Augmented precision square roots, 2-D norms, and discussion on correctly rounding {x^2+y^2}

Abstract : Define an "augmented precision" algorithm as an algorithm that returns, in precision-p floating-point arithmetic, its result as the unevaluated sum of two floating-point numbers, with a relative error of the order of 2^(−2p). Assuming an FMA instruction is available, we perform a tight error analysis of an augmented precision algorithm for the square root, and introduce two slightly different augmented precision algorithms for the 2D-norm sqrt(x^2 + y^2). Then we give tight lower bounds on the minimum distance (in ulps) between sqrt(x^2 + y^2) and a midpoint when sqrt(x^2 + y^2) is not itself a midpoint. This allows us to determine cases when our algorithms make it possible to return correctly-rounded 2D-norms.
Type de document :
Communication dans un congrès
20th IEEE Symposium on Computer Arithmetic (ARITH-20), Jul 2011, Tübingen, Germany. IEEE Computer Society, pp.23-30, 2011, 〈10.1109/ARITH.2011.13〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00545591
Contributeur : Jean-Michel Muller <>
Soumis le : lundi 14 novembre 2011 - 13:47:24
Dernière modification le : vendredi 20 avril 2018 - 15:44:23
Document(s) archivé(s) le : lundi 5 décembre 2016 - 00:41:39

Fichier

PID1818753.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Nicolas Brisebarre, Mioara Maria Joldes, Peter Kornerup, Érik Martin-Dorel, Jean-Michel Muller. Augmented precision square roots, 2-D norms, and discussion on correctly rounding {x^2+y^2}. 20th IEEE Symposium on Computer Arithmetic (ARITH-20), Jul 2011, Tübingen, Germany. IEEE Computer Society, pp.23-30, 2011, 〈10.1109/ARITH.2011.13〉. 〈ensl-00545591v2〉

Partager

Métriques

Consultations de la notice

428

Téléchargements de fichiers

125