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Abstract

As FPGAs are increasingly being used for floating-point computing, the feasi-
bility of a library of floating-point elementary functions for FPGAs is discussed.
An initial implementation of such a library contains parameterized operators for
the logarithm and exponential functions. In single precision, those operators use a
small fraction of the FPGA’s resources, have a smaller latency than their software
equivalent on a high-end processor, and provide about ten times the throughput
in pipelined version. Previous work had shown that FPGAs could use massive
parallelism to balance the poor performance of their basic floating-point operators
compared to the equivalent in processors. As this work shows, when evaluating an
elementary function, the flexibility of FPGAs provides muchbetter performance
than the processor without even resorting to parallelism. The presented library is
freely available fromhttp://www.ens-lyon.fr/LIP/Arenaire/.

1 Introduction

A recent trend in FPGA computing is the increasing use of floating-point. Many li-
braries of floating-point operators for FPGAs now exist [18,8, 1, 11, 6], typically
offering the basic operators+, −, ×, / and

√
. Published applications include matrix

operations, convolutions and filtering. As FPGA floating-point is typically clocked 10
times slower than the equivalent in contemporary processors, only massive parallelism
(helped by the fact that the precision can match closely the application’s requirements)
allows these applications to be competitive to software equivalent [13, 5, 10].

More complex floating-point computations on FPGAs will require good imple-
mentations of elementary functions such as logarithm, exponential, trigonometric, etc.
These are the next useful building blocks after the basic operators. This paper de-
scribes both the logarithm and exponential functions, a first attempt to a library of
floating-point elementary functions for FPGAs.

Elementary functions are available for virtually all computer systems. There is
currently a large consensus that they should be implementedin software [17]. Even
processors offering machine instructions for such functions (mainly the x86/x87 fam-
ily) implement them as micro-code. On such systems, it is easy to design faster soft-
ware implementations: Software can use large tables which wouldn’t be economical in



hardware [19]. Therefore, no recent instruction set provides instructions for elementary
functions.

Implementing floating-point elementary functions on FPGAsis a very different
problem. The flexibility of the FPGA paradigm allows to use specific algorithms which
turn out to be much more efficient than a processor-based implementation. We show
in this paper that a single precision function consuming a small fraction of FPGA re-
sources has a latency equivalent to that of the same functionin a 2.4 GHz PC, while
being fully pipelinable to run at 100 MHz. In other words, where the basic floating-
point operator (+, −, ×, /,

√
) is typically 10 times slower on an FPGA than its PC

equivalent, an elementary function will be more than ten times faster for precisions up
to single precision.

Writing a parameterizedelementary function is a completely new challenge: to
exploit this flexibility, one should not use the same algorithms as used for implement-
ing elementary functions in computer systems [19, 15, 14]. This paper describes an
approach to this challenge, which builds upon previous workdedicated to fixed-point
elementary function approximations (see [7] and references therein).

The authors are aware of only two previous works on floating-point elementary
functions for FPGAs, studying the sine function [16] and studying the exponential
function [9]. Both are very close to a software implementation. As they don’t exploit
the flexibility of FPGAs, they are much less efficient than ourapproach, as section 4
will show.

Notations

The input and output of our operators will be(3+wE +wF)-bit floating-point numbers
encoded in the freely available FPLibrary format [6] as follows:

• FX: The wF least significant bits represent the fractional part of the mantissa
MX = 1.FX.

• EX: The followingwE-bit word is the exponent, biased byE0 = 2wE−1−1.

• SX: The next bit is the sign ofX.

• exnX : The two most significant bits ofX are internal flags used to deal more
easily with exceptional cases, as shown in Table 1.

exnX X

00 0
01 (−1)SX ·1.FX ·2EX−E0

10 (−1)SX ·∞
11 NaN (Not a Number)

Table 1: Value ofX according to its exception flags exnX.



2 A floating-point logarithm

2.1 Evaluation algorithm

2.1.1 Range reduction

We consider here only the case whereX is a valid positive floating-point number (ie.
exnX = 01 andSX = 0), otherwise the operator simply returns NaN. We thereforehave:

X = 1.FX ·2EX−E0.

If we takeR= logX, we obtain:

R= log(1.FX)+ (EX −E0) · log2.

In this case, we only have to compute log(1.FX) with 1.FX ∈ [1,2). The product
(EX −E0) · log2 is then added back to obtain the final result.

In order to avoid catastrophic cancellation when adding thetwo terms, and conse-
quently maintain low error bounds, we use the following equation to center the output
range of the fixed-point log function around 0:

R=





log(1.FX)+ (EX −E0) · log2 when 1.FX ∈ [1,
√

2),

log

(
1.FX

2

)
+(1+EX −E0) · log2 when 1.FX ∈ [

√
2,2).

(1)

We therefore have to compute logM with the input operandM ∈ [
√

2/2,
√

2), which
gives a result in the interval[− log2/2, log2/2).

We also note in the followingE = EX−E0 when 1.FX ∈ [1,
√

2), orE = 1+EX−E0

when 1.FX ∈ [
√

2,2).

2.1.2 Fixed-point logarithm

As we are targeting floating-point, we need to compute logM with enough accuracy in
order to guarantee faithful rouding, even after a possible normalization of the result.
As logM can be as close as possible to 0, a straightforward approach would require at
least a precision of 2wF bits, as the normalization could imply a left shift of up towF

bits, andwF bits would still be needed for the final result.
But one can remark that whenM is close to 1, logM is close toM−1. Therefore,

a two-step approach consisting of first computing logM/(M − 1) with a precision of
wF + g0 bits and then multiplying this result byM − 1 (which is computed exactly)
leads to the targeted accuracy at a smaller cost.

The function f (M) = logM/(M − 1) is then computed by a generic polynomial
method [7]. The order of the considered polynomial obviously depends on the precision
wF .

2.1.3 Reconstruction

As the evaluation off (M) is quite long, we can in parallel compute the sign of the
result: If E = 0, then the sign will be the sign of logM, which is in turn positive if
M > 1 and negative ifM < 1. And if E 6= 0, as logM ∈ [

√
2/2,

√
2), the sign will be

the sign ofE · log2, which is the sign ofE.



We can then compute in advance the opposite ofE and M − 1 and select them
according to the sign of the result. Therefore, after the summation of the two products
E · log2 andY = f (M) · (M−1), we obtainZ the absolute value of the result.

The last steps are of course the renormalization and rounding of this result, along
with the handling of all the exceptional cases.

2.2 Architecture

The architecture of the logarithm operator is given on Figure 1. It is a straightforward
implementation of the algorithm presented in Section 2.1. Due to its purely sequential
dataflow, it can be easily pipelined. The values for the two parametersg0 andg1 are
discussed in Section 2.3.

wF + g1

1 + wF

1 + wF

1 + wF

wE

2 1 wE wF

3 + wE + wF

3 + wE + wF

X

exnX SX EX FX

1
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√
2

E0

f (x) =
log x

x − 1

1

sign

log 2

±1

±1

sign / exception handling

wE + 1

wE

wE + wF + g1

wE + 2wF + g0 + 2

normalize / round

2wF + g0 + 3

wF + g0 + 2

˜R ≈ log X

E

M

Z

Y

Figure 1: Architecture of the logarithm operator.

Some comments about this architecture:



• Remark that the boundary between the two cases of Equation (1) does not have
to be exactly

√
2, as both alternatives are valid on the whole of[1,2). This means

that the comparison between the mantissa 1.FX and
√

2 may be performed on a
few bits only, saving hardware. We do not have any longer thatM ∈ [

√
2/2,

√
2)

and logM ∈ [− log2/2, log2/2), but we use the smallest approximation to
√

2
that do not increase the bounds of these intervals to the nextpower of two. Thus
the savings in this step do not lead to increased hardware on the subsequent steps.

• The sign of the result is the sign ofE whenE 6= 0. If E = 0, we also need to take
into account the result of the comparison between 1.FX and

√
2.

• The function f (x) is evaluated using the Higher-Order Table-Based Method
(HOTBM) presented in [7]. It involves a piecewise polynomial approximation,
with variable accuracy for the coefficients and where all theterms are computed
in parallel.

• The normalization of the fixed-point numberZ uses a leading-zero counter, and
requires shiftingZ by up towF bits on the left and up towE bits on the right.

• Underflow cases are detected by thesign & exception handlingunit.

As the tables sizes grow exponentially with the precision, this architecture is well
suited for precisions up to single precision (wF = 23 bits), and slightly more. Area on
Virtex circuits will be given for a range of precision in Section 4.

2.3 Error analysis

In order to guarantee faithful rounding for the final result —ie. an error of less than
oneunit in the last place(ulp) of the result — we need to have a constant bound on the
relative error of the fixed-point numberZ = logX:

|Z− Z̃|
2⌊log2 |Z|⌋

< 2−wF−1,

so that when rounding the result mantissa to the nearest, we obtain a total error bound
of 2−wF .

We need to consider several cases depending on the value ofE:

• When|E| > 3, |Z| > 2 and the predominant error is caused by the discretization
error of the log2 constant, which is multiplied byE.

• WhenE = 0, on the other hand, the only error is caused by the evaluation of
f (M), which is then scaled in the productf (M) · (M −1). As the multiplicand
M−1 is computed exactly, this product does not entail any othererror.

• When |E| = 2 or 3, both the discretization error from log2 and the evaluation
error from f (M) have to be taken into account. However, in this case, we have
|Z| > 1. Therefore no cancellation will occur, and the discretization error will
not be amplified by the normalization ofZ.

• When|E| = 1, we have:

0.34<
1
2

log2≤ |Z| ≤ 3
2

log2< 1.04.

In this case, a cancellation of up to 2 bits can occur, which will multiply the log2
discretization error by at most 4.



One can then find that usingg1 = 3 guard bits for the log2 constant and bounding
the evaluation errorε f < 2−wF−3 satisfies all these constraints. The number of guard
bits g0 is given by the evaluation scheme used forf (M), and is typically comprised
between 1 and 5 bits.

All these choices have been proven valid by exhaustively testing our operators on
a Celoxica RC-1000 board (with a VirtexE-2000 FPGA) againsta double precision
software function, for the whole parameter space defined bywE ∈ [3,8] and wF ∈
[6,23]. This exhaustive testing showed that the the result was always faithful, and was
correctly rounded to nearest in more than 98% of the cases.

3 A floating-point exponential

3.1 Evaluation algorithm

3.1.1 Special cases

The exponential function is defined on the set of the reals. However, in this floating-
point format, the smallest representable number is:

Xmin = 21−E0,

and the largest is:

Xmax = (1+
2wF −1

2wF
) ·22wE−2−E0.

The exponential should return zero for all input numbers smaller than log(Xmin),
and should return+∞ for all input numbers larger than log(Xmax). In single precision
(wE = 8, wF = 23), for instance, the set of input numbers on which a computation
will take place is[−87.34,88.73]. The remainder of this section only describes the
computation on this interval.

3.1.2 A first algorithm

The straightforward idea to compute the exponential ofX is to use the identity:

eX = 2X/ log(2).

Therefore, first computeX/ log(2) as a fixed-point valueY = Yint.Yfrac. The integer
part ofY is then the exponent of the exponential ofX, and to get the fraction ofeX one
needs to compute the function 2x with the fractional part ofY as input.

This approach poses several problems:

• To be sure of the exponent, one has to computeY with very good accuracy: A
quick error analysis shows that one needs to use a value of1

log(2) on more than
wE +wF bits, which in practice means a very large multiplier for thecomputation
of X · 1

log(2)
.

• The accurate computation of 2Yfrac will be very expensive as well. Using a table-
based method, it needs a table with at leastwF bits of inputs.

The second problem can be solved using a second range reduction, splittingYfrac

into two subwords:
Yfrac = Y1 +Y2,



whereY1 holds thep most significant bits ofY. One may then use the identity:

2Y1+Y2 = 2Y1 ·2Y2.

But again, we would have a multiplier of size at leastwF × (wF − p).

3.1.3 Improved algorithm

A slightly more complicated algorithm, closer to what is typically used in software
[12], solves the previous problems. The main idea is to reduceX to an integerk and a
fixed-point numberY such as:

X ≈ k · log(2)+Y, (2)

and then to use the identity:
eX ≈ 2k ·eY.

The reduction to(k,Y) is implemented by first computingk≈ X · 1
log(2)

, then com-

putingY = X−k · log(2). The computation ofeY may use a second range reduction as
previously, splittingY as:

Y = Y1 +Y2,

whereY1 holds thep most significant bits ofY, then computing:

eY1+Y2 = eY1 ·eY2,

whereeY1 will be tabulated.
This looks similar to using the naive approach, however it has two main advan-

tages: First, the computation ofk can be approximated, as long as the computation of
Y compensates it in such a way that Equation (2) is accurately implemented. Ask is
a small integer, this in practice replaces a large multiplication with two much smaller
multiplications, one to computek, the second to computek · log(2). This approxima-
tion, however, implies that the final exponent may bek±1: the result 2k ·eY will require
a normalization.

Second, computingeY2 is simpler than computing 2Y2, because of the Taylor for-
mula:

eY2 ≈ 1+Y2+T(Y2),

whereT(Y2) ≈ eY2 −1−Y2 will be also tabulated.
This not only reduces a table-based approximation to a much smaller one (asY2 <

2−p−1 as will be seen in Section 3.3, it requires aboutwF −2p input bits instead of
wF − p bits), it also offers the opportunity to savep lines of the final large multiplier
by implementing it as:

eY1 · (1+Y2+T(Y2)) = eY1 +eY1 · (Y2 +T(Y2)).

The relevance of this depends on the target architecture. Obviously, it is relevant
to FPGAs without embedded multipliers. If such multipliersare available (like the
18×18 of some Virtex architectures), it is relevant if the size of one of the inputs gets
smaller than 18. For instance a 18×24 multiplication followed by one addition may
be considered more economical than a 24×24 multiplication consuming 4 embedded
multipliers (see a detailed study of multiplier implementation on the Virtex family in
[2]). Conversely, if the rectangular multiplication consumes 4 embedded multipliers
anway, the addition should also be computed by these multipliers. This is the case for
single precision.



3.1.4 A table-driven method

The previous algorithm involves two tables:

• The first, withp input bits and a few more thanwF output bits foreY1, can not be
compressed using table-based methods derived from the bipartite method.

• The second, with aboutwF −2p input bits and as many output bits, can. As for
the logarithm operator, we use the HOTBM method [7].

Compressed or not, the sizes of these tables grow exponentially with their input
size. Just like the logarithm, this algorithm is therefore well suited for precisions up
to (and slightly above) single precision (wF = 23 bits). Area on Virtex circuits will be
given for a range of precision in Section 4.

For much smaller precisions, of course, simpler approacheswill be more effective.
For much larger precisions, like double precision, the algorithm has to be modified. An
idea is to repeat the second range reduction several times, each time replacingp input
bits to the tables by one newp-input-bits table and one almost full-size multiplier. An-
other solution is to computeey2 using a higher degree polynomial, which also increases
the multiplier count. A more detailed study remains to be done.

3.2 Architecture

The architecture of this operator is given on Figure 2. It is astraightforward imple-
mentation of the algorithm. Obviously this architecture ispurely sequential and can be
pipelined easily.

The architecture has two parameters,p andg. The first essentially drives a tradeoff
between the sizes of the two tables, and its value should be comprised betweenp =
wF/4 andp = wF/3. The second is a number of guard bits used to contain rounding
errors, and will be studied in Section 3.3.

Some more comments about this architecture:

• Theshift operator shifts the mantissa by the value of the exponent. More specif-
ically, if the exponent is positive, it shifts to the left by up towE positions (more
would mean overflow). If the exponent is negative, it shifts to the right by up to
wF +g positions. The result is then truncated towE +wF +g bits.

• The range check (which verifies if the exponential of the input is representable
in the given format, or if an infinity or a zero should be returned) is performed
by theshift and the first multiplication stages.

• The intermediate value ofXfix haswE +wF +g+1 bits with a fixed binary point
after thewE + 1-th. The computation ofXfix −k · log(2) will cancel the integer
part and the first bit of the fractional part, as shown below inSection 3.3.

• The first two multipliers are constant multipliers, for which a range of optimiza-
tion techniques may apply [3, 4]. This is currently not exploited.

• This figure shows the final multiplication implemented as a multiplier followed
by an adder, but as shown in Section 3.1.3, depending on the target architecture,
it may make more sense to have one single multiplier instead.
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Figure 2: Architecture of the exponential operator.

• Final normalization possibly shifts left the mantissa by one bit (as will be shown
in 3.3.1), then rounds the mantissa, then possibly shifts back right by one bit in
the rare case when rounding also changes the exponent. Each shift is associated



with an increment/decrement of the exponent.

Several of these blocks can certainly be the subject of further minor optimizations.

3.3 Error analysis

The goal is to obtain a floating-point operator which guarantees faithful rounding.
There are two aspects to the error analysis. First, the rangereduction should be im-
plemented with the minimum hardware. Second, the whole of the computation should
ensure faithful rounding, considering the method and rounding errors involved.

3.3.1 Range reduction

As k will be the exponent (plus or minus 1) of the final exponential, it fits on awE +1
machine word.

If the range reduction step were exact, the value ofY would be in[− log(2)
2 ,

log(2)
2 ],

ensuring thateY is in [
√

2
2 ,

√
2]. Using less accuracy to computek, we accept that

Y will be in an interval larger than[− log(2)
2 , log(2)

2 ]. It will make little difference to
the architecture to increase these bounds to the next power of two, which isY ∈]−
1/2,1/2[. One proves easily that this is obtained for allwE by truncating 1/log(2) to
wE +1 bits, and considering onlywE +3 bits ofXfix .

This means that we will haveeY in [0.6,1.7], so we will sometimes have to nor-
malize the final result by shifting the mantissa one bit to theright and increasing the
exponent by one.

3.3.2 Faithful rounding

The computation ofeY involves a range of approximation and rounding errors, and
the purpose of this section is to guarantee faithful rounding with a good percentage of
correct rounding.

In the following, the errors will be expressed in terms of units in the last place
(ulps) ofY. It is safe to reason in terms of ulps since all the computations are in fixed
point, which makes it easy to align the binary point of each intermediate value. Here
the ulp has the value 2−wF−g. Then we can make an error expressed this way as small
as required by increasingg.

First, note that the argument reduction is not exact. It entails an error due to:

• the approximation oflog(2) to wE +wF +g−1 bits (less than one half-ulp),

• Xfix which is exact if it was shifted left, but was truncated if shifted right (one
ulp),

• the truncation ofY to wF +g bits (one ulp).

Thus in the worst case we have lost 5 half-ulps.
Now we consider subsequent computations onY carrying this error.
The table ofeY1 holds an error of at most one half-ulp.
The table ofeY2 −Y2−1 is only faithful because it uses the HOTBM compression

technique (error up to one ulp, plus another ulp when truncating Y2 to its most signifi-
cant part). The previous error onY is negligible for this table as its result is scaled by
2−2p−1.



Due to the multiplier, the error due to the second table (2 ulps) added to the error on
Y2 (5 half-ulps) may be scaled by the value contained in the firsttable (less than 1.7).
This leads to an error of less than 8 ulps.

The first addition involves no error, we again lose one half-ulp when rounding the
result of the multiplication, and the second addition adds the half-ulp error from the
first table.

Finally the errors sum up to 9 ulps. Besides we have to take into account that we
may need to shift the mantissa left in case of renormalization, so we have to provide
one extra bit of accuracy for that. Altogether, we find thatg = 5 guard bits for the
intermediate computations ensure faithful rounding.

A finer error analysis directing slight modifications of the algorithm (replacing
some of the truncations by roundings) could probably reduceg, but would also increase
the critical path.

As for the logarithm operator, we implemented a test procedure which compares
the result of this operator on a Celoxica RC-1000 board against a double precision
exponential on the host PC. Exhaustive testing for various precision has confirmed that
the result is always faithful, and correctly rounded to nearest in more than 75% of the
cases.

4 Results

We obtained area and delay estimations of our operators for several precisions. These
results were computed using Xilinx ISE and XST 6.3 for a Virtex-II XC2V1000-4
FPGA. They are shown in Figure 3, and a summary is given in Table 2, in terms of
slices and percentage of FPGA occupation for the area, and interms of nanoseconds
for the latency.

Logarithm Exponential
Precision Multipliers Area Latency Area Latency
(wE ,wF ) (slices % mults) (ns) (slices % mults) (ns)

(3,6) LUT-based 123 (2%) – 34 137 (2%) – 51
18×18 89 (1%) 2 31 68 (1%) 3 47

(5,10) LUT-based 263 (5%) – 42 258 (5%) – 63
18×18 154 (3%) 3 39 135 (2%) 4 57

(6,13) LUT-based 411 (8%) – 48 357 (6%) – 69
18×18 233 (4%) 3 44 194 (3%) 5 65

(7,16) LUT-based 619 (12%) – 57 480 (9%) – 69
18×18 343 (6%) 6 55 271 (5%) 5 68

(8,23) LUT-based 1399 (27%) – 64 948 (18%) – 85
18×18 830 (16%) 9 61 522 (10%) 9 83

Table 2: Synthesis results for the operators on Xilinx Virtex-II.

In order to be as portable as possible, we do not require the use of the specific
Virtex-II embedded 18× 18 multipliers. Therefore we present the results obtained
with and without those multipliers in Figure 4.

If most of the results presented here are for the combinatorial version, our opera-
tors are also available as pipelined operators, for a small overhead in area, as shown
in Figure 5. The pipeline depth depends on the parameterswE andwF : between 5
and 11 cycles for the logarithm, and from 10 to 15 cycles for the exponential opera-
tor. The pipelined operators are designed to run at 100 MHz onthe targeted Virtex-II
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Figure 3: Area and latency estimations depending onwE andwF for the combinatorial
operators with LUT-based multipliers.

XC2V1000-4 FPGA.
As a comparison, Table 3 presents the performances for both our operators in single

precision, along with the measured performances for a 2.4 GHz Intel Xeon processor,
using the single precision operators from the GNUglibc (which themselves rely on
the micro-coded machine instructionsfyl2x, fyl2xp1 andf2xm1).

2.4 GHz Intel Xeon 100 MHz Virtex-II FPGA
Function Cycles Latency Throughput Cycles Latency Throughput

(ns) (106 op/s) (ns) (106 op/s)

Logarithm 196 82 12 11 64 100
Exponential 308 128 8 15 85 100

Table 3: Performance comparison between Intel Xeon and Virtex-II for single preci-
sion.

The only other comparable work we could find in the litterature [9] reports 5564
slices for a single precision exponential unit which computes exponentials in 74 cycles
fully pipelined at 85 MHz on a Virtex-II 4000. Our approach ismuch more efficient,
because our algorithm is designed from scratch specificallyfor the FPGA. In contrast,
the authors of [9] use an algorithm designed for microprocessors. In particular, they
internally use fully featured floating-point adders and multipliers everywhere where we
only use fixed-point operators.
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Figure 4: Comparison of area and latency depending onwF (wE = 8), when using
LUT-based multipliers, and when using the embedded 18×18 multipliers.

5 Conclusion and future work

Parameterized floating-point implementations for the logarithm and exponential func-
tions have been presented. For the 32-bit single precision format, their latency matches
that of a Xeon processor, and their pipelined version provide several times the Xeon
throughput. Besides, they consume a small fraction of the FPGA’s resources.

We should moderate these results by a few remarks. Firstly, our implementations
are slightly less accurate than the Xeon ones, offering faithful rounding only, where
the Xeon uses an internal precision of 80 bits which ensures almost guaranteed cor-
rect rounding. Secondly, more recent instruction sets allow for lower latency for the
elementary functions. The Itanium 2, for example, can evaluate a single precision ex-
ponential in about 40 cycles (or 20 ns at 2 GHz), and will therefore be just twice slower
than our pipelined implementation. Thirdly, implementations for the logarithm or the
exponential better optimized for single precision could probably be written for these
recent processors. However the argument of massive parallelism will still apply.

Another future research direction, already evoked, is thatthe current architectures
do not scale well beyond single precision: some of the building blocks have a size
exponential in the precision. We will therefore explore algorithms which work up to
double precision, which is the standard in processors - and soon in FPGAs [5, 10]. We
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Figure 5: Area estimations depending onwF (wE = 8) for the combinatorial and
pipelined versions of the operators with LUT-based multipliers.

are also investigating other elementary functions to extend the library.
FPLibrary and the operators presented here are available under the GNU Public

Licence fromhttp://www.ens-lyon.fr/LIP/Arenaire/.
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