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Abstract —A unified view of most previous table-lookup-and-addition methods (bipartite tables, SBTM, STAM, and multipartite
methods) is presented. This unified view allows a more accurate computation of the error entailed by these methods, which enables a
wider design space exploration, leading to tables smaller than the best previously published ones by up to 50 percent. The synthesis of
these multipartite architectures on Virtex FPGAs is also discussed. Compared to other methods involving multipliers, the multipartite
approach offers the best speed/area tradeoff for precisions up to 16 bits. A reference implementation is available at www.ens-lyon.fr/
LIP/Arenaire/.

Index Terms —Computer arithmetic, elementary function evaluation, hardware operator, table lookup and addition method.

1 INTRODUCTION

ABLE-LOOKUP-AND-ADDITION methods, such as the bipartite

method, have been the subject of much recent attention
[1], [2], [3], [4], [5]. They allow us to compute commonly
used functions with low accuracy (up to 20 bits) with
significantly lower hardware cost than that of a straightfor-
ward table implementation, while being faster than shift-
and-add algorithms a la CORDIC or polynomial approx-
imations. They are particularly useful in digital signal or
image processing. They may also provide initial seed values
to iterative methods, such as the Newton-Raphson algo-
rithms for division and square root [6], [7], which are
commonly used in the floating-point units of current
processors. They also have recently been successfully used
to implement addition and subtraction in the logarithm
number system [8].

The main contribution of this paper is to unify two
complementary approaches to multipartite tables by Stine
and Schulte [4] and Muller [5]. Completely defining the
implementation space for multipartite tables allows us to
provide a methodology for selecting the best implementa-
tion that fulfills arbitrary accuracy and cost requirements.
This methodology has been implemented and is demon-
strated on a few examples. This paper also clarifies some of
the cost and accuracy questions which are incompletely
formulated in previous papers. This paper is an extended

version of an article published in the Proceedings of the 15th

IEEE International Symposium on Computer Arithmefig].
After some notations and definitions in Section 2,

Section 3 presents previous work on table-lookup-and-
addition methods. Section 4 presents our unified multi-
partite approach in all the details. Section 5 gives results
and compares them to previous work. Section 6 concludes.
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2 GENERALITIES

2.1 Notations

Throughout this paper, we discuss the implementation of a
function with inputs and outputs in fixed-point format. We
shall use the following notations:

We note f : 1&; b4! ; dizthe function to be evaluated
with its domain and range.

We note w; and wp, the required input and output
size.

In general, we will identify any word of  pbits to the integer
in f0;...;2° 1g it codes, writing such a word in capital
letters. When needed, we will provide explicit functions to
map such an integer into the real domain or range of the
function. Forinstance, aninputword X willdenote aninteger
info;...;2" 1g, and we will express the real number x 2
1a; bsthat it codes by x Yaapob abPX=2". Note that no
integer maps to b, the right bound of the input interval, which
explains why we define this interval as open in b. Such a
mapping should be part of the specification of a hardware
function evaluator and several alternatives exist, depending
on the function to be evaluated and the needs of the
application. Some applications may require that the
integer X denotes x Yaap db abP&X p 1=2p=2", some may
require that it denotes x Yaapdb alX=&" 1k For other
applications to floating-point hardware, the input interval
may span over two consecutive binades, in which case, we
will consider two input intervals with different mappings.
The reader should keep in mind that all the following work
can be straightforwardly extended to any such mapping
between reals and integers. A general presentation would
degrade readability without increasing the interest of the
paper. Our implementation, however, can accommodate
arbitrary styles of discretization of the input and output
intervals.

2.2 Errors in Function Evaluation

Usually, three different kinds of error sum up to the total
pr of an evaluation of f &R

The input discretizationor quantizationerror measures
the fact that an input number usually represents a

Published by the IEEE Computer Society
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Fig. 1. The bipartite approximation.

—

small interval of values centered around this
number.

The approximation or method error measures the
difference between the pure mathematical function f
and the approximated mathematical function (here,
a piecewise affine function) used to evaluate it.
Finally, the actual computation involves rounding
errors due to the discrete nature of the final and
intermediate values.

In the following, we will ignore the question of input
discretization by considering that an input number only
represents itself as an exact mathematical number. Again,
all the following work could probably be extended to take
gquantization errors into account.

3 PREVIOUS AND RELATED WORKS

An approximation of a function may be simply stored in
a look-up table containing 2" values. This approach

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 3, MARCH 2005

Fig. 2. Bipartite input word decomposition.

each segment, one initial value is tabulated and the other
values are interpolated by adding, to this initial value, an
offset computed out of the w, least significant bits of the
input word.

The idea behind the bipartite method is to group the
2 inputintervalsinto 2 (with < )largerintervals (fourin
Fig. 1) such that the slope of the segments is considered
constant on each larger interval. These four constant slopes
arefiguredinFig. 1 and may be tabulated: Now, there are only
2 tables of offsets, each containing2 offsets. Altogether, we
thus need to store 2 p 2P values instead of 2% 142 P |

In all the following, we will call the table that stores the
initial points of each segment the Table of Initial Values (TIV)
This table will be addressed by a subword A of the input
word, made of the  most significant bits. A Table of Offsets
(TO) will be addressed by the concatenation of two
subwords of the input word: C (the most significant bits)
and B (the least significant bits). Fig. 2 depicts this
decomposition of the input word.

Previous authors [5], [4] have expressed the bipartite
idea in terms of a Taylor approximation, which allows a
formal error analysis. They find that, for =2, itis
possible to keep the error entailed by this method in
“acceptable bounds” (the error obviously depends on the
function under consideration). We develop in this paper a
more geometrical approach to the error analysis with the
purpose of computing the approximation error exactly,
where Taylor formulas only give upper bounds.

becomes impractical as soon asw; exceeds 10-12 bits. In 3.2 Exploiting Symmetry

this section, we explore various methods which allow us
to approximate functions with much less memory and
very little computation.

The present paper improves on the bipartite idea and its

Schulte and Stine have remarked [3] that it is possible to
exploit the symmetry of the segments on each small interval
(see Fig. 3, which is a zoom view of Fig. 1) to halve the size
of the TO: They store the value of the function in the middle

successors, which are first presented in detail (Sections 3.1 of the small interval in the TIV and the offsets for a half

to 3.3). As our results should be compared to other
competitive hardware approximation methods, we then

segment in the TO. The offsets for the other half are
computed by symmetry. The extra hardware cost (mostly a

also present these methods (Sections 3.4 to 3.6). We leave few XOR gates) is usually more than compensated by the

out of this survey methods more specifically designed for a
particular function, such as the indirect bipartite method for

postscaled division [10], many methods developed for
evaluating f &b “dog,dl 2*pfor Logarithm Number Sys-
tem (LNS) arithmetic [11], [12], [13], [14], and many others.

3.1 The Bipartite Method

First presented by Das Sarma and Matula [1] in the specific
case of the reciprocal function and generalized by Schulte
and Stine [3], [4] and Muller [5], this method consists of
approximating the function by affine segments, as illu-
strated in Fig. 1.

The 2 segments (16 in Fig. 1) are indexed by the most
significant bits of the input word, as depicted in Fig. 2. For

reduction in the TO size (see the SBTM paper, for Symmetric
Bipartite Table Addition Method3]).

" curve of f

Value to store :
in the TIV —=:
for this segment

Values to store
in the TO

Fig. 3. Segment symmetry.
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Note that the initial bipartite paper [1] suggested using
an “average curve” approximation instead of a linear one
for the TO. This idea wouldn’t improve the maximum error,
but would bring a small improvement to the average error
(a fraction of half an ulp, as Section 4 will show). However,
in this case, Fig. 3 is no longer symmetric and the table size
reduction discussed here is no longer possible. Therefore,
this idea will not be considered further.

3.3 Multipartite Methods

In another paper [4], Stine and Schulte have remarked that
the TO can be decomposed into several smaller tables: What
the TO computes is a linear function TO&CBP ¥%sdCb B,
where s&CPpis the slope of the segment. The subword B can
be decomposed (as seen in Fig. 6) intom subwords, B;, of
sizes jfor0 i<m:

BYiBop 2°B1p ...p 2P PP m2p
|Di 1

Let us define po%0 and pi ¥a j,, j for i> 0. The
function computed by the TO is then:
X1
TO&BP YisaChb 2P B;
0
X1
Ya  2PsdCh B; alb

Y40
X1
Ya 2TO;&CBik
i%0
Thus, the TO can be distributed into m smaller tables,

TO;&CB; B resulting in much smaller area (symmetry still
applies for the m TO;s). This comes at the cost ofm 1
additions. This improvement thus entails two tradeoffs:

A cost tradeoff between the cost of the additions and
the table size reduction.

An accuracy tradeoff: Equation (1) is not an
approximation, but it will lead to more discretization
errors (one per table), which will sum up to a larger
global discretization error unless the smaller tables
have a bigger output accuracy (and, thus, are
bigger). We will formalize this later.

Schulte and Stine have termed this method STAM, for
Symmetric Table and Addition Methodlt can still be
improved: Note, in (1) that, for j>i , the weight of the
LSB of TO; is 2% P times the weight of the LSB of TO;. In
other terms, TO; is more accurate than TO;. It will be
possible, therefore, to build even smaller tables than Schulte
and Stine by compensating for the (wasted) higher accuracy
of TO; by a rougher approximation on sdCBh obtained by
removing some least significant bits from the input C.

A paper from Muller [5], contemporary to that of Stine
and Schulte, indeed exploits this idea in a specific case.
The multipartite method presented there is based on a
decomposition of the input word into 2pp 1 subwords
X1;...; Xopp1 Of identical sizes. An error analysis based on a
Taylor formula shows that e quivalent accuracies are
obtained by a table addressed by X1 and a slope
determined only by X, a table addressed by Xy, and a
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Fig. 4. First order ATA.

slope determined by X;X,, and, in general, a table
addressed by X,pp2 i @and the i most significant subwords.
Muller claims (although without any numerical support)

that the error/cost tradeoffs of this approach are compar-
able to Schulte and Stine’s method. His decomposition,
however, is too rigid to be really practical, while his error
analysis is based on potentially overestimated error bounds
due to the Taylor approximation. Besides, he doesn’t
address the rounding issue.

3.4 ATA Methods
The Addition-Table-Additionmethods allow additions before
and after the table look-ups. They are termed after Wong
and Goto [15]; however, a whole range of such methods is
possible and, to our knowledge, unpublished. This section
is a survey of these methods.

Let us note X 4Ap 2 B Yia

>

To compute fA p 2 BR it is possible to use the first-

order Taylor approximation:

1...30b 1...lp, where

foAp2 Bp f8ApPp2 Bf BAP
with
Bf AP f&Ap BP f&AP
Finally,

fAp2 Bbp f3APp2 &F3Ap Bp f3APD

In other terms, this first-order ATA method approxi-
mates, in a neighborhood of A, the graph of f with a
homotetic reduction of this graph with a ratio of 2, as
pictured in Fig. 4.

Evaluating f &bthus involves

one -bit addition to compute a
two lookups in the same table,

1...abb 1.,

- f&a 1...aPand

- fda puapb 1...uh

one subtraction to compute the difference between
the previous two lookups on less than  bits (the size
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of this subtraction depends on f and
computed exactly),
one shift by  bits to perform the division by 2 , and
. one final addition on wg bits.
Both table lookups can be performed in parallel in a
dual-port table or in parallel using two tables or in
sequence/pipeline (one read before the addition and one

read after). This leads to a range of architectural tradeoffs.
This method can be extended to the second order by

using a central difference formulto compute a much better
approximation of the derivative (the error is a third-order

term) as depicted in Fig. 5.
The formula used is now

and may be

fAp BP f3A Bb
2

and the algorithm consists of the following steps:

Bf %ADP

Compute (in parallel) Ap B and A B;
Read in a tablefBARfGAp BRand fA BB
Compute

fAp2 Bb

foAPp2 &GAp BP fOA Bbp

We now need three lookups in the same table and seven
additions. Here again, a range of space/time tradeoffs is

possible.
The original method by Wong and Goto [15] is actually

more sophisticated: As in the STAM method, they split B
into two subwords of equal sizes, B %B;p 272B,, and
distribute Bf ®AP using two centered differences, which
reduces table sizes. Besides they add a table which contains
second and third-order corrections, indexed by the most-
significant half-word of A and the most-significant half-
word of B. For 24 bits of precision, their architecture
therefore consists of six tables with 12 or 13 bits of inputs

and a total of nine additions.
Another option would be to remark that, with these three

table lookups, it is also possible to use a second-order
Taylor formula:
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fAp2 Bp

® Bt?fomq

foAP b 2 Bf%AP p

Indeed, we may approximate the term f°®Apby

f®Ap B=2p f%®A B=2b

B

foApBP foAP fOAP fOA BP
B B

B
fAp Bp 2fAPpfA BP

BZ

f %A P

And, finally,

fAp2 Bbp faAp
b2 ¥8pBp féA Bbb
b22 &¥6Ap BP 2fAPpf&A Bbp

However, the larger number of look-ups and arithmetic
operations entails more rounding errors, which actually
consume the extra accuracy obtained thanks to this formula.

Finally, the ATA methods can be improved using
symmetry, just like multipartite methods.

These methods have been studied by the authors and
found to perform better than the original bipartite
approaches, but worse than the generalized multipartite
approach which is the subject of this paper. This is also true
of the initial ATA architecture by Wong and Goto [15], as
will be exposed in Section 5.1.

3.5 Partial Product Arrays

This method is due to Hassler and Takagi [2]. The idea is to
approximate the function with a polynomial of arbitrary
degree (they use a Taylor approximation). Writing X and all
the ggnstant coefficients as sums of weighted bits (as in
X ¥ x;2 '), they distribute all the multiplications within
the polynomial, thus rewriting the polynomial as the sum of

a huge set of weighted products of some of the x;. A second
approximation then consists of neglecting as many of these
terms as possible in order to be able to partition the
remaining ones into several tables.

This idea is very powerful because the implementation
space is very wide. However, for the same reason, it needs
to rely on heuristics to explore this space. The heuristic
chosen by Hassler and Takagi in [2] leads to architectures
which are less compact than their multipartite counterpart
[4] (and are interestingly similar). The reason is probably
that the multipartite method exploits the higher-level
property of continuity of the function, which is lost in the
set of partial products.

3.6 Methods Involving Multipliers

The previous two methods involve higher order approx-
imation of the function, but the architecture involves only
adders and tables. If this constraint is relaxed, a huge range
of approximations becomes possible. The general scheme is
to approximate the function with one or several polyno-
mials and trade table size for multiplications. Papers
relevant to this work include (but this list is far from
exhaustive):
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Fig. 6. Multipartite input word decomposition.

an architecture by Defour et al. [16] involving only
two small multipliers (small meaning that their area
and delay are comparable to a few adders as one of
the inputs is only w; =5 bits wide);
an architecture by Pifieiro et al. [17] using a squarer
unit and a multiplication tree;
several implementations of addition and subtraction
in the logarithm number system with (among others)
approximation of order zero [11], order one [12], and
order two [13], [14]. As already mentioned, the
function to be evaluated is f &b %¥og,8l 2*pand
lends itself to specific tricks, like replacing multi-
plications with additions in the log domain.

These methods will be quantitatively compared to the

multipartite approach in Section 5.5.

3.7 Conclusion: Architectural Consideration

A common feature of all the methods presented in this
section is that they lead to architectures where the result is
the output of an adder tree. This adder tree lends itself to a
range of areal/time tradeoffs which depends on the
architectural target and also on the time/area constraints
of the application.

However, as initially noted by Das Sarma and Matula,
there are many applications where the last stage of the
adder tree (which is the most costly as it involves the carry
propagation) is not needed: Instead, the result may be
provided in redundant form to the operator that consumes
it. It is the case when a table-and-addition architecture
provides the seed to a Newton-Raphson iteration, for
instance: The result can be recoded (using Booth or
modified Booth algorithm) without carry propagation to
be input to a multiplier.

This remark shows that the cost of the adder tree
depends not only on the target, but also on the application.
For these reasons, the sequel focuses on minimizing the
table size.

4  THE UNIFIED MULTIPARTITE METHOD

4.1 A General Input-Word Decomposition

Investigating what is common to Schulte and Stine’s STAM
and Muller's multipartite methods leads us to define a

decomposition into subwords that generalize both (see Fig. 6):

The input word is split into two subwords, A and B,
of respective sizes and ,with p Yaw,.

The most significant subword A addresses the TIV.
The least significant subword B will be used to
addressm 1 TOs.
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- B willin turn be decomposed into m subwords
Bo;...;Bm 1, the least significant being Bg.

- A subword Bj starts at position p; and consists
of ; bits. We have pp %20 and pip1 Yapi p .

- The subword B; is used to address the TO;,
along with a subword C; of length ; of A.
Finally, to simplify notations, we will denote D %

f;.m; 0i;p; iRy m 19 such a decomposition.

The maximum approximation error entailed by TO; will
be a function of & i; p;; iPwhich we will be able to compute
exactly in Section 4.3. The TOs implementation will exploit
their symmetry, just as in the STAM method.

The reader may check that the bipartite decomposition is
a special case of our multipartite decomposition with
m¥sl, Ya2w =3, Yaw, =3, Y oY w,=3. Similarly, Stine
and Schulte’s STAM [4] is a multipartite decomposition
where all the Cjs are equal and Muller's multipartite
approach [5] is a specific case of our decomposition where
the ;s are multiples of some integer.

Fig. 7 shows a general multipartite implementation,
using symmetry. It should be clear that general decomposi-
tions are more promising than Stine and Schulte’s in that
they allow us to reduce the accuracy of the slopes involved
in the TOs (and, thus, their size). They are also more
promising than Muller's as they are more flexible (for
example, the size of the input word need not be a multiple
of some 2p p 1). Our methodology will also be slightly more
accurate than both in computing the slopes and in the error
analysis. Section 5 will quantify these improvements.

4.2 An Algorithm for Choosing a Decomposition
Having defined the space of all the possible multipartite
decompositions, we define in this section an efficient
methodology to explore this space. The purpose of such an
exploration is to select the best decomposition (in terms of
speed or area) that fulfills the accuracy requirement known as
faithful rounding: The returned result should be one of the two
fixed-point numbers closest to the mathematical value. In
other words, the total error should be smaller than the value
total Of ONE unit in the last place (ulp):

total Y4 a ckp Yo &b

This error will be the sum of an approximation error, which
depends only on the decomposition, and the various
rounding errors.
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Unfortunately, the tables cannot be filled with results
rounded to the target precision: Each table would entail a
maximum rounding error of 0:5 (a1, Meaning that the total
error budget of g is unfeasible as soon as there is more
than one table. The tables will therefore be filled with a
precision greater than the target precision by g bits (guard
bits). Thus, rounding errors in filling one table are now

1
rnd _table Ya2 g total fetia)

and can be made as small as desired by increasingg. The
sum of these errors will be smaller than

md_m_tables ¥4 M P 1P ind_table; b

where dn p 1bis the number of tables.

However, the final summation is now also performed on
g more bits than the target precision. Rounding the final
sum to the target precision now entails a rounding error up
t0  nd_final ¥4 0:5 otal . A trick due to Das Sarma and Matula
[1] allows us to improve it to

md_final 7405 a0l 2 9P &b

This trick will be presented in Section 4.6.2.
This error budget suggests the following algorithm:

1. Choose the number of tables m. A larger m means
smaller tables, but more additions.
2. Enumerate the decompositions

D%f; ;m; di;p; iPyo.m 10

3. For each decomposition D,

a. Compute the bounds P on the approximation

errors entailed by each TO; I§see Section 4.3) and

sum them to get O % o' P. Keep only
those decompositions for which this error is
smaller than the error budget.

b. As the two other error terms ind_fina and

md_m_tables depend on g, compute the smallest g
allowing to match the total error budget. This
will be detailed in Section 4.4.

c. Knowing g allows precise evaluation of the size
of the implementation of D, as will be detailed in
Section 4.5.

4. Synthesize the few best candidates to evaluate their
speed and area accurately (with target constraints).

Enumerating the decompositions is an exponential task.
Fortunately, there are two simple tricks which are enough
to cut the enumeration down to less than a minute for 24-bit
operands (the maximum size for which multipartite
methods architectures make sense).

The approximation error due to a TO; is actually
only dependent on the function evaluated, the input

precision, and the three parameters p;, i, and ; of
this TO;. It is therefore possible to compute all these
errors only once and store them in a three-dimen-
sional array toa%. % . The size of this array is at
most 24° double-precision floating-point numbers.
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For a given pair &j; ;B this error grows as
decreases. There exists a min such that, for any
i min, this error is larger than the required output
precision. These nindi; iPmay also be computed
once and stored in a table.

Finally, the enumeration of the &p;; Pis limited by the
relation pip1 ¥api p i and the enumeration on ; is limited
by min< i< . Note that we have only left out decom-
positions which were unable to provide faithful rounding. It
would also be possible, in addition, to leave out decom-
position whose area is bigger than the current best. This
turns out not to be needed.

The rest of this section details the steps of this algorithm.

4.3 Computing the Approximation Error

Here, we consider a monotonic function with monotonic

derivative (i.e., convex or concave) on its domain. This is
not a very restrictive assumption: It is the case, after
argument reduction, of all the functions studied by

previous authors.

The error function we consider here is the difference
"&p Vi &b £&Pb between the exact mathematical value
and the approximation. Note that other error functions are
possible, for example, taking into account the input
discretization. The formulas set up here would not apply
in that case, but it would be possible to set up equivalent
formulas.

Using these hypotheses, it is possible to exactly compute,
using only a few floating-point operations in double
precision, the minimum approximation error which will
be entailed by a TO; with parameters p;, i, and ;, and also
the exact value to fill in these tables as well as in the TIV to
reach this minimal error.

The main idea is that, for a given &; i; iR the
parameters that can vary to get the smallest error are the
slope sdCib of the segments and the values TIV AR With
our decomposition, several TIV AP will share the same
sdCik Fig. 8 (another zoom of Fig. 1) depicts this situation.

As the figure suggests, with our hypothesis of a
monotonic (decreasing on the figure) derivative, the
approximation error is maximal on the borders of the
interval on which the segment slope is constant. The
minimum  P&C;bof this maximum error is obtained when

1 Ya "oVYa M3 Va"uVa

Pacip &b

with the notations of the figure. This system of equations is
easily expressed in terms of sd&Cik pi, i, i, TIV, and f.

Solving this system gives the optimal slope® and the
corresponding error:
Dacpl/fékzb f&lbzpff)(4b fé(gb 57
I
Dacpl/fa“p fax,p fa><4bbfa<3|:> 8b

4
where (using the notations of Section 2.1)
1. Not surprisingly, the slope that minimizes the error is the average

value of the slopes on the borders of the interval. Previous authors
considered the slope at the midpoint of this interval.
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Fig. 8. Computing the approximation error.
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Now, this error depends on C;, that is, on the interval on
which the slope is considered constant. For the same
argument of convexity, it will be maximum either for C; %40
or for Cj %21 1. Finally, the maximum approximation
error due to TO; in the decomposition D is:

P 1, maxdj Papjj P&

1bjp aldp

In practice, it is easy to compute this approximation error
by implementing (8) to (14). Altogether, it represents a few
floating-point operations per TO;.

4.4 Computing the Number of Guard Bits

The condition to ensure faithful rounding, md_m_tables P
md_final D Spprox < total IS rewritten using (2), (3), (4), and (5)
as:

g> Wwo 1plog,6@ chmp
log,68 c2 Mot Db
If Sprx 0d c2 Y L D is unable to provide the

required output accuracy. Otherwise, the previous inequal-
ity gives us the number g of extra bits that ensures faithful
rounding:

& .

a chn
Wo 1b|ngaj

ck2 wo 1 ase

g% 5
approx

Our experiments show that it is very often possible to
decrease this value by one and still keep faithful rounding.
This is due to the actual worst-case rounding error in each
table being smaller than the one assumed above, thanks to
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the small number of entries for each table. This question
will be discussed in Section 5.2.

45 The Sizes of the Tables

Evaluating precisely the size and speed of the implementa-
tion of a multipartite decomposition is rather technology
dependent and is out of the scope of the paper. We can,
however, compute exactly (as other authors) the number of
bits to store in each table.

The size in bits of the TIV is simply 2 dwo p gk The TO;s
have a smaller range than the TIV: Actually, the range of
TO;&Ci; b is exactly equal to jsdCib ;j. Again, for
convexity reasons, this range is maximum either on C; %0
or Ci¥2 1

ri Vamaxdsi b ij;js®@' 1b  jb aLep

The number of output bits of TO; (without the guard
bits) is therefore

wi ¥a wop g log, al7p
In a symmetrical implementation of the TO;, the size in
bits of the corresponding table will be 2P i &y 1P
The actual costs (area and delay) of implementations of
these tables and of multioperand adders are technology
dependent. We present in Section 5.4 some results for
Virtex-1l FPGAs, showing that the bit counts presented above

allow a predictive enough evaluation of the actual costs.

4.6 Filling the Tables
4.6.1 The Mathematical Values

An initial value TIV AP provided by the TIV for an input
subword A will be used on an interval %;;x, defined (using
the notations of Sections 2.1 and 4.3) by:

X YVaapob a2 A; alsp
X1

Xy Yax| p i alop
iv0

On this interval, each TO; provides a constant slope, as
its C; is a subword of A. The approximation error, which is
the sum of the Pd&C;bdefined by (8), will be maximal for X
and x, (with opposite signs).

The TIV exact value that ensures that this error bound is
reached is therefore (before rounding):

By oA vy 2P PTCP, 0P
The TO; values before rounding are (see Fig. 3):
90O,8CiBiPp %sdCip 2 MPP& ab B; p% : ®1p

4.6.2 Rounding Considerations

This section reformulates the techniques employed by Stine
and Schulte in [4] and using an idea that seems to appear
first in the paper by Das Sarma and Matula [1].

The purpose is to fill our tables in such a way as to
ensure that their sum (which we compute on wgp p g bits)
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Fig. 9. Measured error (10-bit sine and m %4 2).

always has an implicit 1 as its dwvop gp 1hh bit. This
reduces the final rounding error from g fina %42 "° ! to
rnd _final Ya2 Yo ! 2 Wo 8 1-

To achieve this trick, remark that there are two ways to
round a real number to wp p g bits with an error smaller
than ng_table ¥42 © 9 1. The natural way is to round the
number to the nearest dwo p gkbit number. Another
method is to truncate the number to wop g bits and
assume an implicit 1 in the dwo p gp 1Rh position.

To exploit the symmetry, we will need to compute the
opposite of the value given by a TO;. In two’'s complement,
this opposite is the bitwise negation of the value, plus a 1 at
the LSB. This leads us to use the second rounding method
for the TO;. Knowing that its LSB is an implicit 1 means that
its negation is a 0 and, therefore, that the LSB of the
opposite is also a 1. We therefore don’t have to add the sign
bit at the LSB. We store and bitwise negate thew;p g 1
bits of the TO; and assume in all cases an implicit 1 at the
oo b gp 1kh position.

Now, in order to reach our goal of always having an
implicit 1 at the dwo p gp 1kh bit of the sum, we need to
consider the parity of m, the number of TO;s. If m is odd,
the first rounding method is used for the TIV, if m is even,
the second method is used. This way we always have bm=2c
implicit ones, which we simply add to all the values of the
TIV to make them explicit.

Finally, after summing the TIV and the TO;, we need to
round the sum, on dwp p gb bits with an implicit 1 at the
oo p gp 1Rh bit, to the nearest number on wg bits. This
can be done by simply truncating the sum (at no hardware
cost), provided we have added half an LSB of the final
result to the TIV when filling it.

Summing it up, the integer values that should fill the
TOjs are

2Wob9
TO;CiBip ¥ d CgOi(’XZiBiD

a&2p

and the values that should fill the TIV are, if m is odd:
$ .

TIV 8AD /5 2%obg nvdamz b m2 oot o
and, if m is even:
%
TIV AP Y 2%oP9 g'VdL'sz gp 291 g

4.7 Implementation

The methodology presented above has been implemented
in a set of Java and C++ programs. These programs
enumerate the decompositions, choose the best one with
respect to accuracy and size, compute the actual values of
the tables, and, finally, generate synthesizable VHDL.
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TABLE 1
The Functions Tested, with Actual Values of w, and wg
for 16-Bit Precision

| function | input | output | wr | wo ]
sin [0,7/4] [0,1] 16 16
2% [0,1] [1,2[ 16 15
1/x [1,2] [1/2,1] 15 15

Our tools also perform various additional checks. Storing
the BIV and 90;, they measure the actual value of D ..
We find that the predicted values are indeed accurate to
10 7. They similarly compute the maximal final error and
check that this error is really smaller than the expected

accuracy (see Fig. 9 for an example of output).

5 RESULTS

This section studies the size and area of operators obtained
using this methodology. The functions used are given in
Table 1 with their input and output intervals. Some of these
functions are identical to those in [4]. Notice that the bits
that are constant over the input or output interval are not
counted in w; or wo. Also notice that the output interval for
the sine function is nob the image of the input interval
(which would be ;1= 2% but, rather, a larger interval
which will allow easy argument reduction using trigono-
metric identities. 2

5.1 Comparison with Previous Work

Tables 2 and 3 present the best decomposition obtained for
16-bit and some 24-bit operands for a few functions. In these
tables, we compare our results with the best-known results
from the work of Schulte and Stine [4]. We can notice a size
improvement up to 50 percent. The size for 1=x and m %41
is larger than the reference size. After investigation, this is
due to rounding errors compensating, in this specific case
leading to an overestimated g.

5.2 Further Manual Optimization

The results obtained by the automatic method presented
above can usually be slightly improved, up to 15 percent in
terms of table sizes. The reason is that the automatic
algorithm assumes that worst-case rounding will be
attained in filling the tables, which is not the case. As we
have many TO;s with few entries (typically, 2°to 28 entries
for 16-bit operands in Table 2), there is statistically a good
chance that the sum of the table-filling rounding errors is
significantly smaller than predicted. This is a random effect
which can only be tested by an exhaustive check of the
architecture. However, in a final stage, it is worth trying
several slight variations of the parameters, which can be of
two types:

2. The specification, in the two papers by Schulte and Stine [3], [4] of the
input and output intervals for the sine function is inconsistent. The input
interval should probably read &; = 4¥instead of @; 1%4The output mapping
is also unclear. Therefore, the comparisons concerning the sine function in
this paper may be misleading.
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TABLE 2
Best Decomposition Characteristics and Table Sizes for 16-Bit Operands
l f || m | « | B | i | Bi ] g | tables | size | ref size
sin 1 (10]6 5 6 1 17.210 +6.210 23552 | 32768
2 | 8 |8 65 44 3 19.28 +10.29 +6.28 11520 | 20480
3 [ 8|8 754 233 |2 18.2% +9.28 + 7.27 + 4,28 8064 17920
4 18 [8]6655[22223]1928+1027+827+6.26+4.26 | 7808 na
2% 1 ]10]6 5 6 1 16.210 4 6.210 22528 | 24576
2818 75 35 2 17.2% +9.2° +6.2° 12032 | 14592
3 88| 764 233 |2 17.28 +9.28 4 7.28 1+ 4.96 8704 13568
4 8 | 8765422222 1728+4+9.284+7.27 45264325 7968 na
1/z || 1 [ 10| 5 7 5 1 16.210 + 6.211 28672 | 24576
2196 7,6 3.3 3 18.29 +9.29 4 6.28 15360 | 16896
3 9 | 6 8.7.5 229 2 17.29 +8.29 +6.28 + 4.26 14592 | 15872
TABLE 3
Best Decomposition Characteristics and Table Sizes for 24-Bit Operands
| I || m | «a | B | s | B | g | tables | size ref size
sin 1 [15] 9 7 9 3 27.215 4 11.215 1245184 | 1998848
2 |13 ] 11 106 47 3 27.213 1 13.213 1 9212 364544 | 753664
3 | 12] 12 1096 345 4 28.212 + 15212 + 12212 1 8 210 233472 | 610304
4 1 12] 12 1010 8 7 2244 4 28212 4 15,271 413 911 11,211 ¢ 7910 201728 507904
5 [12]12] 1010976 22233 |4 28.212 4 15.211 413,211 £ 11.210 4 9,29 4 6.28 189440 | 491520
6 12 12 10109875 222222 | 4 28.212 4 15,211 4 13,211 4 11,210 4 929 4 728 4 526 190016 na
2% 1 |15] 9 8 9 1 24.215 4 9,916 1376256 | 1474560
2 [ 13 11 10 8 56 2 25.213 12,214 4 7913 458752 | 581632
3 12]12 1197 345 3 26.212 4 14.213 4 11.212 4 7.211 280576 | 425984
4 | 12] 12 1110838 2334 3 26.212 + 14.212 4 12.212 4 9,210 1 g.211 234496 | 360448
5 12 12 1110988 22233 3 26.21% 4 14.212 | 1228 4 30,210 4 8270 | 5,010 211968 356352
6 12 12 11109888 222222 3 26.212 1 14.212 4 12,211 4 10.210 1 5,29 4 6.29 4 4.29 207872 na
Yz || 1 [15] 8 9 8 5 28.215 + 13.216 1769472 | 1933312
2 [14 ] 9 118 36 3 26.21% + 12,213 4 9913 598016 | 884736
3 11310 1210 8 235 4 27.213 1 14.213 + 12.212 4 9212 421888 688128
4 [ 13 ] 10 1111109 2233 4 27.213 1 14,212 1 12212 4 10.212 4 7.211 382976 524880
5 13 10 11111098 22222 5 28.213 4 15.212 4 13,212 | 171,211 | 9210 4 729 379392 651264
g may be decremented (as this is a variation of one Such a size improvement is reflected in the FPGA

parameter, it should actually be automatically
performed).

Some of the ; can be decremented (meaning less
accurate slope). Remark that this negative effect on
the mathematical error may be compensated by the
halving of the number of values in the correspond-
ing TO;, which doubles the expected distance to the
worst-case rounding.

Table 4 gives the example of a lucky case, with
11.5 percent improvement in size. These values of the
even produce a method error of more than 0:5 ulp, which
the lucky rounding compensates.

TABLE 4
Effect of Manual Optimization of the Parameters
(Sine, 16 Bits, m % 4)

¥ g | size | max. measured error in ulp
automatic | 6655 | 3 | 7808 0.915
fine-tuned | 6543 | 3 | 6912 0.939

implementation: See Table 8 in Section 5.4.

5.3 Multipartite Are Close to Optimal among
Order-One Methods
We remark in Table 2 and Table 3 that, for large values of m,
the parameter is close to w,=2. Consider the family of
linear (order-one) approximation schemes using some  bits
of the input to address a TIV. There is an intrinsic lower
bound on  for this family and it is the for which the
(mathematical) approximation error prevents faithful
rounding. Generally speaking, this bound is about w,=2,
as given by the Taylor formula (and w,=3 for order-two
methods, etc.). This bound can be computed for each
function exactly and we find that the best multipartite
decomposition almost alw ays exhibits the smallest
compatible with a faithful approximation.

Combined with the observation that the main contribu-
tion to the total size is always the TIV, this allows us to claim
that our best multipartite approximations are close to the
global optimal in the family of linear approximation
schemes. More accurately, even the availability of a costless
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TABLE 5
Virtex-1l FPGA Implementation for Some Functions (16-Bit)

perfect multiplier to implement a linear scheme will remove
only the TO;s, which accounts for less than half the total size.

5.4 FPGA Implementation Results

In this section, the target architecture is a Virtex-1l 1000
FPGA from Xilinx (XC2V1000-fg456-5). All the synthesis,
place, and route processes have been performed using the
Xilinx ISE XST 5.2.03i tools. The generated VHDL operators
have been optimized for area with a high effort (the results
are very close using a speed target). Area is measured in
number of slices (two LUTs with four address bits per slice
in Virtex-1l devices), there are 5,120 available slices in a
XC2V1000. The delay is expressed in nanoseconds. We also
report the delay of the operator and its complete synthesis
time (including place and route optimizations) Tsynn. The
compression factor CF is the ratio number of bits/number
of LUTs; it measures the additional compression capabil-
ities of the logical optimizer. In the target FPGAs, look-up
tables may hold 16 bits, so a CF larger than 16 indicates
such a size improvement.

Table 5 presents some synthesis results for the functions
described in Table 1. The time required to compute the
optimal decomposition (using the algorithm presented in
Section 4.2) is always negligible compared to Teynth.

Table 6 details the evolution of area and delay with
respect to input size for the sine function. Note that, in the
Xilinx standard sine/cosine core [18], which uses a simple
tabulation, the input size is limited to 10 bits, meaning an
8-bit table after quadrant reduction. 3

Some results for 24-bit are also given in Table 7, showing
that 24-bit precision is the practical limit of multipartite
methods on such an FPGA. The economical limit, of course,
is probably less than 20 bits, as suggested by Table 6.

These results show that, when the number of TOjs m
increases, the operator size (the number of LUTS) decreases.
The size gain is significant when we use a tripartite method
(m ¥ 2) instead of a bipartite one (m ¥ 1). For larger values
of m, this decrease is less important. Sometimes, a slight
increase is possible for even larger values ofm (e.g.,m %3
to m ¥4 for the sine and 2* function). This is due to the
extra cost of the adder with an additional input, the XOR
gates, and the sign extension mechanism that is not

3. Using on-chip RAM blocks, the simple table approach allows up to
16 bits, meaning w, ¥ 14 after quadrant reduction.
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TABLE 6
Virtex_II FPGA Implementation of the Sine Function
for Various Sizes

compensated by the tables size reduction. This is also
reflected in the operator delay.

The compression factor CF is more or less constant (just
a slight decrease with m). This fact can be used to predict
the size after synthesis on the FPGA from the table size in
bits. As each LUT in a Virtex FPGA can only store 16 bits of
memory, we can deduce from these tables that the
synthesizer performs some logic optimization inside each
table. The compression factor decreases whenm increases
because the minimization potential is smaller on small
tables than on larger ones. The synthesis time also decreases
when m increases.

We investigated in [19] the use of ad hoc table-
compression techniques. For this, we used JBits, a low-level
hardware description language developed by Xilinx. Com-
pression factors of up to 19 could be obtained for 16-bit and
20-bit sines at the expense of two months of development.

An important remark is that smaller operators turn out
to be faster on FPGAs: Using a multipartite compression
improves both speed and area.

5.5 Comparisons with Higher-Order Methods

Results for 24-bit operands should also be compared to the
ATA architecture published by Wong and Goto for this
specific case [15]. They use six tables for a total of 868,352
bits and, altogether, nine additions. Our results are thus
both smaller and faster. However, it should be noted that
five of the six tables in their architecture have the same
content, which means that a sequential access version to a
unique table should be possible (provided the issue of
rounding is studied carefully). This sequential architecture
would involve only about 16Kbits of tables, but it would be
five times slower.

The remainder of this section compares with recently
published methods involving multipliers. Such methods
have to be used for w; > 24 bits: If we consider that the
maximum admissible table size is 212 entries, this limit is
reached by the multipartite approach for w; % 24. Our aim
here is to give a more quantitative idea of the domains of

TABLE 7
Virtex_II FPGA Implementation of the Sine Function (24-Bit)
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TABLE 8
Effect of Fine-Tuning on Virtex-11 Implementation

relevance of the various methods. Of course, this will
depend on the function and on the target hardware.

The method published recently by Defour et al. uses two
small multipliers in addition to tables and adders [16]. Note
that recent FPGAs include small 18 18! 35-bit multi-
pliers which can be used for Defour et al.’s architecture.
This method has several restrictions: It is more rigid than
the multipartite approach as it uses a decomposition of the
input word into five subwords of the same size. As a
consequence, for some functions, it is unable to provide
enough precision for faithful rounding when  wg Yaw,.
Table 9 gives some comparisons of this method with the
multipartite approach. We chose m %4 so that the number
of additions is the same in both approaches. According to
this table, a multipartite approach will be preferred for
precisions smaller than 15 bits and Defour et al.’s approach
will be preferred for precisions greater than 20 bits, as far as
size only is considered. For w; ¥ 15, Defour et al.’s tables
are still smaller, but the size of the multipliers will
compensate, so multipartite should be both smaller and
faster. If speed is an issue, the delay of the multipliers will
play in favor of multipartite tables.

The architecture by Pifieiro et al. [17] involves a squarer
and a multiplier and 12,544 bits of tables for 24-bit 1=x. An
FPGA implementation sums up to 565 slices, which is only
slightly more than our 16-bit implementation at 474 slices.
This again suggests that multipartite methods are not
relevant for more than 16 bits of precision, as far as size
only is concerned.

Finally, we have recently compared a second-order
approach using two multipliers and the multipartite
approach on the specific case of addition/subtraction in
the logarithm number system. The functions involved are
then log,dl p 2*Pand log,dl 2*Pand a restricted form of
faithful rounding is used. In this case, we have only one
point of comparison, corresponding to about 12 bits of
precision. The multipartite approach is better both in terms
of speed and area in this case [8].

In all these cases, it should be noted that the simplicity and
generality of the multipartite approach may be a strong
argument. Implementing a new function is a matter of
minutes from the start down to VHDL code. This code is then
efficiently synthesized, at least on FPGAs, because it only
contains additions. Comparatively, approaches relying on
multiplications need much more back-end work, typically
requiring to design custom operators as Pifi eiro et al. does.

5.6 Limits of the Method

5.6.1 Nonmonitonicities

Our approach maximizes the approximation error (within the
bounds of faithful rounding) to minimize the hardware cost.

This has the drawback of entailing nonmonotonicities at some
of the borders between intervals: See, for instance, Fig. 8
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TABLE 9
Comparison with Defour et al.’s Approach

around X ¥ x3. These nonmonotonicities are never bigger
than one ulp thanks to faithful rounding. It is a problem of all
the faithful approximation schemes, but the multipartite
method as presented makes it happen quite often.

The subject of monotonicity in the context of bipartite
tables has been studied by lordache and Matula [7]. They
reverse-engineered the AMD K6-2 implementation of fast
reciprocal and reciprocal square root instructions, part of
the 3D-Now instruction set extensions. They found that
bipartite approximations were used, that the reciprocal was
monotonic, and that the reciprocal square root was not.
They also showed that the latter could be tuned to become
monotonic, at the expense of a larger table size (7.25 KB
instead of 5.5). This tuning involves increasing the output
size of the TIV and an exhaustive exploration of what value
these extra bits should take.

In general, if monotonicity is an important property, it can
be enforced simply in a multipartite approximation by using
appropriate slopes and TIV values. For instance, monotoni-
cally increasing functions with decreasing derivatives (as on
our figures) may use the slope on the right of the interval
instead of the middle, ensuring that the approximation is
monotonic. This means a larger maximum approximation
error, however. Rounding errors can then be kept within
bounds that ensure monotonicity by increasing gasin [7]. All
this entails increased hardware cost. A general and systema-
tic study of this question remains to be done.

5.6.2 Infinite Derivative

There are also functions for which this methodology will
not work. The square root function on 4@; 1% for example,
although it may perfectly be stored in a single table, has an
infinite derivative in 0 which breaks multipartite methods.
We have never seen any mention of this problem in the
literature, either. One solution in such cases is to split the
input interval into two intervals ;2 Y%(on which the
function is tabulated in a single table) and 12 ;1%where the
multipartite method is used. The optimal  can probably be
determined by enumeration.

6 CONCLUSION

We have presented several contributions to table-lookup-
and-additions methods. The first one is to unify and
generalize two complimentary approaches to multipartite
tables by Stine and Schulte and by Muller. The second one
is to give a method for optimizing such bipartite or
multipartite tables which is more accurate than what could
be previously found in the literature. Both these improve-
ments have been implemented in general tools that can
generate optimal multipartite tables from a wide range of
specifications (input and output accuracy, delay, area).
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