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Heat fluctuations in an out of equilibrium bath

J. R. Gomez-Solano,ﬁ A. Petrosyan, and S. Ciliberto

Laboratoire de Physique, Ecole Normale Supérieure de Lyon,

CNRS UMR 5672, 46, Allée d’ltalie, 69364 Lyon CEDEX 07, France

(Dated: April 11, 2011)

We measure the energy fluctuations of a Brownian particle confined by an optical trap in an aging
gelatin after a very fast quench (less than 1 ms). The strong nonequilibrium fluctuations due to the
assemblage of the gel, are interpreted, within the framework of fluctuation theorem, as a heat flux
from the particle towards the bath. We derive, from a simple model, an analytical expression of the
heat probability distribution, which fits the experimental data and satisfies a fluctuation relation
similar to that of a system in contact with two baths at different temperatures.

PACS numbers: 05.40.-a, 05.70.-a, 05.70.Ln

The heat flux between two reservoirs at different tem-
peratures is an important and useful example of an out
of equilibrium process. In small systems this heat flux is
a strongly fluctuating quantity and the probability dis-
tribution of these fluctuations has been recently widely
studied, within the context of fluctuation theorems [ﬂ]
These studies have been mainly devoted to the steady
state, that is when the temperatures T4 and T of the
two reservoirs, A and B, are kept constant. In such a case
the probability distribution P(Q,) of exchanging with
the reservoir A the heat @, in a time 7, is related to the
that of exchanging the quantity —@Q, according:

1\, @)
P(iQT)

where AB = (1/Tp — 1/Ta)/kp, kg is the Boltzmann
constant and kgApS @, can be easily identified as the
entropy production during the time 7 [EI«E] This equa-
tion has been derived for several theoretical models [E, E]
in the stationary regime. However the non stationary
case, although very useful for applications, has been stud-
ied only in some specific models @] of systems relaxing
towards equilibrium. Thus one may wonder whether a
relation like Eq. () may still hold, how it is eventually
modified and what kind of information on the system can
be obtained [{].

These important questions have never been analyzed
in any experiment. Thus the purpose of this letter is
to give new insight to this problem, by measuring the
energy fluctuations of a Brownian particle used as a probe
inside a gelatin relaxing towards its solid-like state (gel),
after a very fast quench, from above to below the gelation
temperature Tge;. The main result of our investigation is
that these fluctuations can be interpreted as a heat flux
from the particle towards the bath. The measured P(Q,)
satisfies an equation formally equivalent to Eq. (m), but
in this case Af is a decreasing function of time. The
P(Q;) can be fitted by an analytical expression that we
derive from a Langevin equation for a Brownian particle
coupled with an out of equilibrium bath.

The experiment has been performed using gelatin, a

=ABQ; (1)

FIG. 1. (a) Schematic representation of the experimental
setup to perform a local quench in a sol droplet around a
trapped particle in the gel bulk. (b) Time evolution of the
viscous drag coefficient o of the particle and the correlation
time 7o of the gelatin droplet measured after the quench at
f=5Hz. Inset: kto/v0 as a function of time.

thermoreversible gel obtained from denatured collagen.
Above Tye an aqueous gelatin solution is in a liquid vis-
cous phase (sol), whereas below T, the formation of
a network of cross-linked filaments leads to an elastic
solid-like phase (gel) [[fl. In this gel phase the gelatin
viscoelastic properties slowly evolve toward equilibrium
and share some common phenomenological features with
glassy dynamics [ﬂ»ﬂ] We are interested in this transient
out-of-equilibrium regime, that we use to study the fluc-
tuations of the energy fluxes from and to the heat bath
in the nonstationary case. A similar problem has been
theoretically analyzed for the first time in Ref. [ff] for a
model of aging spin glasses. It has been found that a re-
lation like Eq. (EI) can be applied to a relaxing system to
obtain quantitative informations on the heat exchanges
with the bath. We show in this letter that this approach,
exploited only once in real experiments [E], can be in-
deed very useful for understanding the properties of a
Brownian particle in an out-of-equilibrium bath.

In the present experiment, an aqueous gelatin solution
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FIG. 2. (a) Time evolution of x after a quench. o.(t)* is
computed over 6t = 0.1 s and over 60 independent quenches.
(b) Time evolution of ¢, (t)? (normalized by kT /k) after the
quenches performed in gelatin (o) and glycerol (dashed line).
Inset: Probability density of « at ¢ = 0.5 s and 50 s for the
quench in gelatin. The solid lines are Gaussian fits.
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(type-B pig skin) at a concentration of 10%wt is pre-
pared following the usual protocol [E] For this sample
Tyer = 29°C. This solution fills a transparent cell the
temperature of which is controlled by a Peltier element
[Fig. [[(a)], at Ty = 264£0.05°C < Tye;. Thus the solution
inside the cell is in the solid-like phase. A silica bead, of
radius r = 1 pum, is kept inside the gelatin in the focal po-
sition of a tightly focused laser beam (A = 980 nm) at a
power of 20 mW. At this power the laser produces on the
particle an elastic force of stiffness £ = 2.9 pN/um. Be-
cause of light absorption, the temperature of the trapped
particle is 7' = 27°C, which is still smaller than Tj;.
Therefore the bead is inside the solid gel in the beam
focus at a distance h = 25 um from the cell wall, see
Figfl(a) 1. Starting from this condition, the laser
power is increased to 200 mW and the local tempera-
ture around the focus rises to 38°C > Ty.;. As a result
the gel melts and a liquid droplet of radius a = 5 um,
is formed around the trapped bead inside the the solid
gel bulk, as sketched in Fig. [(a). After 180 s, the laser
power is suddenly decreased again to 20 mW so that the
temperature is homogenized by heat diffusion into the
bulk in less than 1 ms resulting in a very efficient quench
of the droplet to the final temperature 7' < Tye. At T
the liquid inside the droplet solidifies in about 1 hour

and the particle, trapped in the center of the drop by
the focused beam, is a probe of this relaxation dynamics.
The quenching procedure is repeated 60 times in order
to perform the proper ensemble averages.

Immediately after the quench we record the time evo-
lution of the x position [see Fig. f](a)] of the trapped
particle measured by a position sensitive detector whose
output is sampled at 8 kHz and acquired by a computer.
The resolution of the measurement of x is about 1 nm
[@, . In order to characterize the particle dynamics
we measure, using active microrheology ], the time
evolution of the viscous drag coefficient vy of the particle
and the largest correlation time 7y of the fluid. This is
done by measuring the response of the bead at a time-
dependent sinusoidal force F' of amplitude 87 fN and fre-
quency f applied to the bead. The force F = kxg is
obtained through the modulation of the beam focus po-
sition xg. The results for 79 and k7y, measured at f =5
Hz, are shown in Fig. fl(b). First, for ¢ < 200 s after the
quench there is a transient regime where the droplet is
purely viscous, 1y ~ 0, whereas g increases in time. In
this regime vy and 79 do not depend on f. For ¢t > 200 s
the liquid gelatine inside the drop has a behavior similar
to that observed in macroscopic samples @, E], i.e. the
liquid drop is actually undergoing gelation. We will study
the nonequilibrium statistical properties of the bead dy-
namics in the very first 200 s after the quench where the
liquid gelatin inside the drop is mainly viscous and the
elasticity is negligible with respect to k, as shown in the
inset of (b), where we plot k79/70 as a function of time.

We begin by analyzing the variance o, (t)? of = at time
t after the quench. o,(t)? is computed over 60 indepen-
dent quenches and over a short time window 6t = 0.1 s
around each value of ¢ in order to improve the statistics,
as depicted in Fig. P(a). The time evolution of o, (t)? is
plotted in Fig. PJ(b). At the beginning, o, (t)? is almost
three times the equipartition value kgT'/k that would be
obtained at equilibrium. This shows the presence of a
stochastic force on the particle due to the transient for-
mation of the gel network. This force weakens compared
to the thermal fluctuations becoming negligible at ~ 20
s so that o, (t)? slowly decreases in time, reaching the
equilibrium value for ¢ 2 20 s. This relaxation timescale
is two orders of magnitude larger than the initial vis-
cous relaxation time of the particle: 7, = vo/k = 65 ms.
Finally for ¢ > 200 s, 0, (t)? starts again to decrease be-
cause of the appearance of a strong elastic component of
the gel confirming the direct measure of v, 79, shown in
Fig. (b), and justifying that for ¢ < 200 s the gelatin
elasticity is negligible. During this relaxation process z
remains Gaussian as shown in the inset of Fig. P(b).

In Fig. 2(b) we also plot the time evolution of o, (t)
measured, after the same quenching procedure, in a New-
tonian fluid (glycerol 60%wt in water) with the same vis-
cosity of the initial sol phase of gelatin. In this case, the
particle dynamics must settle into an equilibrium state in
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FIG. 3. (a) Probability density P;(g-) of the normalized heat
gt for 7 = 30 s at different times ¢ after the quench. The
theoretical lines are computed using Eq. (f). Inset: P:(g-)
computed, at the same ¢ and 7 during a quench performed in
glycerol. The solid line corresponds to the theoretical equi-
librium profile. (b) Asymmetry function of the P;(g-) shown
in (a). The straight lines are obtained using Eq. (é)

a time ~ 73 after the quench [LJ]. Indeed in Fig. P(b) we
see that, in glycerol, 0, (t)? = kgT/k for all t within the
experimental accuracy. This confirms that no experimen-
tal artifact is present and that the observed dependence
of o, (t)? in gelatin is a real non-equilibrium effect due to
the sol-gel transition.

We now focus on the energy fluctuations of the particle
inside the droplet for ¢ < 200 s, i.e. when k7o/v0 < 1.
Thus the energy of the particle is simply U (t) = ka(t)?/2.
As there is no external force acting to the particle, the
energy fluctuation AU; , during the time 7 is equal to the
heat ;- exchanged between the particle and the bath

[@], specifically
k., o 2
Qt,T = AUtﬂ— = §($t+7’ — .’L't). (2)

The mean heat transferred during [¢,t + 7] is

(Qi.r) = (k/2)[o.(t+7)? —0.(t)?] <0, which reveals the
existence of a mean heat flux from the particle to the sur-
roundings over the timescale 7 because of the relaxation
of o,. The maximum value [(Q; )| =~ kpT takes place at
t =0sand for 20 s < 7 < 200 s. Non-negligible values
of the mean heat compared to kg7 persist for several
seconds after the quench. Nevertheless, as t increases,
[{Q¢,-)| decreases becoming negligible and experimentally
undetectable for t 2> 20 s .

The probability density function Pi(g;) of the nor-
malized heat ¢;, = Q-/(kpT) is computed over the
60 quenches and over a short time window 6t = 0.1 s
around each t and t + 7, as sketched in Fig E(a). We
focus on a large value of 7 in order to probe timescales
comparable to the relaxation of the nonthermal fluctu-
ations. Fig. [J(a) shows P,(¢.) at different times ¢ after
the quench for 7 = 30 s. P:(g,) is highly non-Gaussian
with a spike at ¢, = 0 and slowly decaying tails for all
the values of t. Immediately after the quench, Pi(g,) is
strongly asymmetric with a long tail occurring at nega-
tive fluctuations. Ast increases this asymmetry decreases
and P;(g;) becomes symmetric at ¢ > 20 s.Once again,
we check that the long-lived asymmetry occurs because
of the intricate nonequilibrium nature of the bath. In the
inset of Fig. fl(a) we plot P;(q,) with 7 = 30 s for the local
quenches performed in glycerol. P;(q,) quickly converges
to the equilibrium profile and it is always symmetric with
respect to ¢ = 0.

As in Eq.(), the asymmetry function pi(q;) =
In [P:(¢qr)/P:(—¢q-))] is commonly used to measure the
asymmetry of P(q,) between the positive and the neg-
ative values of the fluctuations. The function pi(g¢,),
computed from the P;(g;) shown in Fig. fj(a), is plot-
ted in Fig fj(b). It is a linear function of its argument
¢-: pi(¢r) = —APBi-qr. The slope AB; . decreases as t
increases approaching the symmetric value A3, = 0 as
{Q:,-)| < kpT. This linear relation, except for the time
dependent Ap, -, is formally similar to Eq.(), and it is
the first experimental evidence of the phenomenon theo-
retically obtained for a relaxing spin glasses in Ref. [E]
For comparison we also plot p:(q;,) for the quench in glyc-
erol at t = 0 and 7 = 30 s. In this case the heat exchange
process is always symmetric, stressing that this is due to
the nonequilibrium nature of the bath.

In absence of a theory for our experimental results we
model the nonequilibrium dynamics of the particle by an
overdamped Langevin equation for z:

Yo Tt = —kxy + Cta for t < 200s (3)

where —kx; is the harmonic force exerted by the optical
trap, and (; is a random noise representing the inter-
action of the particle with the out of equilibrium bath,
i.e. the drop undergoing gelation. Because of the out-
of-equilibrium state, the statistical properties of ( are
unknown, and it is in general a nonstationary and corre-
lated process. Multiplying Eq. (E) by #; and integrating



over the time interval [t,¢ + 7] one obtains the energy
balance Eq. (E) [@], where Q¢ r is

t+1 t+1
Qur = — / o & ds + / Ciads,  (4)
t t

which is the sum of the viscous dissipation plus the the
heat injected by the bath. Notice that (); , cannot be es-
timated directly as ¢ is unknown. The only experimental
way to measure @ ; is via Eq. (E)

The asymmetry of P;(¢,) can be directly linked to the
nonstationarity of the aging bath through the quantity
0,. Using Eq. (f) and the experimental fact that x is
Gaussian [Fig. fl(b)], the analytical expression of P(g,)

for large 7 can be computed [@]
Ay A,
%%) )

where K is the zeroth-order modified Bessel function of
the second kind,

A,
Par) = 22 Ko (B o e -

ox(t)  ou(t+7) kT
ox(t+7) o (t) koy(t)o.(t +7)

and Bt,T = At,T1 /1+ A%ﬁ,,./‘l

In Eq. (E) the asymmetry of the density is completely de-
termined by the parameter A, ; in the exponential. At
equilibrium A; ; =0, A;; = By = 1 regardless of t and
7, so that one recovers the symmetric equilibrium profile
Po(¢-) = Kollgr )/ with (ge.+) =0 [ Tn Fig, [i(a) for
each experimental P;(q,) we plot the theoretical predic-
tion given by the analytical formula (E) using the respec-
tive experimental values of o, shown in Fig. fj(b). The
excellent agreement confirms that the Langevin model
(B) is suitable to describe the particle dynamics and the
heat exchange with the gelatin bath after the quench.
From Eq. (ﬂ) one obtains the explicit expression for
the asymmetry function pi(q;) = —ApB: -qr and ABy »

) At,T =

t, T —

kT 1 1
A = — .
Be.r ko |oz(t+71)2  o04(t)2 (6)

Hence, the linearity of p:(¢.) is analytically satisfied
for all the values of the heat fluctuations and for all ¢
even when P(g,) is strongly non-Gaussian. In Fig. f(b)
we plot the straight lines with the slope ApS; , given
by Eq. (E) and computed using the experimental val-
ues of o,. The good agreement with the experimental
data shows that Eq. (E) verifies a fluctuation relation, as
Eq. ()

Eq.(f) gains a very intuitive interpretation if one intro-
duces an equipartition-like relation for the particle mo-
tion for 0 < ¢ < 60 s: kpTeps(t) = koy(t)?. Here T,sy
is the effective temperature perceived by the particle due

to its coupling with the nonequilibrium gelatin environ-
ment. In this way the parameter AfS, ; can be written
conveniently as AB,, = [1/Tess(t +7) —1/Tesr(t)] T,
which is formally equivalent to that of Eq. ([). Hence
AS; = —kpAp: +q:r can be naturally identified as the
entropy produced by the breakdown of the time-reversal
symmetry due to the the effective temperature imbal-
ance at two different times after the quench. As the
gelatin droplet ages AS, slows down and the particle
exhibits an equilibrium-like dynamics for the experimen-
tal timescales. We point out that unlike Eq. ([I) derived
in Refs. [, E] for nonequilibrium steady states, Eq. (ﬂ)
holds for a nonstationary regime created by the nonequi-
librium bath.

In conclusion, we have experimentally studied the fluc-
tuations of the heat exchanged between a trapped Brow-
nian particle and a non-stationary bath, i.e. an aging
gelatin after a very fast quench. We have shown that
the distribution of the heat satisfies a fluctuation rela-
tion even when the bath is in a non-stationary state. A
Langevin model justifies the observation. The analogy of
our results with those obtained for spin glasses suggests
that this fluctuation relation may appear as a very robust
symmetry property of heat exchange processes in other
kinds of relaxing systems.
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