M. Günaydin, G. Sierra, and P. K. Townsend, Exceptional supergravity theories and the magic square, Physics Letters B, vol.133, issue.1-2, pp.133-72, 1983.
DOI : 10.1016/0370-2693(83)90108-9

L. J. Romans, Selfduality for interacting fields: covariant field equations for six-dimensional chiral supergravities, Nucl. Phys, pp.276-71, 1986.

A. Van-proeyen, Special geometries, from real to quaternionic, Proceedings of the Workshop on 'Special Geometric Structures in String Theory, pp.hep-th, 2001.

A. Sen and C. Vafa, Dual pairs of type II string compactification, Nuclear Physics B, vol.455, issue.1-2, pp.455-165, 1995.
DOI : 10.1016/0550-3213(95)00498-H

M. Günaydin, From d=6, N=1 to d=4, N=2, No-scale models and Jordan Algebras " at the Conference 30 Years of Supergravity in Paris, 2006.

Y. Dolivet, B. Julia, and C. Kounnas, = 2 supergravities from hyper-free superstrings, Journal of High Energy Physics, vol.2, issue.02, pp.97-0712, 2008.
DOI : 10.1016/j.nuclphysb.2007.07.028

M. Bianchi and S. Ferrara, Enriques and octonionic magic supergravity models, Journal of High Energy Physics, vol.2007, issue.02, pp.2-0712, 2008.
DOI : 10.1016/j.nuclphysb.2007.09.026

A. N. Todorov, CY manifolds with locally symmetric moduli spaces

M. Günaydin, Lectures on Spectrum Generating Symmetries and U-Duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace, the Proceedings of the 2007 School on Attractor Mechanism
DOI : 10.1007/978-3-642-10736-8_2

. Maxwell, Einstein supergravity theories: more on Jordan algebras, Nucl. Phys, vol.573, p.253, 1985.

M. Günaydin and M. Zagermann, The gauging of five-dimensional

. Maxwell, Einstein supergravity theories coupled to tensor multiplets, Nucl. Phys, pp.572-131, 2000.

M. Günaydin and M. Zagermann, Unified Maxwell-Einstein and Yang-Mills-Einstein supergravity theories in five dimensions, Journal of High Energy Physics, vol.612, issue.07, p.304109, 2003.
DOI : 10.1103/PhysRevD.65.055002

L. Andrianopoli, M. Bertolini, A. Ceresole, R. D-'auria, S. Ferrara et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance gaugings and the momentum map, Journal of Geometry and Physics, vol.23, issue.2, pp.111-189, 1997.
DOI : 10.1016/S0393-0440(97)00002-8

M. Günaydin, S. Mcreynolds, and M. Zagermann, The R-map and the coupling of Script N = 2 tensor multiplets in 5 and 4 dimensions, Journal of High Energy Physics, vol.2002, issue.01, pp.hep-th, 2006.
DOI : 10.1016/0370-2693(84)90813-X

Y. Maxwell-einstein, Einstein supergravity theories in four dimensions, p.507227, 2005.

B. De-wit, A. K. Tollsten, and H. Nicolai, Gauged locally supersymmetric D=3 nonlinear sigma models, Nuclear Physics B, vol.671, pp.3-38, 1993.
DOI : 10.1016/j.nuclphysb.2003.08.022

B. De-wit, I. Herger, and H. Samtleben, Gauged locally supersymmetric D=3 nonlinear sigma models, Nuclear Physics B, vol.671, pp.671-175, 2003.
DOI : 10.1016/j.nuclphysb.2003.08.022

H. Nishino and E. Sezgin, The complete N = 2, d = 6 supergravity with matter and Yang-Mills couplings, Nucl. Phys, pp.278-353, 1986.

H. Nishino and E. Sezgin, New couplings of six-dimensional supergravity, Nuclear Physics B, vol.505, issue.1-2, pp.505-497, 1997.
DOI : 10.1016/S0550-3213(97)00357-X

S. Ferrara, F. Riccioni, and A. Sagnotti, Tensor and vector multiplets in six-dimensional supergravity, Nuclear Physics B, vol.519, issue.1-2, pp.115-140, 1998.
DOI : 10.1016/S0550-3213(97)00837-7

F. Riccioni, All couplings of minimal six-dimensional supergravity, Nuclear Physics B, vol.605, issue.1-3, pp.605-245, 2001.
DOI : 10.1016/S0550-3213(01)00199-7

J. Bagger and E. Witten, Matter couplings in N = 2 supergravity, Nuclear Physics B, vol.222, issue.1, p.222, 1983.
DOI : 10.1016/0550-3213(83)90605-3

K. Galicki, Quaternionic Kähler and hyperkähler nonlinear sigma models, Nucl. Phys, pp.271-402, 1986.

J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech, vol.14, pp.1033-1047, 1965.
DOI : 10.1007/0-8176-4424-5_18

URL : http://arxiv.org/abs/math/0308283

D. V. Alekseevski?-i, CLASSIFICATION OF QUATERNIONIC SPACES WITH A TRANSITIVE SOLVABLE GROUP OF MOTIONS, Mathematics of the USSR-Izvestiya, vol.9, issue.2, pp.315-362, 1975.
DOI : 10.1070/IM1975v009n02ABEH001479

B. De-wit and A. Van-proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Communications in Mathematical Physics, vol.276, issue.Suppl 1, pp.307-334, 1992.
DOI : 10.1007/BF02097627

M. Günaydin, G. Sierra, and P. K. Townsend, More on d=5 Maxwell-Einstein supergravity: symmetric spaces and kinks, Classical and Quantum Gravity, vol.3, issue.5, p.763, 1986.
DOI : 10.1088/0264-9381/3/5/007

K. Galicki, A generalization of the momentum mapping construction for quaternionic Kähler manifolds, Commun. Math. Phys, vol.108, issue.117, 1987.

F. Riccioni, Abelian vectors and self-dual tensors in six-dimensional supergravity, Physics Letters B, vol.474, issue.1-2, pp.79-84, 2000.
DOI : 10.1016/S0370-2693(00)00003-4

B. De-wit, H. Samtleben, and M. Trigiante, On Lagrangians and gaugings of maximal supergravities, Nuclear Physics B, vol.655, issue.1-2, pp.655-93, 2003.
DOI : 10.1016/S0550-3213(03)00059-2

B. De-wit, H. Samtleben, and M. Trigiante, The maximal D = 5 supergravities, Nucl. Phys, pp.716-215, 2005.

B. De-wit and H. Samtleben, Gauged maximal supergravities and hierarchies of nonabelian vector-tensor systems, Fortschritte der Physik, vol.272, issue.5-6, pp.442-449, 2005.
DOI : 10.1002/prop.200510202

E. Bergshoeff, H. Samtleben, and E. Sezgin, = 6 supergravity, Journal of High Energy Physics, vol.21, issue.03, pp.68-0712, 2008.
DOI : 10.1016/j.cpc.2007.01.003

B. De-wit, H. Nicolai, and H. Samtleben, Gauged supergravities, tensor hierarchies, and M-theory, pp.2-044, 2008.
URL : https://hal.archives-ouvertes.fr/ensl-00203073

J. Hartong and T. Ortin, Tensor hierarchies of 5- and 6-dimensional field theories, Journal of High Energy Physics, vol.18, issue.09, pp.39-0906, 2009.
DOI : 10.1103/PhysRevD.53.7206

J. Igusa, A Classification of Spinors Up to Dimension Twelve, American Journal of Mathematics, vol.92, issue.4, pp.997-1028, 1970.
DOI : 10.2307/2373406

R. L. Bryant, Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor, " in Global analysis and harmonic analysis (Marseille-Luminy, pp.53-94, 1999.

R. L. Bryant, Remarks on spinors in low dimension Unpublished notes, 1999.

G. Sierra, An application of the theories of Jordan algebras and Freudenthal triple systems to particles and strings, Classical and Quantum Gravity, vol.4, issue.2, 1987.
DOI : 10.1088/0264-9381/4/2/006

R. Percacci and E. Sezgin, Properties of gauged sigma models, Richard Arnowitt Fest: A Symposium on Supersymmetry and Gravitation, p.9810183, 1998.

D. Roest and H. Samtleben, Twin supergravities, Classical and Quantum Gravity, vol.26, issue.15, 1344.
DOI : 10.1088/0264-9381/26/15/155001

URL : https://hal.archives-ouvertes.fr/ensl-00374319

J. De-rydt, T. T. Schmidt, M. Trigiante, A. Van-proeyen, and M. Zagermann, Electric/magnetic duality for chiral gauge theories with anomaly cancellation, Journal of High Energy Physics, vol.2006, issue.12, pp.12-0808, 2008.
DOI : 10.1016/0550-3213(95)00172-O

S. Ferrara, J. A. Harvey, A. Strominger, and C. Vafa, Second-quantized mirror symmetry, Physics Letters B, vol.361, issue.1-4, pp.361-59, 1995.
DOI : 10.1016/0370-2693(95)01074-Z

URL : http://doi.org/10.1016/0370-2693(95)01074-z