
HAL Id: ensl-00546102
https://ens-lyon.hal.science/ensl-00546102

Preprint submitted on 13 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical Univariate Polynomial Composition
Algorithm

William Hart, Andrew Novocin

To cite this version:
William Hart, Andrew Novocin. A Practical Univariate Polynomial Composition Algorithm. 2010.
�ensl-00546102�

https://ens-lyon.hal.science/ensl-00546102
https://hal.archives-ouvertes.fr


Discrete Mathematics and Theoretical Computer Science DMTCS vol. (subm.), by the authors, 1–1

A Practical Univariate Polynomial

Composition Algorithm

William Hart1† and Andrew Novocin2‡

1 University of Warwick

Mathematics Institute

Coventry CV4 7AL, UK

W.B.Hart@warwick.ac.uk
2 INRIA-ENSL

46 Allée d’Italie

69364 Lyon Cedex 07, France

andy@novocin.com

received 19 April 2010, revised 19th April 2010, accepted soon.

We revisit a divide-and-conquer algorithm, originally described by Brent and Kung for composition of power series,

showing that it can be applied practically to composition of polynomials in Z[x] given in the standard monomial

basis. We offer a complexity analysis, showing that it is asymptotically fast, avoiding coefficient explosion in Z[x].

The algorithm is straightforward to implement and practically fast, avoiding computationally expensive change of

basis steps of other polynomial composition strategies. The algorithm is available in the open source FLINT C library

and we offer a practical comparison with the polynomial composition algorithm in the MAGMA computer algebra

system.

Keywords: Complexity Analysis, Symbolic Computation, Polynomial Composition, Divide and Conquer, Practical

Implementation

Introduction

Univariate integer polynomials are important basic objects for computer algebra systems. Given two

polynomials f, g ∈ Z[x] the polynomial composition problem is to compute f(g(x)) ∈ Z[x]. Standard

approaches include Horner’s method (9), ranged Horner’s method (which we describe in section 1.1),

algorithms for composition of polynomials in a Bernstein basis (see (2)), and algorithms based on point

evaluation followed by coefficient interpolation (see (11)).

†Author was supported by EPSRC Grant number EP/G004870/1
‡Author was partially supported by ANR project LaRedA

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/volumes/
http://www.dmtcs.org/volumes/dm(subm.)ind.html


2 William Hart and Andrew Novocin

Our Contribution. We present and analyze the divide-and-conquer technique of Brent and Kung (5),

originally a component of a power series composition algorithm, applied to the composition of two poly-

nomials f, g ∈ Z[x] given in the standard monomial basis. We give a theoretical complexity bound which

is softly optimal in the size of the output and show that the algorithm is highly practical.

Problem Statement:

Given: f = anxn + an−1x
n−1 + · · · + a0 and g = bmxm + · · · + b0 in Z[x].

Find: a full expansion of h = f(g(x))

Assumptions: In our analysis we assume the use of fast arithmetic (see (1)), which is available in

FLINT (8). Also, only for the simplicity of bit-complexity analysis, we will assume throughout that coef-

ficients of f and g are of O(m) bits, where m is the degree of g, the inner polynomial in the composition

f(g). We note that the algorithm still works when the coefficients are larger, but depending on the im-

plementation of the fast polynomial arithmetic, the bit complexity will go up by some factor which is a

quasilinear expression in the size of the coefficients.

The algorithm is simple to implement and works in the standard monomial basis. We will show that

the algorithm performs well in practice by providing timings against the MAGMA computer algebra sys-

tem (6). We also provide a theoretical complexity analysis showing that, in the worst case, the algorithm

uses O(nm log(n) log(nm)) operations in Z and has a bit-complexity of O(n2m2 log(nm)).
Assuming that h = f(g) does not have special structure (i.e. h is dense with few cancellations) then

this output has O(nm) coefficients each with bit-length O(nm). Simply writing down the output requires

O(n2m2) CPU-operations making our theoretical bound optimal, up to a factor O(log(mn)).
Related works. The presented algorithm is an application of the divide-and-conquer technique of Brent

and Kung (5), originally developed as a component of an algorithm for composition of power series. In

the original application the bit complexity was not considered, however we show that the algorithm is

asymptotically fast for polynomial composition in Z[x]. The algorithm was rediscovered while imple-

menting the number theory library FLINT (8), and we are grateful to Joris van der Hoeven for pointing

out its first occurrence in the literature.

In (10) an algorithm is presented which is asymptotically fast for composition of polynomials in a

Bernstein basis. However for polynomials presented in the usual monomial basis one must first perform a

conversion to Bernstein basis to make use of this algorithm.

Conversion of orthogonal polynomials can be done in time O(n log2 n log log n), assuming the use of

Fast Fourier Transform techniques (see (3)), however Bernstein bases are not orthogonal.

A standard method for converting from a Bernstein basis to a monomial basis involves computing a

difference table, which costs O(n2) operations for a polynomial of length n in the Bernstein basis (see (4,

Sect.2.8)). Thus to convert the eventual solution from Bernstein basis to monomial basis in our case will

cost O((mn)2) operations, each of which involves a subtraction of quantities of O(mn) bits. Thus the

total bit complexity of the conversion alone is already significantly greater than that of our algorithm.

A different method is given in (11, Prob 3.4.2). In this method, K = 2k is computed such that mn+1 ≤
K < 2mn + 2. If possible compute ω, a primitive Kth root of unity, and the K = 2k points, ωi for all

i = 0, . . . ,K − 1. Evaluate h = f(g) at those K points (using fast arithmetic) and interpolate the

coefficients of h. If a Kth root of unity is unavailable then use K other values for evaluation. Pan

suggests that this method uses O(nm[log(n) + log(m) + log2(n)]) operations in Z when roots of unity

are available and O(nm[log2(nm)]) operations in Z otherwise.



Practical Polynomial Composition 3

In order to apply Pan’s method to polynomials in Z[x] one may work in a ring Z/pZ where p = 22K +1.

There are then sufficiently many roots of unity, and moreover, the coefficients of f(g(x)) may be identified

by their values (mod p).
Interpolation of h is performed using the inverse FFT. To evaluate f(g(x)) at the roots of unity, Pan

first evaluates g(x) at the roots of unity using the FFT. This gives K values at which f(x) must then be

evaluated.

The Moenck-Borodin algorithm (see Algorithm 3.1.5 of (11)) evaluates f(x) of degree n at n arbitrary

points in O(n log2 n) operations. If the points are w1, w2, . . . , wn, one first reduces f(x) mod (x −
w1)(x − w2) · · · (x − wn). One then splits this product into two balanced halves and reduces mod each

half separately. This process is repeated recursively until one has the reduction of f(x) modulo each of

the factors (x − wi).
Of the O(n log2 n) operations there are O(n log n) multiplications. Each can be performed in our case

using fast arithmetic in O(mn log mn) bit operations (up to higher order log factors).

As we have O(mn) roots of unity to evaluate at, not n, we must perform this whole operation O(m)
times. Thus the bit complexity of Pan’s algorithm is O((mn)2 log n log mn), which exceeds that of our

algorithm by a factor of log n.

Road map. In section 1 we present Horner’s method and Ranged Horner’s method along with a com-

plexity analysis. In section 2 we present the algorithm itself. In subsection 2.1 we provide a worst-case

asymptotic complexity analysis. Finally, in section 3 we provide practical timings of our FLINT imple-

mentation and a comparison with MAGMA’s polynomial composition algorithm.

Notations and notes: Given two polynomials of length n, with coefficients of n bits, the Schönhage and

Strassen Algorithm (SSA) for multiplying polynomials has a bit complexity of O(n2 log(n) log log n)
(for more see (7, Sect.8.3)). We will ignore log log n factors throughout the paper. Various standard tricks

allow us to multiply polynomials of degree n with coefficients of m bits in time O(mn log(mn)) using

SSA (again ignoring lower order log factors). For each algorithm we given both the bit-complexity model

cost and the number of operations in Z.

1 Horner’s Method

In this section we apply Horner’s algorithm for evaluating a polynomial f at a point p, to the problem of

polynomial composition.

Horner’s Evaluation Algorithm

Given: f = anxn + an−1x
n−1 + · · · + a0 in Z[x], p in Z.

Find: ans := f(p) in Z

1. ans := an

2. For i = n − 1 down to i = 0 do:

(a) ans := ans · p + ai

3. Return ans

This algorithm computes anpn + an−1p
n−1 + · · ·+ a0 using n multiplications and n additions. When

the point p is a polynomial g, n polynomial multiplications and n polynomial additions are performed.



4 William Hart and Andrew Novocin

1.1 Ranged Horner Composition

We will need a variant of this approach which we call Ranged Horner’s algorithm for polynomial com-

position. We restrict the algorithm to use only l coefficients of f , from ai to ai+ℓ−1, and replace p by a

polynomial g. If one chooses i = 0 and ℓ = n + 1 then this algorithm returns a complete expansion of

h = f(g). The algorithm is always a direct application of Horner’s method to the degree ℓ−1 polynomial

F := ai+ℓ−1x
ℓ−1 + · · · + ai+1x + ai.

Algorithm 1 Ranged Horner Compose

Input: f, g ∈ Z[x], i, a starting index, and ℓ the length of the ranged composition.

Output: An expansion of F (g) := ai+ℓ−1g
ℓ−1 + · · ·+ ai+1g + ai, where F is f divided by xi without

remainder then reduced modulo xℓ, a shifted truncation of f .

1. ans := ai+ℓ−1

2. For j = ℓ − 2 down to j = 0 do:

(a) ans := ans · g

(b) ans := ans + ai+j

3. Return ans

1.2 Bit-Complexity

We will now outline the bit-complexity analysis of Ranged Horner Composition.

Theorem 1 Algorithm 1 terminates after O(ℓ2m log (ℓm)) operations in Z with a bit-complexity bound

of O(ℓ3m2 log (ℓm)) CPU operations.

Proof:

Let us analyze the cost of the kth loop where k = 1, . . . , ℓ − 1. First we compute the degree and

coefficient size of ans in the kth loop.

Lemma 1 At the beginning of the kth loop of step 2 in Algorithm 1 we have the degree of ans = (k−1)m
and ‖ ans ‖∞≤ 2O(km+(k−1) log(m+1)).

Proof: The degree of ans begins at 0 and increases by m in each loop giving degree (k − 1)m at the

beginning of the kth loop.

Now for an arbitrary loop let’s suppose that ‖ ans ‖∞≤ 2x and ans = cNxN + · · · + c0 where N is

the current degree of ans. Recall that g = bmxm + · · · b0 and ‖ g ‖∞≤ 2m. The product ans · g can be

written as

s=N+m∑

s=0

xs[
∑

{0≤i≤N,0≤j≤m|s=i+j}

(ci · bj)].



Practical Polynomial Composition 5

In this form it can be seen that the largest coefficients of ans · g are the sum of m + 1 numbers of

norm ≤ 2m+x. Thus after this loop the coefficients are boundable by 2x+m+log
2
(m+1). So the size of the

coefficients of ans begin at m-bits and increase by m + log2(m + 1) finishing the proof of the lemma.

✷

Now using fast polynomial multiplication the bit complexity of loop k is O(k2m(m+log(m) log(km))
and uses O(km log(km)) operations in Z. Summing this over k = 1, . . . , ℓ− 1 gives a bit-complexity of

O(ℓ3m2 log(ℓm)) and O(ℓ2m log(ℓm)) operations in Z.

✷

2 Divide and Conquer Algorithm

In this section we describe the main algorithm for polynomial composition. First we divide f of degree n
into k1 := ⌈(n + 1)/ℓ⌉ sub-polynomials of length ℓ for some experimentally derived (and small) value of

ℓ such that:

f := f0 + f1 · x
ℓ + f2 · x

2ℓ + · · · + fk1−1 · x
(k1−1)ℓ.

In the first iteration of the algorithm we compute the k1 compositions, h1,i := fi(g) for 0 ≤ i < ki using

(Ranged) Horner’s method and we also compute gℓ. In the ith iteration we start with g2i−2ℓ and compute

the ki := ⌈(ki−1)/2⌉ polynomials: hi,j := hi−1,2j + g2i−2ℓ · hi−1,2j+1 then compute g2i−1ℓ. Thus in

iteration i our target polynomial h = f(g) can be written:

hi,0 + hi,1 · (g
2i−1ℓ) + hi,2 · (g

2i−1ℓ)2 + · · · + hi,ki−1 · (g
2i−1ℓ)ki−1.

In each iteration the number of polynomials is halved while the length of the polynomials we work with

is doubled. We experimentally determined that a value of ℓ = 4 works well in practice.

Algorithm 2 Polynomial Composition Algorithm

Input: f, g ∈ Z[x]
Output: An expansion of h := f(g)

1. let ℓ := 4, i := 1, and ki := ⌈n+1
ℓ

⌉

2. for j = 0, . . . , ki − 1

(a) compute hi,j := Algorithm 1(f, g, jℓ, ℓ)

3. compute G := gℓ.

4. while (ki > 1) do:

(a) ki+1 := ⌈ki/2⌉;

(b) for j = 0, . . . , ki+1 − 1 do:

i. hi+1,j := hi,2j + hi,2j+1 · G.

ii. clear hi,2j and hi,2j+1

(c) if ki+1 > 1 then G := G2



6 William Hart and Andrew Novocin

(d) i := i + 1

5. return h := hi,0

2.1 Complexity Analysis

Theorem 2 Algorithm 2 terminates after O(nm log(n) log(mn)) operations in Z with a bit-complexity

bound of O(n2m2 log(nm)) CPU operations.

Proof: Although we chose ℓ = 4 we will make this proof using any constant value of ℓ. The cost of step 2

is that of ⌈(n + 1)/ℓ⌉ calls to Algorithm 1 using ℓ coefficients. Thus theorem 1 tells us that step 2 costs

O(nm log(m)) operations in Z with bit complexity bound O(nm2 log(m)).

Step 3 involves a constant number of multiplications (or repeated squarings) of g. By using the same

logic as the proof of lemma 1 these multiplications are of polynomials with degree O(m) and coeffi-

cients of O(m + log(m)) bits, this gives O(m log(m)) operations in Z and bit complexity bound of

O(m2 log(m)) for step 3.

In the ith loop of step 4 creating the hi+1,j involves ki+1 polynomial multiplications each of degree

O(2i−2mℓ) polynomials with coefficients bounded of O(2i−1mℓ) bits (and ki+1 polynomial additions).

This costs O(ki+12
im log(2im)) operations in Z with bit-complexity bound O(ki+12

2im2 log(2im)).

The cost of the ith iteration of step 4c involves squaring a polynomial of degree mℓ2i−1 and whose coeffi-

cients are smaller than mℓ2i. The cost of this is O(m2i log(m2i)) operations in Z and O(m222i log(2im))
bit operations. It can be shown without much difficulty that ki ≤ (n+1)/(ℓ·2i−1)+1. To sum these costs

over the O(log(n)) iterations of step 4 gives O(
∑log(n)

i=1 ki+12
im[i+log(m)]) which is O(nm[log(n)2 +

log(n) log(m)]) operations in Z and a bit-complexity bound of O(
∑log(n)

i=1 22im2[i + log(m)]) which is

O(m2n ·
∑log(n)

i=1 [2ii + 2i log(m)]). It is trivial to show via induction that
∑k

i=1 2ii = 2 + 2k+1(k − 1).
This gives the bit-complexity bound as O(m2n[n log(n) + n log(m)]) proving the theorem. ✷

3 Practical Timings

In this section we present a timing comparison of the main algorithm as implemented in FLINT and

MAGMA’s polynomial composition algorithm. These tests are provided as evidence that our algorithm

is indeed practical. These timings are measured in seconds and were made on a 2400MHz AMD Quad-

core Opteron processor, using gcc version 4.4.1 with the -O2 optimization flag, although the processes

only utilized one of the four cores. Each composition performed is of a polynomial, f , of length n with

randomized coefficients of bit-length ≤ m, and a polynomial, g, of degree m with randomized coefficients

of bit-length ≤ m and returns an expansion of h = f(g).

Timings in FLINT



Practical Polynomial Composition 7

n\m 20 40 80 160 320 640 1280

20 .0009 .0038 .016 .077 0.41 1.96 8.9

40 .0036 .015 .071 0.40 2.0 9.4

80 0.02 .072 .412 2.09 9.63

160 0.072 0.415 2.1 9.7

320 0.44 2.1 9.7

640 2.05 9.64

1280 9.46

We also compared these timings with the function

(mn)2 ln(mn)/(.95 · 109).

In this case the function accurately models the given timings, in all cases, up to a factor which varied

between 0.71 and 1.29. This model matches our bit-complexity bound given in theorem 2.

Timings in MAGMA

n\m 20 40 80 160 320 640 1280

20 .006 .053 .160 .630 2.55 12.47 64.0

40 .04 .32 1.09 4.67 21.7 110

80 .47 2.0 8.52 38.0 196.4

160 3.6 15 70 360

320 28 133 659

640 238 1267

1280 2380

We compared the MAGMA timings with the function

n3m2 ln(mn)/(2.94 · 109).

This function accurately models the given timings, in all cases, up to a factor which varied between 0.54

and 1.46. This model matches our estimate for Horner’s method given by theorem 1 in the case when

ℓ = n.

References

[1] D. Bernstein, Multiprecision Multiplication for Mathematicians, accepted by Advances in Applied

Mathematics find at http://cr.yp.to/papers.html#m3, 2001.

[2] C. de Boor B-Form Basics, Geometric Modeling: Algorithms and New Trends, SIAM, Philadelphia

(1987), pp. 131–148.

[3] A. Bostan and B. Salvy, Fast conversion algorithms for orthogonal polynomials, Preprint.

[4] H.Prautzsch, W.Boehm, and M.Paluszny Bézier and B-Spline Techniques, Springer, 2002.

[5] R. Brent and H.T. Kung, O((nlogn)3/2) Algorithms for composition and reversion of power series,

Analytic Computational Complexity, Academic Press, New York, 1975, pp. 217-225.



8 William Hart and Andrew Novocin

[6] J. J. Cannon, W. Bosma (Eds.) Handbook of Magma Functions, Edition 2.13 (2006)

[7] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.

[8] W. Hart FLINT, open-source C-library. http://www.flintlib.org

[9] D. Knuth. The Art of Computer Programming, volume 2: Seminumerical Algorithms, Third Edition.

Addison-Wesley, 1997, pp. 486–488.

[10] W. Liu and S. Mann An analysis of polynomial composition algorithms, University of Waterloo

Research Report CS-95-24, (1995).

[11] V. Pan Structured matrices and polynomials: unified superfast algorithms, Springer-Verlag, 2001,

pg. 81.


	Horner's Method
	Ranged Horner Composition
	Bit-Complexity

	Divide and Conquer Algorithm
	Complexity Analysis

	Practical Timings

