N
N

N

HAL

open science

Parameterized floating-point logarithm and exponential
functions for FPGAs

Florent de Dinechin, Jérémie Detrey

» To cite this version:

Florent de Dinechin, Jérémie Detrey. Parameterized floating-point logarithm and exponential func-
tions for FPGAs. Microprocessors and Microsystems: Embedded Hardware Design , 2006, 31 (8),

pp.537-545. 10.1016/j.micpro.2006.02.008 . ensl-00542213

HAL 1d: ensl-00542213
https://ens-lyon.hal.science/ensl-00542213
Submitted on 1 Dec 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://ens-lyon.hal.science/ensl-00542213
https://hal.archives-ouvertes.fr

Parameterized floating-point logarithm and exponential
functions for FPGAs

Jérémie Detrey Florent de Dinechin
Laboratoire de I'informatique du Paralisme
Ecole Normale Sigrieure de Lyon
46 allee d’ltalie, F-69364 Lyon, France
{ Jeremie.Detrey, Florent.de.Dinechj@ens-lyon.fr

September 22, 2005

Abstract

As FPGAs are increasingly being used for floating-point cotimg, the feasi-
bility of a library of floating-point elementary functionsff FPGAs is discussed.
An initial implementation of such a library contains paraenzed operators for
the logarithm and exponential functions. In single preristhose operators use a
small fraction of the FPGA's resources, have a smaller atéiman their software
equivalent on a high-end processor, and provide about teestthe throughput
in pipelined version. Previous work had shown that FPGAdccoge massive
parallelism to balance the poor performance of their basatifig-point operators
compared to the equivalent in processors. As this work shaiven evaluating an
elementary function, the flexibility of FPGAs provides muaétter performance
than the processor without even resorting to parallelisire fresented library is
freely available fromht t p: / / www. ens- I yon. fr/ LI P/ Arenaire/.

1 Introduction

A recent trend in FPGA computing is the increasing use of ifigapoint. Many li-
braries of floating-point operators for FPGAs now exist [88,1, 11, 6], typically
offering the basic operators, —, x, / and,/ . Published applications include matrix
operations, convolutions and filtering. As FPGA floatingrpds typically clocked 10
times slower than the equivalent in contemporary processoty massive parallelism
(helped by the fact that the precision can match closely pipii@ation’s requirements)
allows these applications to be competitive to softwarévedent [13, 5, 10].

More complex floating-point computations on FPGAs will requgood imple-
mentations of elementary functions such as logarithm, e&ptal, trigonometric, etc.
These are the next useful building blocks after the basicatpes. This paper de-
scribes both the logarithm and exponential functions, & &ittempt to a library of
floating-point elementary functions for FPGAs.

Elementary functions are available for virtually all congrusystems. There is
currently a large consensus that they should be impleméntsadftware [17]. Even
processors offering machine instructions for such fumatignainly the x86/x87 fam-
ily) implement them as micro-code. On such systems, it iy &aslesign faster soft-
ware implementations: Software can use large tables whathidm't be economical in

hardware [19]. Therefore, no recentinstruction set presidstructions for elementary
functions.

Implementing floating-point elementary functions on FPG#é&s very different
problem. The flexibility of the FPGA paradigm allows to usedfic algorithms which
turn out to be much more efficient than a processor-basecmgitation. We show
in this paper that a single precision function consuming alkfraction of FPGA re-
sources has a latency equivalent to that of the same funictiar2.4 GHz PC, while
being fully pipelinable to run at 100 MHz. In other words, wi¢he basic floating-
point operator{, —, x, /, /) is typically 10 times slower on an FPGA than its PC
equivalent, an elementary function will be more than teresrfaster for precisions up
to single precision.

Writing a parameterizecelementary function is a completely new challenge: to
exploit this flexibility, one should not use the same aldoris as used for implement-
ing elementary functions in computer systems [19, 15, 14jis paper describes an
approach to this challenge, which builds upon previous vaatticated to fixed-point
elementary function approximations (see [7] and refergtioerein).

The authors are aware of only two previous works on floatiogvpelementary
functions for FPGAs, studying the sine function [16] anddsing the exponential
function [9]. Both are very close to a software implemeltatiAs they don’t exploit
the flexibility of FPGAs, they are much less efficient than approach, as section 4
will show.

Notations

The input and output of our operators will B&+ wg + we)-bit floating-point numbers
encoded in the freely available FPLibrary format [6] asdols:

e Fx: Thewg least significant bits represent the fractional part of thentissa
Mx = 1.Fx.

¢ Ex: The followingwe-bit word is the exponent, biased By = 2"e~1 — 1.
e Sx: The next bit is the sign oX.

e exnyx: The two most significant bits ok are internal flags used to deal more
easily with exceptional cases, as shown in Table 1.

[exn | X |
00 0
01 [(—1)> 1LF- 255
10 (—1)> - o
11 NaN (Not a Number)

Table 1: Value oX according to its exception flags exn

2 A floating-point logarithm

2.1 Evaluation algorithm
2.1.1 Range reduction

We consider here only the case whirés a valid positive floating-point numbeie(
exrnx = 01 andSx = 0), otherwise the operator simply returns NaN. We therdfiaxe:

X = 1Ry 25 5o,
If we takeR = logX, we obtain:
R=log(1.Fx) + (Ex — Eq) - log 2

In this case, we only have to compute (&d~x) with 1.Fx € [1,2). The product
(Ex — Ep) -log2 is then added back to obtain the final result.

In order to avoid catastrophic cancellation when addingweterms, and conse-
guently maintain low error bounds, we use the following dmureto center the output
range of the fixed-point log function around 0:

log(1.Fx) + (Ex — Eo) -log2 when 1Fx € [1,V/2),
R= log (%) +(14Ex—Ep)-log2 when 1Fx € [v2,2). (3)

We therefore have to compute Ibgwith the input operani € [v/2/2,+/2), which
gives a resultin the intervgl-log2/2,l0g2/2).

We also note in the following = Ex — Eg when 1Fx € [1, \/i), orE=1+Ex—Ep
when 1Fx € [v/2,2).

2.1.2 Fixed-point logarithm

As we are targeting floating-point, we need to computéMagith enough accuracy in
order to guarantee faithful rouding, even after a possibienalization of the result.
As logM can be as close as possible to 0, a straightforward approaigld wequire at
least a precision of\# bits, as the normalization could imply a left shift of upvp
bits, andwg bits would still be needed for the final result.

But one can remark that whevh is close to 1, lo@/ is close toM — 1. Therefore,
a two-step approach consisting of first computinghbgM — 1) with a precision of
WE + go bits and then multiplying this result byl — 1 (which is computed exactly)
leads to the targeted accuracy at a smaller cost.

The functionf(M) = logM/(M — 1) is then computed by a generic polynomial
method [7]. The order of the considered polynomial obvigdsipends on the precision
WE.

2.1.3 Reconstruction

As the evaluation off (M) is quite long, we can in parallel compute the sign of the
result: If E = 0, then the sign will be the sign of ldd, which is in turn positive if

M > 1 and negative iM < 1. And if E # 0, as logVl € [v/2/2,+/2), the sign will be
the sign ofE - log 2, which is the sign oE.

We can then compute in advance the opposit& agthd M — 1 and select them
according to the sign of the result. Therefore, after theraation of the two products
E-log2 andY = f(M) - (M — 1), we obtainZ the absolute value of the result.

The last steps are of course the renormalization and rografithis result, along
with the handling of all the exceptional cases.

2.2 Architecture

The architecture of the logarithm operator is given on Feglrlt is a straightforward
implementation of the algorithm presented in Section 2.de B its purely sequential
dataflow, it can be easily pipelined. The values for the twapeetersyy andg; are
discussed in Section 2.3.

X

3+ wg +wp

sign { X +1

l—‘iil 14+ wp wr + go + 2
log 2 X
Y|

Z Ywp +2wp +go+2

| normalize / round |
I
! sign / exception handling |

éi% +wg +wp

R=~log X

Figure 1: Architecture of the logarithm operator.

Some comments about this architecture:

e Remark that the boundary between the two cases of Equafiaoék not have
to be exactly/2, as both alternatives are valid on the wholé&loR). This means
that the comparison between the mantis$g Bnd+/2 may be performed on a
few bits only, saving hardware. We do not have any longerihat[/2/2,/2)
and logV € [—log2/2,log2/2), but we use the smallest approximation\t@
that do not increase the bounds of these intervals to theposxtr of two. Thus
the savings in this step do not lead to increased hardwalesubsequent steps.

e The sign of the result is the sign BfwhenE = 0. If E =0, we also need to take
into account the result of the comparison betwedi &nd+/2.

e The function f(x) is evaluated using the Higher-Order Table-Based Method
(HOTBM) presented in [7]. It involves a piecewise polynoh@pproximation,
with variable accuracy for the coefficients and where alltérens are computed
in parallel.

e The normalization of the fixed-point numhémuses a leading-zero counter, and
requires shiftingZ by up towg bits on the left and up tee bits on the right.

e Underflow cases are detected by #ign & exception handlingnit.

As the tables sizes grow exponentially with the precisibis, architecture is well
suited for precisions up to single precisian-(= 23 bits), and slightly more. Area on
Virtex circuits will be given for a range of precision in Siect 4.

2.3 Error analysis

In order to guarantee faithful rounding for the final resultie-an error of less than
oneunit in the last placé€ulp) of the result — we need to have a constant bound on the
relative error of the fixed-point numbgr= logX:

z-2]
2[100,17]]

so that when rounding the result mantissa to the nearestbtaénca total error bound
of 27V,
We need to consider several cases depending on the valtie of

—we—1
<27WFT

e When|E| > 3, |Z| > 2 and the predominant error is caused by the discretization
error of the log 2 constant, which is multiplied By

e WhenE = 0, on the other hand, the only error is caused by the evaluafio
f(M), which is then scaled in the produttM) - (M — 1). As the multiplicand
M — 1 is computed exactly, this product does not entail any athrer.

e When|E| = 2 or 3, both the discretization error from log2 and the ewviédua
error from f (M) have to be taken into account. However, in this case, we have
|Z| > 1. Therefore no cancellation will occur, and the discretaraerror will
not be amplified by the normalization 8f

e When|E| =1, we have:
1 3
0.34< Elogzg |Z| < 5IogZ< 1.04.

In this case, a cancellation of up to 2 bits can occur, whidhmiltiply the log 2
discretization error by at most 4.

One can then find that usirgg = 3 guard bits for the log2 constant and bounding
the evaluation errog; < 2~ 3 satisfies all these constraints. The number of guard
bits go is given by the evaluation scheme used foM), and is typically comprised
between 1 and 5 bits.

All these choices have been proven valid by exhaustivetyngeur operators on
a Celoxica RC-1000 board (with a VirtexE-2000 FPGA) agamstouble precision
software function, for the whole parameter space definetvby [3,8] andwg €
[6,23]. This exhaustive testing showed that the the result wasyalfedthful, and was
correctly rounded to nearest in more than 98% of the cases.

3 A floating-point exponential

3.1 Evaluation algorithm
3.1.1 Special cases

The exponential function is defined on the set of the realsvéver, in this floating-
point format, the smallest representable number is:

Xmin - ZliEov
and the largestis:
2WF 71 ZWE 2 E
Xmax= (1+)25 4R,

20

The exponential should return zero for all input numberslemghan logXmin),
and should retura- for all input numbers larger than [08max). In single precision
(wg = 8, wg = 23), for instance, the set of input numbers on which a contjputa
will take place is[—87.34,88.73]. The remainder of this section only describes the
computation on this interval.

3.1.2 Afirst algorithm
The straightforward idea to compute the exponenti{ @& to use the identity:

X — pX/log(2)

Therefore, first comput¥/log(2) as a fixed-point valu¥ = Yin.Yirac. The integer
part ofY is then the exponent of the exponentiadgfand to get the fraction & one
needs to compute the functioli Rith the fractional part o¥ as input.

This approach poses several problems:

e To be sure of the exponent, one has to computeth very good accuracy: A
quick error analysis shows that one needs to use a val f on more than
We + W bits, which in practice means a very large multiplier fortoenputation

1
of X- 597"

¢ The accurate computation off2 will be very expensive as well. Using a table-

based method, it needs a table with at legsbits of inputs.

The second problem can be solved using a second range @dusiitting Yrac
into two subwords:
Yfrac =Y1 +Y2,

whereY; holds thep most significant bits of. One may then use the identity:

22 — ¥ %2,

But again, we would have a multiplier of size at leastx (wg — p).

3.1.3 Improved algorithm

A slightly more complicated algorithm, closer to what isitglly used in software
[12], solves the previous problems. The main idea is to redut an integek and a
fixed-point numbel such as:

X ~k-log(2)+Y,)
and then to use the identity:
A
The reduction tak,Y) is implemented by first computirig= X - @, then com-

putingY = X —k-log(2). The computation o’ may use a second range reduction as
previously, splittingY as:
Y = Yl +Y21

whereY; holds thep most significant bits oY, then computing:

eY1+Y2 — eYl . eYz)

wheree'? will be tabulated.

This looks similar to using the naive approach, however & tvego main advan-
tages: First, the computation kfcan be approximated, as long as the computation of
Y compensates it in such a way that Equation (2) is accuratghjeimented. Ak is
a small integer, this in practice replaces a large multpian with two much smaller
multiplications, one to compute the second to compute log(2). This approxima-
tion, however, implies that the final exponent maykkel.: the result 8- e will require
a normalization.

Second, computing"2 is simpler than computing'2, because of the Taylor for-
mula:

2~ 1+ Yo+ T(Ya),

whereT (Y2) ~ €2 — 1 — Y, will be also tabulated.

This not only reduces a table-based approximation to a muelier one (a¥> <
2-P~1 as will be seen in Section 3.3, it requires abwst— 2p input bits instead of
WEg — p bits), it also offers the opportunity to saydines of the final large multiplier
by implementing it as:

e (1424 T(Y2)) =t +e (2 +T(Y2)).

The relevance of this depends on the target architecturgioQdly, it is relevant
to FPGAs without embedded multipliers. If such multiplierg available (like the
18 x 18 of some Virtex architectures), it is relevant if the siz@we of the inputs gets
smaller than 18. For instance a &4 multiplication followed by one addition may
be considered more economical than ax224 multiplication consuming 4 embedded
multipliers (see a detailed study of multiplier implemeitta on the Virtex family in
[2]). Conversely, if the rectangular multiplication conses 4 embedded multipliers
anway, the addition should also be computed by these meltplThis is the case for
single precision.

3.1.4 A table-driven method
The previous algorithm involves two tables:

¢ The first, withp input bits and a few more tham: output bits fore'?, can not be
compressed using table-based methods derived from theitg@paethod.

e The second, with abowtr — 2p input bits and as many output bits, can. As for
the logarithm operator, we use the HOTBM method [7].

Compressed or not, the sizes of these tables grow expolemiith their input
size. Just like the logarithm, this algorithm is thereforelvguited for precisions up
to (and slightly above) single precisiowd{ = 23 bits). Area on Virtex circuits will be
given for a range of precision in Section 4.

For much smaller precisions, of course, simpler approagiielse more effective.
For much larger precisions, like double precision, the ailgm has to be modified. An
idea is to repeat the second range reduction several tiraels tiene replacing input
bits to the tables by one neprinput-bits table and one almost full-size multiplier. An-
other solution is to compu®? using a higher degree polynomial, which also increases
the multiplier count. A more detailed study remains to beedon

3.2 Architecture

The architecture of this operator is given on Figure 2. It Eraightforward imple-
mentation of the algorithm. Obviously this architecturpuisely sequential and can be
pipelined easily.

The architecture has two parametgrandg. The first essentially drives a tradeoff
between the sizes of the two tables, and its value should impiised betweemp =
we /4 andp = we /3. The second is a number of guard bits used to contain rogndin
errors, and will be studied in Section 3.3.

Some more comments about this architecture:

e Theshiftoperator shifts the mantissa by the value of the exponente joecif-
ically, if the exponent is positive, it shifts to the left bp to wg positions (more
would mean overflow). If the exponent is negative, it shifitstte right by up to
WE + g positions. The result is then truncatedig + wr + g bits.

e The range check (which verifies if the exponential of the tripuepresentable
in the given format, or if an infinity or a zero should be reedhis performed
by theshiftand the first multiplication stages.

e The intermediate value ofix haswg +wg + g+ 1 bits with a fixed binary point
after thewg + 1-th. The computation oKsx — k- log(2) will cancel the integer
part and the first bit of the fractional part, as shown beloBéation 3.3.

e The first two multipliers are constant multipliers, for whia range of optimiza-
tion techniques may apply [3, 4]. This is currently not exjgd.

e This figure shows the final multiplication implemented as dtiplier followed
by an adder, but as shown in Section 3.1.3, depending onrihet @& chitecture,
it may make more sense to have one single multiplier instead.

3+ wg +wr

wg +wp +g Xﬁx

1/1og?2
w42 p—" overflow/
underflow

| normalize / round |

4‘ sign / exception handling ':

3+ wp +wp

Rr~eX
Figure 2: Architecture of the exponential operator.
e Final normalization possibly shifts left the mantissa b dit (as will be shown

in 3.3.1), then rounds the mantissa, then possibly shiftk bight by one bit in
the rare case when rounding also changes the exponent. Eédh associated

with an increment/decrement of the exponent.

Several of these blocks can certainly be the subject oféuarttinor optimizations.

3.3 Error analysis

The goal is to obtain a floating-point operator which guagastfaithful rounding.
There are two aspects to the error analysis. First, the resdyection should be im-
plemented with the minimum hardware. Second, the whole®ttmputation should
ensure faithful rounding, considering the method and ranmdrrors involved.

3.3.1 Range reduction

As k will be the exponent (plus or minus 1) of the final exponenttdits on awg + 1
machine word.
If the range reduction step were exact, the valu¥ efould be in[— 232 1°d2))

ensuring thae’ is in [‘/7—2,\/5]. Using less accuracy to compute we accept that

Y will be in an interval larger tharﬁ—%, %]. It will make little difference to
the architecture to increase these bounds to the next pdweiowhich isY €] —
1/2,1/2]. One proves easily that this is obtained fona by truncating ¥log(2) to
We + 1 bits, and considering onlyg + 3 bits of Xjiy ..

This means that we will have in [0.6,1.7], so we will sometimes have to nor-
malize the final result by shifting the mantissa one bit toribt and increasing the
exponent by one.

3.3.2 Faithful rounding

The computation o involves a range of approximation and rounding errors, and
the purpose of this section is to guarantee faithful rougeliith a good percentage of
correct rounding.

In the following, the errors will be expressed in terms oftarin the last place
(ulps) ofY. It is safe to reason in terms of ulps since all the computatare in fixed
point, which makes it easy to align the binary point of eadkrimediate value. Here

the ulp has the value2*~9. Then we can make an error expressed this way as small

as required by increasing
First, note that the argument reduction is not exact. Itieséa error due to:

e the approximation offog(2) to we +wg + g — 1 bits (less than one half-ulp),

e Xsx Which is exact if it was shifted left, but was truncated iffgdd right (one
ulp),

e the truncation off to wg + g bits (one ulp).

Thus in the worst case we have lost 5 half-ulps.

Now we consider subsequent computation¥ ararrying this error.

The table o" holds an error of at most one half-ulp.

The table ofe2 — Y, — 1 is only faithful because it uses the HOTBM compression
technique (error up to one ulp, plus another ulp when triinga$ to its most signifi-

cant part). The previous error &his negligible for this table as its result is scaled by
2721,

Due to the multiplier, the error due to the second table (2)dplded to the error on
Y2 (5 half-ulps) may be scaled by the value contained in thetitse (less than 1.7).
This leads to an error of less than 8 ulps.

The first addition involves no error, we again lose one hdfwhen rounding the
result of the multiplication, and the second addition adustalf-ulp error from the
first table.

Finally the errors sum up to 9 ulps. Besides we have to takedotount that we
may need to shift the mantissa left in case of renormalinaso we have to provide
one extra bit of accuracy for that. Altogether, we find that 5 guard bits for the
intermediate computations ensure faithful rounding.

A finer error analysis directing slight modifications of thigaithm (replacing
some of the truncations by roundings) could probably redyibat would also increase
the critical path.

As for the logarithm operator, we implemented a test proceethich compares
the result of this operator on a Celoxica RC-1000 board agairdouble precision
exponential on the host PC. Exhaustive testing for varisasipion has confirmed that
the result is always faithful, and correctly rounded to Beaim more than 75% of the
cases.

4 Results

We obtained area and delay estimations of our operatorgf@ral precisions. These
results were computed using Xilinx ISE and XST 6.3 for a Wrte XC2V1000-4
FPGA. They are shown in Figure 3, and a summary is given inefapin terms of
slices and percentage of FPGA occupation for the area, atedrits of nanoseconds
for the latency.

Logarithm Exponential

Precision | Multipliers Area Latency Area Latency
(We,Wg) (slices % mults) (ns) (slices % mults) (ns)
(3,6) LUT-based 123 (2%) - 34 137 (2%) - 51
18x 18 89 (1%) 2 31 68 (1%) 3 a7
(5,10 LUT-based 263 (5%) - 42 258 (5%) - 63
18x 18 154 (3%) 3 39 135 (2%) 4 57
(6,13) LUT-based 411 (8%) — 48 357 (6%) - 69
18x 18 233 (4%) 3 44 194 (3%) 5 65
(7,16) LUT-based 619 (12%) - 57 480 (9%) - 69
18x 18 343 (6%) 6 55 271 (5%) 5 68
(8,23 LUT-based || 1399 (27%) — 64 948 (18%) - 85
18x 18 830 (16%) 9 61 522 (10%) 9 83

Table 2: Synthesis results for the operators on Xilinx Wte

In order to be as portable as possible, we do not require teeofithe specific
Virtex-1l embedded 18& 18 multipliers. Therefore we present the results obtained
with and without those multipliers in Figure 4.

If most of the results presented here are for the combirsteersion, our opera-
tors are also available as pipelined operators, for a smalhead in area, as shown
in Figure 5. The pipeline depth depends on the parameterandwg: between 5
and 11 cycles for the logarithm, and from 10 to 15 cycles ferdkponential opera-
tor. The pipelined operators are designed to run at 100 MHhenargeted Virtex-II

area (slices)

x
@®

a (slices)

—

HMNWACIONOVD W
Sislslslelalelalsl=]
[SiSlstsistSiststats)

(a) Logarithm operator area (b) Exponential operator area

latency (ns) latency (ns)

(c) Logarithm operator latency (d) Exponential operator latency

Figure 3: Area and latency estimations dependingierandwg for the combinatorial
operators with LUT-based multipliers.

XC2V1000-4 FPGA.

As a comparison, Table 3 presents the performances for lbotiperators in single
precision, along with the measured performances for a 2.4 I@tél Xeon processor,
using the single precision operators from the Glu bc (which themselves rely on
the micro-coded machine instructiohgl 2x, f yl 2xp1 andf 2xmd).

2.4 GHz Intel Xeon 100 MHz Virtex-Il FPGA
Function Cycles | Latency | Throughput|| Cycles | Latency | Throughput
(ns) (1¢° op/s) (ns) (1CP opls)
Logarithm 196 82 12 11 64 100
Exponential 308 128 8 15 85 100

Table 3: Performance comparison between Intel Xeon ané¥iltfor single preci-
sion.

The only other comparable work we could find in the litterat[8] reports 5564
slices for a single precision exponential unit which conegugxponentials in 74 cycles
fully pipelined at 85 MHz on a Virtex-11 4000. Our approachnmich more efficient,
because our algorithm is designed from scratch specifit@ilthe FPGA. In contrast,
the authors of [9] use an algorithm designed for microprsges In particular, they
internally use fully featured floating-point adders andtipliers everywhere where we
only use fixed-point operators.

area (slices) 18 x 18 multipliers area (slices) 18 x 18 multipliers

1400 T T T T T T T T 12 1000 T T T T T T T T 12
—— LUT-based mults 000} —— LUT-based mults a1
1200 - 18 x 18 mults (slices) 1o - - 18 x 18 mults (slices)
18 x 18 mults (mults) 800 - 18 x 18 mults (mults) 1o
1000 |
1 700 | 1o
800 600 []
600 | It 1 500 |- 1
/ 400 |- 16
400 | P da
---" 300 | b
200 |
1 200 . 144
0 100 ke 770
6 8 10 12 14 16 18 20 22 24 6 8 10 12 14 16 18 20 22 24
wWp wWg
(a) Logarithm operator area (b) Exponential operator area
latency (ns) latency (ns)

65

85

—— LUT-based mults
===+ 18 x 18 mults

—— LUT-based mults

60 - - 18 x 18 mults

80
55 75

50 70F

45 65

40 60 -

35 55,7

g
) e L L L L L L L 50

(c) Logarithm operator latency (d) Exponential operator latency

Figure 4. Comparison of area and latency dependingver(wg = 8), when using
LUT-based multipliers, and when using the embedded 18 multipliers.

5 Conclusion and future work

Parameterized floating-point implementations for the titlyen and exponential func-
tions have been presented. For the 32-bit single precisiondt, their latency matches
that of a Xeon processor, and their pipelined version pgieveral times the Xeon
throughput. Besides, they consume a small fraction of tHeA#$resources.

We should moderate these results by a few remarks. Firsttyingplementations
are slightly less accurate than the Xeon ones, offeringfidirounding only, where
the Xeon uses an internal precision of 80 bits which ensureest guaranteed cor-
rect rounding. Secondly, more recent instruction setsvalto lower latency for the
elementary functions. The Itanium 2, for example, can extala single precision ex-
ponential in about 40 cycles (or 20 ns at 2 GHz), and will tfemeebe just twice slower
than our pipelined implementation. Thirdly, implemeraas for the logarithm or the
exponential better optimized for single precision couldlqably be written for these
recent processors. However the argument of massive pdealieill still apply.

Another future research direction, already evoked, istii@aturrent architectures
do not scale well beyond single precision: some of the hugjdilocks have a size
exponential in the precision. We will therefore explorecaithms which work up to
double precision, which is the standard in processors - aod & FPGAs [5, 10]. We

area (slices) area (slices)
1800 T T T T T T T T 1100

combinatorial - 4 1000

combinatorial
- - - pipelined - - - pipelined
. g 900 |

1600
1400
1200 800
1000 700
800 600
600 500

400 [~ 400 [~

200 = 300 f.-"

0 L L L L L L L L 200

(a) Logarithm operator (b) Exponential operator

Figure 5: Area estimations depending en (wg = 8) for the combinatorial and
pipelined versions of the operators with LUT-based muikigl.

are also investigating other elementary functions to ekthe library.

FPLibrary and the operators presented here are availaller the GNU Public

Licence fromht t p: / / www. ens- |l yon. fr/ LI P/ Arenaire/.

Acknowledgements

The authors would like to thank Arnaud Tisserand for mangriedting discussions and
for maintening the servers and software on which the expariswere conducted.

References

[1]

(2]

(3]

[4]

[5]

P. Belanovit and M. Leeser. A library of parameterizezhfing-point modules
and their use. IrField Programmable Logic and Applicationgolume 2438 of
LNCS pages 657—666. Springer, Sept. 2002.

J.-L. Beuchat and A. Tisserand. Small multiplier-basadltiplication and divi-
sion operators for Virtex-1l devices. IFeld-Programmable Logic and Applica-
tions volume 2438 oL NCS pages 513-522. Springer, Sept. 2002.

K. Chapman. Fast integer multipliers fit in FPGAs (EDN B38esign idea win-
ner). EDN magazingMay 1994,

F. de Dinechin and V. Lefévre. Constant multipliers F&*GAs. In2nd Intl Work-
shop on Engineering of Reconfigurable Hardware/Softwaije@b (ENREGLE)
pages 167-173, June 2000.

M. deLorimier and A. DeHon. Floating-point sparse matvector multiply for
FPGAs. InACM/SIGDA Field-Programmable Gate Arrgysages 75-85. ACM
Press, 2005.

[6] J. Detrey and F. de Dinechin. A tool for unbiased compmarisetween logarithmic

and floating-point arithmetic. Technical Report RR200443P, Ecole Normale
Supérieure de Lyon, Mar. 2004.

[7] J. Detrey and F. de Dinechin. Table-based polynomial$sfst hardware function
evaluation. IrL6th Intl Conference on Application-specific Systems, ifactures
and ProcessordEEE Computer Society Press, July 2005.

[8] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savane B. Poirier. A flexi-
ble floating-point format for optimizing data-paths and igters in FPGA based
DSPs. InACM/SIGDA Field-Programmable Gate Arrgypages 50-55, Feb.
2002.

[9] C. Doss and R. Riley. FPGA-based implementation of a sbHEEE-754 expo-
nential unit. INFPGAs for Custom Computing MachinéSEE, 2004.

[10] V. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydeudj 64-bit floating-
point FPGA matrix multiplication. IPACM/SIGDA Field-Programmable Gate
Arrays, pages 86—95. ACM Press, 2005.

[11] B. Lee and N. Burgess. Parameterisable floating-pgietators on FPGAs. In
36th Asilomar Conference on Signals, Systems, and Conspyteges 1064—
1068, 2002.

[12] R.-C. Li, P. Markstein, J. P. Okada, and J. W. Thomas. littra library and
floating-point arithmetic for HP-UX on Itanium. Technicatport, Hewlett-
Packard company, april 2001.

[13] G. Lienhart, A. Kugel, and R. Manner. Using floatinghptaarithmetic on FPGAs
to accelerate scientific N-body simulations. RRGAs for Custom Computing
Machines|EEE, 2002.

[14] P. Markstein.IA-64 and Elementary Functions: Speed and Precisiblewlett-
Packard Professional Books. Prentice Hall, 2000. ISBN0Q83482.

[15] J.-M. Muller. Elementary Functions, Algorithms and Implementation
Birkhauser, Boston, 1997.

[16] F. Ortiz, J. Humphrey, J. Durbano, and D. Prather. A wtad the design of
floating-point functions in FPGAs. IRield Programmable Logic and Applica-
tions volume 2778 oL NCS pages 1131-1135. Springer, Sept. 2003.

[17] G. Paul and M. W. Wilson. Should the elementary funcdidre incorporated
into computer instruction setsACM Transactions on Mathematical Software
2(2):132-142, June 1976.

[18] N. Shirazi, A. Walters, and P. Athanas. Quantitativalgsis of floating point
arithmetic on FPGA based custom computing machineFRGAs for Custom
Computing Machinepages 155-162. IEEE, 1995.

[19] P. T. P. Tang. Table lookup algorithms for elementanyctions and their error
analysis. In P. Kornerup and D. W. Matula, editoPspceedings of the 10th
IEEE Symposium on Computer Arithmetimges 232—-236, Grenoble, France,
June 1991. IEEE.

