exchangeable.
Let now @ be a local test function of the form

‘I)(U) = H ¢s(ns)

SEZ

where (¢s)s is a sequence of bounded smooth functions equal to 1 for |s| > A for a positive constant A.
Our aim is to prove that for any x we have

(30) v(@(n™")) = v(®(n)

which implies the exchangeability of v. We can assume that each ¢, is even or odd since every function
can be decomposed as the sum of an even and an odd function. Moreover each even function ¢g(7s)
takes the form ¢, (e,) for a suitable function @,.

If one of the ¢ is odd, since v is invariant by all flip operators, (B(}) is trivial because the two terms
are equal to zero. We assume that all the ¢, are even so that @ is in fact a function depending only of the
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energies e, and we write ®(n) = ®(e) = [Lez ¢s(es). We shall denote by 7 the law of e := {e, ; y € Z}.

We have
[t = [ i)
:/dﬁ(ey, Law1) (/ &)A€, ariley, y #x,x—i—l))
:/d v(ey;y # o, + 1) (/ (€™ N di(ey, exy1ley, y # T, x+1))
— [ et i)

where we used the exchangeability of (1, ns+1|(ey; ¥y # =, 2+ 1)) in the third equality. It concludes the
proof that v is exchangeable.

Hence, we can express v as a mixture of ug, 8 € (0, +o0], with the convention that ye is the Dirac
mass concentrated on the configuration dg:

= d\
v /(Oﬁm] (B)1ss

In fact, A is the law under v of the random variable 1/£(n). It remains to prove that v(E(n) = 0) =
A({+o0}) = 0. It is a simple consequence of the fact that Hx, (v|uz) < ColAx| for any £k and in particular
for k = 0. By (f), we have that for any positive real M

Co > M/l{o}(x)du’{o}(ac) —log (/ ejwl{o}(m)gﬁ(x)dx) = MA({+00})

Since M is arbitrary large, it follows that A({+o00}) = 0. O

5. MOMENTS BOUNDS
The aim of this section is to give the proof of the following lemma:

Lemma 10. Let uV be the probability measure u assocmted to a temperature profile bounded below

by a strictly positive constant such that (ﬂ) and (ﬁ) are valid. Let (Mn)n>1 be a sequence of positive
integers such that liminf N oo My /N > 0. Then, there exists a positive constant C, which is independent
of N, such that

1
| &, 0] <
and
1 2
i By | g D (0] =0

N |z|<My

Let us first explain why the second equality of this lemma is nontrivial. The standard arguments
to get moment upper bounds are based on the entropy inequality (E) and the existence of exponential
moments. In our case it would be necessary to have ug(e 0”73) < +oo for a sufficiently small. This is
false since pg is a Gaussian measure. In I |, following an idea of Varadhan, and despite the absence of
exponential moments, the use of the entropy inequality for the microcanonical measure was sufficient to
get a weak form of the lemma we want to prove. This approach cannot be carried here because we are
in infinite volume and because the Dirichlet form is too degenerate to reproduce the argument.



20 CEDRIC BERNARDIN

Proof. The first statement is a simple consequence of the entropy inequality (E) Indeed, for any 6 > 0,
we have

1 H (i |pg) 1 53 n2 /2
TISMN

The first term on the right-hand side is of order one by (@) and the second term is also of order one if
¢ is sufficiently small. Hence the left-hand side is of order one in N uniformly in time.

The bound on the second moment of the energy is more difficult to obtain and the entropy inequality
is not sufficient. We exploit here the Gaussian structure of the initial state.

Recall the integral equations (E) defining the dynamics. Each Poisson process N, is interpreted as
a clock and a jump of N, as a ring of the clock. Conditionally to the realization of N = (N} )., the
dynamics is linear, thus the law remains Gaussian in the time interval between two successive rings.
When a clock rings the flip operation conserves the Gaussian property of the state. Hence, conditionally
to NV, the state remains Gaussian for any time. It follows that the law u¥ of the process at time ¢ is a
convex combination of Gaussian measures G, ¢ with mean m € RZ and correlation matrix C € Sy, (R),
the space of symmetric matrices indexed by Z:

i = / dp(m, C) G

Moreover, the convex combination p;(m,C') is the law at time ¢ of the Markov process (m(t), C(t)) with
formal generator N2G where

(QF)(m, C) = Z(C:H-Ly - Cﬂc—Ly + Cz,y-i-l - Cz,y)aCm,yF

3 et — )0, F + SR (O, ) = F(C,m)

with C* given by

(O = Chyw if [u## z and v # z] or [u=v = z],
e —C,», otherwise

and
() = (1
In other words, (C(-), m(-)) are the solutions of the following integral equations
oy (') = (—1N=EDFNE) (C »(0)
— Jy (FDPN N [y (5) = Co1y(5) + Coya(5) = Cy1(s)] ds)
rw@@z()N“>( — Jy DN [y () = g (5)] ds )
with initial conditions
me(0) =0,  Coy(0) = do(z —y)By ' (z/N)
and t' = tN2.
The existence and uniqueness of solutions is easily established (by the same methods as presented in
section E) in the space X = Ry x Ny, where

Ny = ﬂ {m € R%; Zef’lmmi < +oo}

a>0

N = ﬂ {c € Sz(R) ; Ze*aﬂz‘ﬂyl)c;y < +oo}

a>0 z,y
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Observe that the initial condition belongs to X. Moreover, for any (m,C) € X, the Gaussian measure
with mean m and correlation matrix C' is meaningful (see e.g. chapter 2 of [f)).
This Markov process conserves the three quantities

(31) Yomi, > Cl Y Cos
TEZ z,YEZL TEL
The initial condition xV is such that pg is the Dirac mass concentrated on
m =0, Caoy=do(z—y)f" (@/N)

Therefore, we have m(t) = 0 for any ¢t > 0. By denoting, with abuse of notations, by p:(C) the law of
C(t) at time ¢, we have by the two last conservation laws (B1)) that

[ o) M%sz,yﬁlao(zy) - 2250 (2/N) — BP

T, yEL? N zez

Moreover, we have

4
2 2
By 7 > am| = > /dpt )Go,c (113)
lz|<Mn |z|<MnN
3
RIS ey
|| <My

1 _ 2 1
_3/dpt(c) W Z (Cm,z_ﬁ71)2+ BMQ Z Cm,z +O <M—N)

N |z|<My

where we used the fact that, for a Gaussian centered variable, the fourth moment is given by three times
the square of the second one.
Observe that

1

/dpt Z Coop =2E,~n |5 Z ex(t)

M
M5 lz| <My Nz|<My

and this term is order My' by the first part of the lemma.
Up to terms of order M;l, we are left with

[an© = T @

N z|<My
1
< [anic) 1z 2 (Cow =500~y
x,y€Z?
1
:/de(C) M—]QVZ( — B oo(x —y
x,yE€Z?
= zzﬁo (z/N) —

N zez

since the penultimate sum is conserved by (C(t));>0. By the assumption ([]), the last term goes to zero
as IN goes to infinity. O
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6. GREEN-KUBO FORMULA

In this section we study the homogenization properties for the diffusion coefficient in the linear response
theory framework. To present the results we have to introduce some notations.

Let (v.)zez be a sequence of i.i.d. positive random variables satisfying the assumption

Ply- <7 <ml=1
where P is the probability measure on RZ given by the law of the disorder 7 = (v, )zez. The corresponding
expectation is denoted by E.

In this section, time is not accelerated by a factor N2. We first consider the closed system of length
N > 1 with periodic boundary conditions. Let Ty = {0,..., N — 1} be the usual discrete torus of length
N. The generator Ly of the system is given by () with the sums over x € Z replaced by x € Ty.

Linear response theory predicts that the diffusion coefficient D := D({~}, 8) appearing in (f) is given
by

(32) D= lim lim Ly(})
A>0,A—0 N—o0

where Ly := L}Y\,’ﬁ is the Laplace transform of the current-current correlation function. It is defined for
ze H", H" = {2 € C; R(z) > 0}, by

Ly(z) = f_N OOO dte_Zt< > dra(t), Y jy,y+1(0)>

z€T N yeTN
Here, (-,-) := (-,-)p denotes the scalar product in L.*(u}) where
pg (dn) = 1] 980n)dn.
z€T N

is the Gibbs equilibrium measure with inverse temperature 8 > 0 on RT¥. We also use the short notation
(-)p := (-) for the expectation with respect to .
The Laplace transform Ly can be written as

2
LN(Z) = f_N< Z jz,z-‘rla (Z - EN)_l Z jy,y-‘rl >

x€TN yeT N

Observe that the definition (BJ) is only formal since it is not clear a priori that the limits exist.

We also consider the homogenized Green-Kubo formula for the infinite volume dynamics. It is defined
by

D(B)= lim L°(A

(33) (B) = Jim L7\
where L := L? is the Laplace transform of the averaged current-current correlation function. It is defined
for z € HT by

62 [ee
= ?/ dte™*" < jo(t), jo.1(0) >

0

where < -, - >=<-,- >3 is the inner product defined for bounded local functions f and g by

L(z)

< f,g>p=E <Z (T2f.9)p — <f>ﬁ<9>ﬁ]>

TEL

We shall denote by L?(< - >>) the Hilbert space generated by the set of bounded local functions and
the inner product < -, - >>.
The aim of this section is to show the following homogenization result
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Theorem 2. For almost every realization of the disorder vy, the Green-Kubo formulas (@) and @)

converge and are equal: D({~}, ) = D(B). Moreover, D is independent of /3.
We recall that the functions Ly and L are analytical functions on H, (see e.g. [R1], Theorem VIIL.2).
Lemma 11. There exists a constant C := C(B,74+), independent of N, v and z € Hy, such that
[Ln(2)| <C

Proof. The proof is a simple consequence of Proposition 6.1 in [[1J] and of the fact that Sj, .41 =
—2(Vz + Ya+1)Jz.z+1 (see also Theorem 2 in [E]) O

Let hY := hY¥(n; B,7) be the solution of the resolvent equation in L2({-)):
(Z - EN hN Z ]z r+1

x€TN
We have
g/ N1 .
Ly(z) = ) h "N Z Jyy+1
yeTN
Let h, := h.(n; B) be the solution of the resolvent equation in L?(< - >):
(Z - E)hz = jO,l
We have

2

L(z) = % < hayjon >

Observe that if 7 is distributed according to us then 5'/27 is distributed according to ;. Since
h.(n;1) = h.(n; ) and j; »11 is an homogeneous function of degree two in 7, it follows that LP(z) =
L'(z). This implies the independence of the diffusion coefficient with respect to 3.

In the following lemma we give an explicit formula for L(z) if (z) is sufficiently large.

We shall denote by Pr.yy. the law of the two-dimensional simple symmetric random walk (S;);>0 =
(S7,5%);>0 starting from (0,1) and by Egw. the corresponding expectation. Let E be the annealed
expectatlon EEg w..

For any path {S;}¢j—o,...x} of length k, we define e({S}x) = Hk 1((Sj+1 —8;)-w) € {£1}, where w
is the vector (1,1) and x -y denotes the usual scalar product of the two vectors x and y of R%. We also
introduce the random potential

1
2+ Lozy (72 +79)

Lemma 12. There exists Ao > 0 such that, for any z € Hy with R(z) > Ao, the Laplace transform L(z)
s given by

exp(=Vz(z,y)) =

(34) L) = 5 (AR [e({8)e) e~ S0 V=505, (7 - )
k=0

Proof. Since the generator £ maps a polynomial function to a polynomial function of the same degree,
the solution of the resolvent equation is expected to be of the form

> b(a,y)meny
T,y€Z?
where ¢, (z,y), (z,y) € Z?, is the (symmetric) solution of

d1()d0(y) + do(x)d1(y)
2

(35) (24 (Vo + 7y Lary) 92 (,y) + (Vo2 ) (@, y) = —
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with, for any function u : Z?> — R,

(Vu)(z,y) = (u(@,y +1) = u(z,y = 1)) + (w(z +1,y) —u(z - 1,9))

We shall denote by A the real part of z € Hy. In the sequel we show that, if A is sufficiently large, a
solution to ) exists, so that h. is of the form given above. In fact, it is not difficult to show that a
solution to (BY) exists for every z € H,.

The Laplace transform L(z) is equal to

3 1 .
L(z) = 5 <hajor =50 3, 6:(@0)may ¢ jor >
z,yEL2
2 1
_ _7;;15 ¢:(,y) lim_ 2n+1“§ (any i he+1)

= %ZE [@=(z,y)(01(x —y) + d-1(z —y)]

z,y

E (> ¢.(x,x+1)

TEZ

We define the operator T, acting on the set of real valued functions v on Z2, by
1

(2 + (Vo + 7)) Lozy)

Then (BY) can be written in the following form

¢z + Tz¢z = Pz

(36) (Tzu)(z,y) = (Vu)(z,y)

where p, is the function given by
(01(2)do(y) + do()d1(y))
2(2 + (V2 + vy)Lazy)

Observe that || T:9|lcc < (4/N)||¢|lco so that if A > 4 then T, is contractive for the || - ||oo norm. It
follows that for A sufficiently large

pz(xvy) - =

o0

¢, = Z(_l)szkpz
k=0
For any x € Z?, we have the following representation of the operator T*
(T u)(x)
(37) _ Z Z ey - W €k W) ?;g Vz(x+€1+»»»+6j)u(x+el +---+€k)
lex|=1  |ex|=1

with the convention that the term in the exponential corresponding to 7 = 0 is V. (x). We obtain
o (x x+1)

k:O

[01(x + S)do(x + SF) + do(x + SE)d1 (z + SP)]
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By summing over x € Z and by taking the expectation with respect to the disorder, we obtain

k: 2
L(z) = __Z { ({S}i)e™ Zi=o V=(8i= (Sk,sk))lsul:sﬂ
1 _(al ol
LS AR [s(Spe Dok ]
k=0

By taking first the expectation with respect to 7, we see that we can translate the environment and
hence the potential by (S7,S?) in the first expectation and by (S}, S}) in the second one. Therefore, we

get (B4).

O

Lemma 13. There exists Ao > 0 such that, for any z € Hy with R(z) > Ao and almost every disorder
v, the limit of Ln(z) as N goes to infinity exists and is given by

(38) - _Z [ ({Shi) e™ o= V=554, (S7 - S,i)}
Proof. The proof is very similar to the previous one. We look for a solution in the form

= ¢:(z,y)namy

zy
with ¢, (z,9), (z,y) € T%, the solution of
= Gz —y) +01(z—y)
(39) (2 + (Vo +7) Lazy) 9= (2,y) + (Vo) (2,y) = — 5
Let A be the real part of z € H, and define the operator T, acting on the real valued functions on

T%, according to () Then (@) can be written in the form ¢, + T.¢. = p,, where p, is the function
given by

(O1(z—y)+da(z—y))
2(z + (Y2 + ) Laty)
Observe that ||T.ullce < (4/A)]|ulloc so that if A > 4 then T, is contractive for the || - ||ooc norm.
Therefore we have the following representation of ¢,

Pz(SC,y) ==

o0

¢, = Z(fl)szkpz
k=0
For any x € T% we have

(TEu)(x)
= Z Z e1-w)...(ex-w)e” i=0 Vebetertete y(x 4oy + ...+ ep)

lex]=1 " [ex|=1

Hence, we obtain

1
(TEp)(@,@+1) = —5(~4) B [e({Shr)e 20 =0+ 5,, (57 — 5|

Since V. ((x, ) + S;) = 7 V.(S;), the ergodic theorem implies

fim 3 6.0+ 1) =~ S (—AE [=({S)) e T 5, (57 - 5]

N—oco N
x€TN k=0

This completes the proof.
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O

Since the sequence (L?V’B (2))n is a bounded sequence of analytical functions on H,, Montel theorem
implies it forms a compact sequence in the Banach space of analytical functions. Let Lg;’ﬁ, ng”ﬁ be any
(analytical) limit points corresponding to the realizations of 4! and +? of the disorder. For any z € H
such that {R(z) > Ao}, we have

L27(:) = 1°(2) = 122°(2)
Since the two analytical functions L21# and L22% on H, coincide on {z; M(z) > Ao} with L?, they
are equal on H, to L?. Tt follows that, for almost every realization of the disorder and every z € H, the
limit as N goes to infinity of LX,’B () exists and is equal to L?(z). The theorem is a trivial consequence
of the following non trivial fact:

Lemma 14. The limit, as X € (0, +00) goes to 0, of L?(\) ewists.
Proof. The proof is similar to the proof of Theorem 1 in [J] (see also [[]). O
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