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Abstract—This paper presents FloPoCo, a framework for easily
designing custom arithmetic datapaths for FPGAs. Its main
features are: an important basis of highly optimized arithmetic
operators, a unique methodology for frequency-directed pipelin-
ing the designed circuits and a flexible test-bench generation
suite for numerically validating the designs. The framework was
tested for designing several complex arithmetic operators, this
paper presenting the architecture and results for the exponen-
tial operator. Synthesis results capture the designed operator’s
flexibility: automatically optimized for several Altera and Xilinx
FPGAs, wide range of target frequencies and several precisions
ranging from single to quadruple precision.
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I. INTRODUCTION

In the last years the trend of using FPGAs for prototyping

ASICS has shifted towards FPGAs as application accelerators.

There in a wide range of applications that can benefit FPGA

acceleration but the best-suited candidates applications are

intrinsically parallel and require complex and exotic arithmetic

operations using custom precisions.

The potential FPGA speedup over microprocessor systems

can go beyond 3 orders of magnitude, depending on the

application. However, translating even the best acceleration

candidate into an optimal FPGA design is a tedious task. The

first attempts for application acceleration using FPGAs boiled

down to a manual, low-level circuit description. FPGA tools

have come a long way since then, but even today, although

laborious, describing circuits using low-level primitives is still

done performance-critical circuit parts.

At the other end of the spectrum, new products targeting

portability and productivity were developed [1], [2], [3], [4],

[5]. These products are capable of automatically generating

circuit descriptions for algorithms described in subset of the

C language. Out of these tools, only [1] and [4] are capable

of dealing with floating-point numbers. Numerous compiler

optimization techniques are implemented, but most of the time

the result is significantly slower and larger than manual design.

Arithmetic datapath design for microprocessors includes

several constraints among which the fixed operators imple-

mented in hardware (for floating-point: +−, ∗) and their

working precisions, usually single-precision (SP) and double-

precision (DP). Matching these operators and the available

precisions will generally yield a good design. Trying to

optimize the datapath using exotic precisions will bring no

improvement.

Due to their reconfigurability, FPGAs have virtually no

constraints. However, in order to benefit from the last drop

of performance the user must understand the problem well

enough so he can give a rough bound on the output precision.

From this specification, the circuit can be implemented work-

ing with non standard operators at custom precisions yielding

significant speedups over traditional design [6].

We seek to provide an extensible open-source framework

for efficiently building arithmetic pipelines on FPGAs. It can

be seen as a hybrid between the two ends of the spectrum,

automatizing parts of the design process of high-performance

arithmetic operators. The development effort of the arithmetic

pipeline will be a parametrized design in: input/output preci-

sion, deployment FPGA and objective frequency.

II. ARITHMETIC OPERATORS

In this work we consider arithmetic operators as being

circuits that can be described by a function f(X) = Y where

X = x0, ..., xi−1 is a set of inputs and Y = y0, ..., yj−1 is

a set of outputs. Any sequential code without feedback loops

performing some computations fits this description. Take for

example the circuit performing the complex multiplication:

(a+bj)(c+dj). The circuit inputs are a, b, c, d and the output is

the pair r = ac− bd, i = ad+ bc. As it can be seen in further

sections, the restriction to this class of circuits allows for a

finer modeling of arithmetic circuits. A simple extension to the

introduced framework will allow us to model circuits having

feedback loops.

A. FPGA-specific arithmetic operator design

Two of the factors characterizing the quality of arithmetic

operators on FPGAs are circuit area and operating frequency.

Unfortunately, there is a monotonic dependency between the

two: the faster a circuit is, the more resources it takes. As

circuit frequency f is part of the project’s specifications, our

job as designers is to build the smallest circuit matching this

frequency. The task gets even more complex if we introduce

productivity in the equation.

One solution is to use high-performance off-the-shelf IP

cores for modeling the circuit. This solution will give the

correct performance at the expense of pipeline depth and

circuit area as the obtained frequency is usually overestimated.

Another way to do this is assembling custom components

built for the same frequency f . The circuit proposed in [7] for
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Fig. 1. Productivity in porting applications to FPGAs and the relative
performance of these circuits provided the different levels of abstraction are
provided for circuit description

evaluating x2+y2+z2 in DP uses a custom 3-input FP adder1

and squarers. The circuit consumes 40-50% less logic and 25-

33% less embedded multipliers on a Xilinx Virtex4 device

than assembling high-performance off-the-shelf IP cores from

Xilinx Coregen [8].

The target of the FloPoCo is to cover a broad range of

abstraction levels, allowing the user to obtain the required

performances as productively as possible, without overengi-

neering the solution. For complying with these demands, our

framework should:

• provide quality implementations of all the basic off-

the-shelf additonSizeblocks available in commercial core

generators and more

• provide the mechanisms for easily connecting and syn-

chronizing these blocks

• enhance productivity by employing reusability. Each op-

erator described using this framework will be part of an

available operators basis.

• be expressive enough to capture low-level FPGA-specific

architectural optimizations when needed

• employ frequency-directed pipelining for minimizing cir-

cuit area and pipeline depth

• encourage parametric description of circuits so they can

easily be retuned to changing precision requirements

• allow to easily retarget existing operator descriptions to

new FPGAs.

In a more visual representation, Figure 1, FloPoCo should

be able to cover a whole range of abstraction levels in the

circuit description allowing much better productivity than

hardware description languages while being able to offer the

same set of performances.

1The classical implementation of FP adders has two paths, one of which is
for the case of subtraction. As the inputs are all positive this path is manually
trimmed-out at design time.

III. THE FRAMEWORK

A. Initial off-the-shelf tools

1) Adder: Integer addition is used as a building block in

many coarser operators. In hardware description languages

(HDL) addition is expressed as ”+” and is implemented as

a ripple-carry adder. Although FPGAs are enhanced to better

support this type of adder, long additions require pipelining

for reaching high frequencies. Examples which require large

adders include integer multipliers, most FP operators2, and

modular adders used in some cryptographic applications3.

FloPoCo offers three different implementations for pipelined

adders [10]. In the multidimensional space (f ,FPGA,circuit

area) our framework transparently chooses the best architec-

ture for a given scenario.

2) Multiplier: Multiplication is a pervasive operation, and

in an FPGA it should be adapted to its context as soon as this

may save resources. Recent FPGAs embed a large number of

Digital Signal Processing (DSP) blocks, which include small

multipliers.

The automated generation of larger multipliers using the

embedded multipliers and adders present in the DSP blocks

of current FPGAs can be expressed as a tiling problem,

where a tile represents a hardware multiplier, and super-tiles

represent combinations of several hardware multipliers and

adders, making efficient use of the DSP internal resources

[11]. This technique allows building high performance mul-

tipliers while minimizing DSP block count. Reducing DSP-

block count can also be implemented using the Karatsuba-

Ofman algorithm which trades multiplications for additions.

The available multipliers using this technique have the DSP

cost reduced from 4 to 3, from 9 to 6, or from 16 to 10 on a

Virtex4 FPGA [12].

Our framework offers all these types of multipliers, there-

fore offering the designer a large space of different trade-offs

between latency, logic and DSP count.

3) Squarer: Squaring is fairly common in FPGA-

accelerated computations, as it appears in norms, statistical

computations, polynomial evaluation, etc. A dedicated squarer

saves as many DSP blocks as the Karatsuba-Ofman algorithm,

but without its overhead. FloPoCo implements squarers as

presented in [12]. By using squarers instead of off-the-shelf

Coregen Multipliers the evaluation of x2+y2+z2 was reduced

from 27 to 18 DSPs for DP and from 20 to 9 DPSs for SP

[7].

4) Truncated Multipliers: Truncated multipliers [13] dis-

card some of the lower bits of the mantissa to save hardware

resources. For a FP multiplier, the impact of this truncation can

be kept small enough to ensure last-bit accuracy (or faithful

rounding) instead of IEEE-754-compliant correct rounding.

This small accuracy lost may be compensated by a larger man-

tissa size. However, it is also perfectly acceptable in situations

2In floating-point, the demand in precision is now moving from double (64-
bit) to the recently standardized quadruple precision (128-bit format, including
112 bits for the significand) [9]

3In elliptic-curve cryptography, the size of modular additions is currently
above 150 bits for acceptable security



where a bound on the relative error of the multiplication is

enough to ensure the numerical quality of the result. This is for

instance the case of polynomial approximation of functions:

it is possible to build high-quality functions out of truncated

multipliers [14]. The implementation of truncated multipliers

is an important step towards efficient implementations of

elementary functions up to quadruple precision on FPGAs.

FloPoCo offers the implementation of truncated multipliers as

described in [11].

5) Constant Multiplier: Multiplication by a constant is a

pervasive operation. It often occurs in scientific computing

codes, and is at the core of many signal-processing filters.

It is also useful to build larger operators: architectures for

exponential, logarithm and trigonometric functions [15], [16]

all involve multiplication by a constant. A single unoptimised

multiplication by 4/π may account for about one third the

area of a dual sine/cosine [15]. FloPoCo’s implementation of

constant multipliers, both integer and correctly rounded FP is

that presented in [17].

6) Function Evaluator: Polynomial approximation is a very

general technique for the evaluation of a wide class of numeri-

cal functions of one variable. FloPoCo provides an architecture

generator that inputs the specification of a function and outputs

a synthesizable description of an architecture evaluating this

function with guaranteed accuracy. Our current implemen-

tation [14] improves upon the literature in two aspects: it

uses better polynomials, thanks to recent advances related to

constrained-coefficient polynomial approximation [18], and it

refines the error analysis of polynomial evaluation to reduce

the size of the multipliers used.

B. Synchronization mechanisms

Arithmetic operators as defined in Section II have no

feedback loops. Such an operator can be seen as a flow of

operations propagating from the inputs towards the outputs.

In order to obtain high throughputs these operators are deeply

pipelined. Such operators can be obtained by assembling

elementary operators built for the same frequency f and

synchronizing the datapath accordingly using registers. As the

pipeline depth of sub-components is a depends on the target

FPGA, frequency f and precision, generic synchronization

mechanisms are required in order to connect these compo-

nents.

Hardware circuits usually have several several parallel ex-

ecuting threads which may interact. HDLs, being concurrent

languages4 make it natural to describe combinatorial circuits

of this type. The triviality comes from the fact that all compu-

tations are performed at the same clock cycle. For pipelined

designs one has to describe the computations performed at

each clock cycle. The synchronization between signals is a

tedious and error-prone task. Moreover, minor modifications

to the pipelining depth of components usually leads to syn-

chronization problems.

Say for instance that we need to parallelly evaluate the

second-degree polynomial: a2x
2 + a1x + a0 (Figure 2).

4statements are executed concurrently
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Fig. 2. Parallel evaluation of the polynomial a2x
2 + a1x+ a0

When performing the addition a2x
2+(a1x + a0) we need

to synchronize the two input signals. The pipeline depths

of the two signals are d1 = dsquarer + dmultiplier and

d2 = dmultiplier + dadder. This yields three cases:

d1 > d2 need to delay the FPAdder output with d1 − d2
cycles

d2 > d1 need to delay the FPMultiplier output with d2−d1
cycles

d1 = d2 computation can be performed directly as the two

signals are already synchronized.

Formally, when needing to synchronize several signals the

procedure consists in determining the maximum pipeline depth

of all signals and delaying the rest for the corresponding clock

cycles.

Figure 3 presents the FloPoCo parametric code for the

floating-point version of this circuit. The instantiated FP

primitives, FPSquarer, FPMultiplier and FPAdder are also

parametrized function of target FPGA (the target parameter),

exponent width (wE) and fraction width(wF ); The synchro-

nization between the different threads is done using two

functions:

syncCycleFromSignal(”s”) : advances the current cycle

in describing the circuit to the declaration cycle of

signal ”s” (production cycle)

setCycleFromSignal(”s”) : sets the current cycle to the

declaration cycle of signal ”s”. This is useful when

describing new threads for which the current cycle

is less than our current active cycle (Figure 3, line

setCycleFromSignal("a1");)

C. Sub-cycle accurate data-path design

All basic FloPoCo operators have flexible pipelines, adapt-

ing to the user specified frequency, target FPGA proper-

ties and input/output precisions. By registering the inputs of

these components we guarantee that the critical path remains

smaller than 1/f . However, this is not optimal. Consider

the following case depicted in Figure 4. For the cases when

additionSize and f are small enough registering the

addition in not needed which leads to an overpipelined circuit.

In order to avoid overpipelining and therefore wasting

resources IntConstMultiplier should be able to adapt its



int wE;

int wF;

addFPInput("X",wE,wF);

addFPInput("a2",wE,wF);

addFPInput("a1",wE,wF);

addFPInput("a0",wE,wF);

FPSquarer *fps = new FPSquarer(target, wE, wF);

oplist.push_back(fps);

inPortMap (fps, "X", "X");

outPortMap(fps, "R", "X2");

vhdl << instance(fps, "squarer");

syncCycleFromSignal("X2");// advance depth

nextCycle();//register level

FPMultiplier *fpm = new FPMultiplier(target,wE,wF);

oplist.push_back(fpm);

inPortMap (fpm, "X", "X2");

inPortMap (fpm, "Y", "a2");

outPortMap(fps, "R", "a2x2");

vhdl << instance(fpm, "fpMuliplier_a2x2");

describe the second thread

setCycleFromSignal("a1"); -- the current cycle = 0

inPortMap (fpm, "X", "X");

inPortMap (fpm, "Y", "a1");

outPortMap(fps, "R", "a1x");

vhdl << instance(fpm, "fpMuliplier_a1x");

syncCycleFromSignal("a1x");// advance depth

nextCycle();//register level

FPAdder *fpa = new FPAdder(target, wE, wF);

oplist.push_back(fpa);

inPortMap (fpm, "X", "a1x");

inPortMap (fpm, "Y", "a0");

outPortMap(fps, "R", "a1x_p_a0");

vhdl << instance(fpm, "fpAdder_a1x_p_a0");

join the threads

syncCycleFromSignal("a1x_p_a0");//advance

syncCycleFromSignal("a2x2");//possibly advance

nextCycle();//register level

inPortMap (fpm, "X", "a2x2");

inPortMap (fpm, "Y", "a1x_p_a0");

outPortMap(fps, "R", "a2x2_p_a1x_p_a0");

vhdl << instance(fpm, "fpAdder_a2x2_p_a1x_p_a0");

syncCycleFromSignal("a2x2_p_a1x_p_a0");

vhdl << "R <= a2x2_p_a1x_p_a0; " << endl;

Fig. 3. FloPoCo parametric floating-point description for the circuit in Figure
2

first pipeline stage for the case when there is no reg-

ister level at its input. This is accomplished by feed-

ing the delay of the previous computation (addition of

size additonSize) to the constructor of IntConstMult

(target->adderDelay(additionSize)). In turn, Int-

ConstMultiplier reports the delay of the circuit at its outputs.

D. Transaction level pipelining

We have presented so far a series of operators and mecha-

nisms for facilitating arithmetic operator design having flexible

int additionSize = 16;

vhdl << declare("s",additonSize)<<"<=a+b;"<<endl;

nextCycle();

IntConstMult *icm = new

IntConstMult(target, additonSize, 42)

oplist.push_back(icm);

Fig. 4. Possible overpipelining

int aSize;

...

manageCriticalPath(target->adderDelay(aSize));

vhdl << declare("s",additonSize)<<"<=a+b;"<<endl;

IntConstMult *icm = new IntConstMult(target,

additonSize, 42, getCriticalPath())

oplist.push_back(icm);

...(portMap)

syncCycleFromSignal("R"); //advance cycle

setCriticalPath(icm->getOutputDelay("R"));

Fig. 5. Automatic automatically adjusting pipeline level

pipelines. In this section we present an automation of these

techniques, having an inspiration from database transactions.

In databases, a transaction is unit of work (series of state-

ments) that are treated atomically, that is, either they are

all executed or the transaction is rolled-back. In our case, a

transaction is composed of a number of arithmetic operations

starting from a previous register level contributing to the

critical path delay. A transaction is valid while the critical

path of the operations declared within is ≤ 1/f . The condition

that makes a transaction invalid gives us the precise position

where to insert the register level. In this case a new transaction

is started having a delay equal to the delay of the operation

which invalidated the transaction.

Figure 5 shows the generic optimal pipelining for the

code in Figure 4. The manageCriticalPath() function

verifies if the addition delay added to the current critical

path exceeds 1/f . If this is true, a register level is inserted

automatically and the new critical path becomes equal the

adder delay. Otherwise, the critical path is updated with the

adder delay.

The getCriticalPath() parameter fed to the

IntConstMult constructor represents the delay information

at the multiplier input. The multiplier has to cope with the

new information and adjust the delay of its first pipeline level

accordingly.

The last line of code updates the critical path delay at the

output of the constant multiplier. If the multiplier architecture

ends in a register level, this value will be 0, otherwise this

will be the delay of the circuit starting from the last register

level in IntConstMult.

E. Reality check: ex

This methodology has been checked on a complex arith-

metic operator ex having the architecture depicted in Figure

6. A detailed description this architecture can be found in [19].
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Fig. 6. The generic architecture of ex

Figure 7 presents in parallel the component hierarchies for two

instantiations of this architecture (target frequency of 400MHz

on the left and of 200MHz on the right) on a Virtex4 FPGA.

The difference in target frequency directly reflects in the

pipeline depths of the subcomponents. Assembling compo-

nents designed for the target frequency together with with

transaction level pipelining, allows reducing the pipeline depth

of the architecture for low frequencies, in our case from from

52 levels for 400MHz to to 23 for 200MHz.

Synthesis results are presented in Table I. The fine-grain

arithmetic optimizations allowed by FloPoCo makes this

operator yield better results for Altera FPGAs, where the

proprietary MegaWizard Core Generator from Altera is highly

optimized. A whole set of FPGAs are currently supported

by FloPoCo including: VirtexII, Spartan3/3E, Virtex4/5/6,

StratixII-IV. Once described using our framework, the archi-

tecture is optimized for all these targets. Moreover, the circuit

is flexible in precision. A large number of different exponential

operator instances can be generated for precisions ranging

from SP to DP and even up to the newly introduced quadruple

precision (QP) in the IEEE754-2800 FP standard [9].

F. Testing

Testing the designed arithmetic circuits is an essential

feature of FloPoCo.Arithmetic circuit design starts from its

mathematical specification. The architecture is then optimized

for FPGA deployment by adjusting intermediate computation

size, using specialized operators etc. Once design is finished,

our framework is capable of generating all the necessary for

void FPExp::emulate(TestCase * tc)

{

/* Get I/O values */

mpz_class svX = tc->getInputValue("X");

/* Compute correct value */

FPNumber fpx(wE, wF);

fpx = svX;

mpfr_t x, ru,rd;

mpfr_init2(x, 1+wF);

mpfr_init2(ru, 1+wF);

mpfr_init2(rd, 1+wF);

fpx.getMPFR(x);

mpfr_exp(rd, x, GMP_RNDD);

mpfr_exp(ru, x, GMP_RNDU);

FPNumber fprd(wE, wF, rd);

FPNumber fpru(wE, wF, ru);

mpz_class svRD = fprd.getSignalValue();

mpz_class svRU = fpru.getSignalValue();

tc->addExpectedOutput("R", svRD);

tc->addExpectedOutput("R", svRU);

mpfr_clears(x, ru, rd, NULL);

}

Fig. 8. The emulate() function for ex

testing the implementation results to a series of stimuli against

the response of the mathematical model to that set of stimuli.

In order to get testing support, each operator has to be

annotated with an emulate() function. The purpose of this

function is to emulate the behavior of the mathematical spec-

ification of the circuit. Say for instance the circuit computes

ex in floating-point having the architecture presented in figure

6. The emulate() function does not mimic this complex

architecture, increasing the probability of doing the same

errors in software as in hardware, but mimics the specification:

for a given floating-point number x the output of the value is

ex for the given precision. The code of the emulate function

for the ex function is presented in Figure 8.

As it can be clearly seen in Figure 8, the specification

relies on using multi-precision libraries: 1) MPFR [20] for

floating-point operators (+,∗,/, and elementary functions);

allows testing the exotic precisions of the operators, facilitating

the use of the different rounding modes. 2) GMP [21] for most

fixed-point basic operators and internal wrapping operations;

facilitates the work with large integer values without concern

of overflow.

Test-bench suites can then be generated for all operators im-

plementing the emulate function. By default, FloPoCo uses

a basic random-number generator to generate input values in

the emulate function (tc->getInputValue("X")). The

output value(s) (faithful rounding allows two possible results,

mpfr_exp(rd, x, GMP_RNDD); mpfr_exp(ru, x,

GMP_RNDU) ) for this input is then computed and packed

into the the test-case ( tc->addExpectedOutput("R",

svRD); tc->addExpectedOutput("R", svRU);).

A list of test-cases form a test-bench. Exhaustive testing,

also called soak testing, creates a test-bench which tests

all the possible combinations of the inputs. This gives the

absolute guarantee that an operator is fully compliant to the



(...)

| | | | | |---Entity IntAdder_16_f325_Alt:

| | | | | | Not pipelined

(...)

| | | | |---Entity IntAdder_52_f400_Classical:

| | | | | Pipeline depth = 1

| | | |---Entity IntCompressorTree_52_2_uid15:

| | | | Pipeline depth = 1

| | |---Entity IntTruncMultiplier_30_34_35_signed:

| | | Pipeline depth = 4

| | |---Entity IntAdder_42_f400_Classical}:

| | | Pipeline depth = 1

| |---Entity PolynomialEvaluator_d2:

| | Pipeline depth = 15

|---Entity FunctionEvaluator:

| Pipeline depth = 17

|---Entity IntAdder_48_f400_slice_Classical}:

| Pipeline depth = 2

|---Entity IntAdder_48_f400_slice__Classical}:

| Pipeline depth = 2

| | |---Entity IntAdder_85_f325_Classical}:

| | | Pipeline depth = 1

| |---Entity IntCompressorTree_85_3_uid21:

| | Pipeline depth = 2

|---Entity IntMultiplier_47_48_uid20:

| Pipeline depth = 6

|---Entity IntAdder_57_f400_Classical:

| Pipeline depth = 2

|---Entity IntAdder_65_f400__Classical:

| Pipeline depth = 2

Entity FPExp_11_52_400:

Pipeline depth = 52

(...)

| | | | | |---Entity IntAdder_16_f200__Alt:

| | | | | | Not pipelined

(...)

| | | | |---Entity IntAdder_52_f200_Alt:

| | | | | Not pipelined

| | | |---Entity IntCompressorTree_52_2_uid15:

| | | | Not pipelined

| | |---Entity IntTruncMultiplier_30_34_35_signed:

| | | Pipeline depth = 2

| | |---Entity IntAdder_42_f200_Classical}:

| | | Not pipelined

| |---Entity PolynomialEvaluator_d2:

| | Pipeline depth = 7

|---Entity FunctionEvaluator:

| Pipeline depth = 9

|---Entity IntAdder_48_f200_Alt}:

| Pipeline depth = 1

|---Entity IntAdder_48_f200__Alt}:

| Pipeline depth = 1

| | |---Entity IntAdder_Alt}:

| | | Pipeline depth = 1

| |---Entity IntCompressorTree_85_3_uid21:

| | Pipeline depth = 1

|---Entity IntMultiplier_47_48_uid20:

| Pipeline depth = 5

|---Entity IntAdder_57_f200__Alt}:

| Pipeline depth = 1

|---Entity IntAdder_65_f200__Alt}:

| Pipeline depth = 1

Entity FPExp_11_52_200:

Pipeline depth = 23

Fig. 7. Component hierarchy for ex DP, on a Virtex4 for frequency left) f = 400MHz, right) f = 200MHz

TABLE I
SYNTHESIS RESULTS OF THE VARIOUS INSTANCES OF THE FLOATING-POINT EXPONENTIAL OPERATOR. WE USED QUARTUSII V9.0 FOR STRATIXIII

EPSL50F484C2 AND ISE 11.5 FOR VIRTEXIV XC4VFX100-12-FF1152 AND VIRTEX6 XC6VHX380T-3-FF1923

Precision FPGA Tool
Performance Resource Usage

f (MHz) Latency
Logic Usage

DSPs Memory
(A)LUTs Reg. Slice

(8,23) StratixIII
Altera MegaWizard 274 17 527 900 - 19 18-bit elem. 0

ours
391 6 832 374 -

2 18-bit elem.
0

405 7 519 382 - 2 M9K

(10,40)
Virtex4 ours* (k=5,d=2) 302 43 2498 2219 1500 12 DSP48 5 BRAM
Virtex6 ours (k=5,d=2) 488 32 1469 1344 - 10 DSP48E1 3 BRAM

(11,52)

StratixIII
Altera MegaWizard 213 25 2941 1476 - 58 18-bit elem. 0

ours
327 29 1307 3757 -

22 18-bit elem. 10 M9K
256 15 1437 1984 -

VirtexIV ours*
292 45 2454 2300 1579

14 DSP48 5 BRAM
187 29 2263 1624 1283

(15,112) Virtex6 ours (k=14, d=3) 395 69 8071 7725 - 71 DSP48E1 123 BRAM

specifications. Unfortunately, this type of testing is restricted

to only a hand-full of precisions. Generally, it is feasible to test

only a small fraction of the total number of tests. Therefore,

the problem boils down to choosing the test-vectors which best

test the given operator.

For some operators such as fixed-point +, ∗, floating-point

∗, the test-vectors can be generated using the classical random-

number generators. The probability of testing all the data-paths

of the circuit suffices. Other floating-point operations are more

sensitive:

• +. The architecture usually consists of two main data-

paths, one for the case when the difference in exponents

is ∈ {−1, 0, 1}. The probability of generating a test-

vector which tests this data-path using an random-number

generator with a uniform distribution is approximatively

1/85 for single-precision and 1/766 for double-precision.

• ex. The exponential returns zero for input numbers

smaller than log(2(2
wF −1

−1)), and should return + inf for

all inputs larger than log((2−2−wF )·22
wE−1−(2wF −1

−1)).
In single precision the set of input numbers on which

a computation will take place is just [88.03, 88.72]. In

addition, as for small x we have ex ≈ 1 + x+ x2/2, the

exponential will return 1 for all the input x smaller that

2−wF−2. One consequence is that the testing of a floating-

point exponential operator should focus on the this range

of the input. More details can be found in [19].

FloPoCo offers the possibility of overriding the default be-

havior of of filling the test-cases using random-numbers having

a uniform distribution. The corresponding function for ex if

given in Figure 9. This new version of the random generator

function generates 1/8 truly random inputs, and for the rest

of 7/8 the exponent is generated such that x ∈ [Xmin, Xmax],



TestCase* FPExp::buildRandomTestCase(int i){

TestCase *tc;

tc = new TestCase(this);

mpz_class x;

mpz_class normalExn = mpz_class(1)<<(wE+wF+1);

mpz_class bias = ((1<<(wE-1))-1);

/* Fill inputs */

if ((i & 7) == 0) { //fully random

x = getLargeRandom(wE+wF+3);

}

else{

mpz_class e = (getLargeRandom(wE+wF)

%(wE+wF+2))-wF-3;

e = bias + e;

mpz_class sign = getLargeRandom(1);

x = getLargeRandom(wF)

+ (e << wF)

+ (sign<<(wE+wF))

+ normalExn;

}

tc->addInput("X", x);

/* Get correct outputs */

emulate(tc);

return tc;

}

Fig. 9. The function generating the specialized distribution of test-cases for
ex

where Xmin = 2−E0 and Xmax = (2− 2−wF ) · 22
wE−1−E0 .

For the case of the floating-point addition one could decide

that testing the two data-paths with the same probability

suffices. Implementing this change is trivial, but might not be

enough. Consider the extreme case X + (−X). This causes

a massive cancellation of the mantissas and is therefore a

difficult case to cover. Probabilistically, this has a 1/2wF

chances of happening with a uniform distribution.

In order to capture all these corner-cases, FloPoCo allows

manually defining a set of standard test-cases which make it

possible specify the extreme cases.

G. Framework extensions

1) Managing feedback loops: Up to this point we have

constrained our definition of arithmetic operator to functions.

In fact, the current implementation of FloPoCo can also

manage feedback loops. This is especially important as the

accumulation5 circuit which falls in this category is considered

by many the 5th basic operation. The subtlety in this case is

using a signal which may be declared cycles later. Say for

example that the accumulation circuit takes has 5 pipeline

stages. The result signal of this accumulation is declared

only at cycle 5 in the design, however, this input needs to

be fed back to the first cycle, at the accumulator input. As

using a signal cycles before it’s declared leads to errors in

designs not having feedback loops, at circuit generation time

our framework signals to the user, as a warning, the signals

having this property. If indeed the signals are feedback signal

this may be ignored. Otherwise, the described circuit may not

be what the user planed for.

5[22] presents a detailed implementation specific to FPGAs

2) An extension tool for VLSI ALU design: The initial

purpose of FloPoCo was to provide a flexible environment

for describing purely arithmetic operators for FPGAs. Never-

theless, FloPoCo may be extended so to be used in VLSI ALU

design. The extension is in fact a simplification of all basic

components for the VLSI target. The VHDL code generated

for the basic operators will simply be ”+,-,*”.

FloPoCo will be used perform and initial pipelining of the

ALU. The code generated will then be passed through VLSI

specific tools which replace the ”+,-,*” operators by VLSI-

specific instantiations and perform register retiming.

3) Backend for HLS: Our framework can also be used as

a beck-end for high-level synthesis as it offers an important

basis of arithmetic operators optimized for different types of

contexts. The tool itself is open-source and extensible allowing

an on-demand update of the available operator basis. This is as

flexible as being able to add a new instruction to the instruction

set of a microprocessor. Work is undergoing in experimenting

in this research direction.

IV. CONCLUSION

With the features provided by the FloPoCo framework,

flexible arithmetic datapath design for FPGAs is finally ready

for prime-time. The important operator basis together with

the novel methodology in pipelining allows developing state-

of-the art arithmetic operators with a productivity never be-

fore encountered. Arithmetically oriented test-bench genera-

tion support allows a better validation of designed circuits

in a shorter time. Synthesis results confirm the flexibility

and performance of the operators developed using using our

framework. Preliminary efforts confirm the possible extensions

for the framework for VLSI ALU design. Moreover, work is

currently undergoing in linking FloPoCo as a back-end for

HLS.
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