An LLL-reduction algorithm with quasi-linear time complexity
Andrew Novocin, Damien Stehlé, Gilles Villard

To cite this version:

HAL Id: ensl-00534899
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00534899v2
Submitted on 7 Apr 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
An LLL-Reduction Algorithm with Quasi-linear Time Complexity

Andrew Novocin, Damien Stehlé, and Gilles Villard

CNRS, ENS de Lyon, INRIA, UCBL, U. Lyon
Laboratoire LIP 46 Allée d’Italie, 69364 Lyon Cedex 07, France.
{andrew.novocin,damien.stehle,gilles.villard}@ens-lyon.fr

Abstract. We devise an algorithm, \tilde{L}^1, with the following specifications: It takes as input an arbitrary basis $B = (b_i)_i \in \mathbb{Z}^{d \times d}$ of a Euclidean lattice L; It computes a basis of L which is reduced for a mild modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time $O(d^{5+\varepsilon} \beta + d^{\omega+1+\varepsilon} \beta^{1+\varepsilon})$ where $\beta = \log \max \|b_i\|$ (for any $\varepsilon > 0$ and ω is a valid exponent for matrix multiplication). This is the first LLL-reducing algorithm with a time complexity that is quasi-linear in β and polynomial in d.

The backbone structure of \tilde{L}^1 is able to mimic the Knuth-Schönhage fast gcd algorithm thanks to a combination of cutting-edge ingredients. First the bit-size of our lattice bases can be decreased via truncations whose validity are backed by recent numerical stability results on the QR matrix factorization. Also we establish a new framework for analyzing unimodular transformation matrices which reduce shifts of reduced bases, this includes bit-size control and new perturbation tools. We illustrate the power of this framework by generating a family of reduction algorithms.

1 Introduction

We present the first lattice reduction algorithm which has complexity both quasi-linear in the bit-length of the entries and polynomial time overall for an input basis $B = (b_i)_i \in \mathbb{Z}^{d \times d}$. This is the first progress on quasi-linear lattice reduction in nearly 10 years, improving Schönhage [28], Yap [32], and Eisenbrand and Rote [7] whose algorithm is exponential in d. Our result can be seen as a generalization of the Knuth-Schönhage quasi-linear GCD [13,26] from integers to matrices. For solving the matrix case difficulties which relate to multi-dimensionality we combine several new main ingredients. We establish a theoretical framework for analyzing and designing general lattice reduction algorithms. In particular we discover an underlying structure on any transformation matrix which reduces shifts of reduced lattices; this new structure reveals some of the inefficiencies of traditional lattice reduction algorithms. The multi-dimensional difficulty also leads us to establish new perturbation analysis results for mastering the complexity bounds. The Knuth-Schönhage scalar approach essentially relies on truncations of the Euclidean remainders [13,26] , while the matrix case requires truncating both the “remainder” and “quotient” matrices. We can use our theoretical framework to propose a family of new reduction algorithms, which includes a Lehmer-type sub-quadratic algorithm in addition to \tilde{L}^1.

In 1982, Lenstra, Lenstra and Lovász devised an algorithm, L^3, that computes reduced bases of integral Euclidean lattices (i.e., subgroups of a \mathbb{Z}^d) in polynomial time [16]. This typically allows one to solve approximate variants of computationally hard problems such as the Shortest Vector, Closest Vector, and the Shortest Independent Vectors problems (see [18]). L^3 has since proven useful in dozens of applications in a wide range including cryptanalysis, computer algebra, communications theory, combinatorial optimization, algorithmic number theory, etc (see [22,6] for two recent surveys).

1 Extended abstract appears in the Proc. 43rd ACM Symposium on Theory of Computing (STOC 2011), June 6-8, San Jose, California, 2011.
In [16], Lenstra, Lenstra and Lovász bounded the bit-complexity of L^3 by $O(d^{5+\epsilon} \beta^{2+\epsilon})$ when the input basis $B = (b_i)_i \in \mathbb{Z}^{d \times d}$ satisfies $\max \|b_i\| \leq 2^d$. For the sake of simplicity, we will only consider full-rank lattices. The current best algorithm for integer multiplication is Fürer’s, which allows one to multiply two k-bit long integers in time $M(k) = O(k(\log k)^{2\log^* k})$. The analysis of L^3 was quickly refined by Kaltofen [11], who showed a $O(d^5 \beta^2 (d + \beta)^2)$ complexity bound. Schnorr [24] later proposed an algorithm of bit-complexity $O(d^3 \beta (d + \beta)^{1+\epsilon})$, using approximate computations for internal Gram-Schmidt orthogonalizations. Some works have since focused on improving the complexity bounds with respect to the dimension d, including [27, 30, 14, 25], but they have not lowered the cost with respect to β (for fixed d). More recently, Nguyen and Stehlé devised L^2 [21], a variant of L^3 with complexity $O(d^{1+\epsilon} \beta (d + \beta))$. The latter bound is quadratic with respect to β (even with naive integer multiplication), which led to the name L^2. The same complexity bound was also obtained in [20] for a different algorithm, H-LLL, but with a simpler complexity analysis.

As a broad approximation, L^3, L^2 and H-LLL are generalizations of Euclid’s greatest common divisor algorithm. The successive bases computed during the execution play the role of Euclid’s remainders, and the elementary matrix operations performed on the bases play the role of Euclid’s quotients. L^3 may be interpreted in such a framework. It is slow because it computes its “quotients” using all the bits from the “remainders” rather than the most significant bits: The cost of computing one Euclidean division in an L^3 way is $O(\beta^{1+\epsilon})$, leading to an overall $O(\beta^{2+\epsilon})$ bound for Euclid’s algorithm. Lehmer [15] proposed an acceleration of Euclid’s algorithm by the means of truncations. Since the ℓ most significant bits of the remainders provide the first $O(\ell)$ bits of the sequence of quotients, one may: Truncate the remainders to precision ℓ; Compute the sequence of quotients for the truncated remainders; Store the first $O(\ell)$ bits of the quotients into an $O(\ell)$-bit matrix; Apply the latter to the input remainders, which are shortened by $O(\ell)$ bits; And iterate. The cost gain stems from the decrease of the bit-lengths of the computed remainders. Choosing $\ell \approx \sqrt{3}$ leads to a complexity bound of $O(\beta^{3/2+\epsilon})$. In the early 70’s, Knuth [13] and Schönhage [26] independently observed that using Lehmer’s idea recursively leads to a gcd algorithm with complexity bound $O(\beta^{1+\epsilon})$. The above approach for the computation of gcds has been successfully adapted to two-dimensional lattices [32, 28, 5], and the resulting algorithm was then used in [7] to reduce lattices in arbitrary dimensions in quasi-linear time. Unfortunately, the best known cost bound for the latter is $O(\beta^{1+\epsilon} (\log \beta)^{d-1})$ for fixed d.

Our result. We adapt the Lehmer-Knuth-Schönhage gcd framework to the case of LLL-reduction. L^1 takes as input a non-singular $B \in \mathbb{Z}^{d \times d}$, terminates within $O(d^{5+\epsilon} \beta + d^{\omega+1+\epsilon} \beta^{1+\epsilon})$ bit operations, where $\beta = \log \max \|b_i\|$; and returns a basis of the lattice $L(B)$ spanned by B which is LLL-reduced in the sense of Definition 1 given hereafter. (L^3 reduces bases for $\exists = (3/4, 1/2, 0)$.) The time bound is obtained via an algorithm that can multiply two $d \times d$ matrices in $O(d^{\omega})$ scalar operations. (We can set $\omega \approx 2.376$ [4].) Our complexity improvement is particularly relevant for applications of LLL reduction where β is large. These include the recognition of algebraic numbers [12] and Coppersmith’s method for finding the small roots of polynomials [3].

Definition 1 ([2, Def. 5.3]). Let $\exists = (\delta, \eta, \theta)$ with $\eta \in (1/2, 1)$, $\theta > 0$ and $\delta \in (\eta^2, 1)$. Let $B \in \mathbb{R}^{d \times d}$ be non-singular with QR factorization $B = Q \cdot R$ (i.e., the unique decomposition of B as a product of an orthogonal matrix and an upper triangular matrix with positive diagonal entries). The matrix B is Ξ-LLL-reduced if:

- for all $i < j$, we have $|r_{i,j}| \leq \eta r_{i,i} + \theta r_{j,j}$ (B is size-reduced);
- for all i, we have $\delta \cdot r_{i,i}^2 \leq r_{i,i+1}^2 + r_{i+1,i+1}^2$ (B is said to satisfy Lovász’ conditions).
Let \(\Xi_i = (\delta_i, \eta_i, \theta_i) \) be valid LLL-parameters for \(i \in \{1, 2\} \). We say that \(\Xi_1 \) is stronger than \(\Xi_2 \) and write \(\Xi_1 > \Xi_2 \) if \(\delta_1 > \delta_2, \eta_1 < \eta_2 \) and \(\theta_1 < \theta_2 \).

This modified LLL-reduction is as powerful as the classical one (note that by choosing \((\delta, \eta, \theta) \) close to the ideal parameters \((1, 1/2, 0) \), the derived \(\alpha \) tends to \(2/\sqrt{3} \):

Theorem 1 ([2, Th. 5.4]). Let \(B \in \mathbb{R}^{d \times d} \) be \((\delta, \eta, \theta) \)-LLL-reduced with R-factor \(R \). Let \(\alpha = \frac{n\theta + \sqrt{(1 + \theta^2)\delta - n^2}}{\delta - n^2} \). Then, for all \(i \), \(r_{i,i} \leq \alpha \cdot r_{i+1,i+1} \) and \(r_{i,i} \leq \|b_i\| \leq \alpha \cdot r_{i,i} \). This implies that \(\|b_i\| \leq \alpha^{d-1} \det B |1/d \) and \(\alpha^{i-d} r_{i,i} \leq \lambda_i \leq \alpha^i r_{i,i} \), where \(\lambda_i \) is the \(i \)th minimum of the lattice \(L(B) \).

\(\tilde{L}^1 \) and its analysis rely on two recent lattice reduction techniques (described below), whose contributions can be easily explained in the gcd framework. The efficiency of the fast gcd algorithms [13, 26] stems from two sources: Performing operations on truncated remainders is meaningful (which allows one to consider remainders with smaller bit-sizes), and the obtained transformations corresponding to the quotients sequence have small bit-sizes (which allows one to transmit at low cost the information obtained on the truncated remainders back to the genuine remainders). We achieve an analogue of the latter by gradually feeding the input to the reduction algorithm, and the former is ensured thanks to the modified notion of LLL-reduction which is resilient to truncations.

The main difficulty in adapting the fast gcd framework lies in the multi-dimensionality of lattice reduction. In particular, the basis vectors may have significantly differing magnitudes. This means that basis truncations must be performed vector-wise. (Column-wise using the matrix setting.) Also, the resulting unimodular transformation matrices (integral with determinant \(\pm 1 \) so that the spanned lattice is preserved) may have large magnitudes, hence need to be truncated for being be stored on few bits.

To solve these dilemmas we focus on reducing bases which are a mere scalar shift from being reduced. We call this process lift-reducing, and it can be used to provide a family of new reduction algorithms. We illustrate in Section 2 that the general lattice reduction problem can be reduced to the problem of lift-reduction. Indeed, the LLL-reduction of \(B \) can be implemented as a sequence of lift-reductions by performing a Hermite Normal Form (HNF) computation on \(B \) beforehand. Note that there could be other means of seeding the lift-reduction process. Our lift-reductions are a generalization of recent gradual feeding algorithms.

Gradual feeding of the input. Gradual feeding was introduced by Belabas [1], Novocin, and van Hoeij [23, 10], in the context of specific lattice bases that are encountered while factoring rational polynomials (e.g., with the algorithm from [9]). Gradual feeding was restricted to reducing specific sub-lattices which avoid the above dimensionality difficulties. We generalize these results to the following. Suppose that we wish to reduce a matrix \(B \) with the property that \(B_0 := \sigma^{-k}_\ell B \) is reduced for some \(k \) and \(\sigma_\ell \) is the diagonal matrix \(\text{diag}(2, 1, \ldots, 1) \). If one runs \(\tilde{L}^3 \) on \(B \) directly then the structure of \(B_0 \) is not being exploited. Instead, the matrix \(B \) can be slowly reduced allowing us to control and understand the intermediate transformations: Compute the unimodular transform \(U_1 \) (with any reduction algorithm) such that \(\sigma_\ell B_0 U_1 \) is reduced and repeat until we have \(\sigma_\ell^k B_0 U_1 \cdots U_k = B(U_1 \cdots U_k) \). Each entry of \(U_i \) and each entry of \(U_1 \cdots U_i \) can be bounded sensitive to the shape of the lattice. Further we will illustrate that the bit-size of any entry of \(U_i \) can be made \(\mathcal{O}(\ell + d) \) (see Theorems 2 and 4).

In addition, control over \(U \) gives us the ability to analyze the impact of efficient truncations on lift-reductions.
Truncations of basis matrices. In order to work on as few bits of basis matrices as possible during our lift-reductions, we apply column-wise truncations. A truncation of precision p replaces a matrix B by a truncated matrix $B + \Delta B$ such that $\max \frac{\|\Delta b_i\|}{\|b_i\|} \leq 2^{-p}$ holds for all i, and only the most significant $p + O(\log d)$ bits of every column of $B + \Delta B$ are allowed to be non-zero. Each entry of $B + \Delta B$ is an integer multiplied by some power of 2. (In the notation ΔB, Δ does not represent anything, i.e., the matrix ΔB is not a product of Δ and B.) A truncation is an efficiency-motivated column-wise perturbation. The following lemmata explain why we are interested in such perturbations.

Lemma 1 ([2, Se. 2], refined from [8]). Let $p > 0$, $B \in \mathbb{R}^{d \times d}$ non-singular with R-factor R, and let ΔB with $\max \frac{\|\Delta b_i\|}{\|b_i\|} \leq 2^{-p}$. If $\text{cond}(R) = \|R\|R^{-1}\|_2$ (using the induced norm) satisfies $c_0 \cdot \text{cond}(R) \cdot 2^{-p} < 1$ with $c_0 = 8d^{d/2}$, then $B + \Delta B$ is non-singular and its R-factor $R + \Delta R$ satisfies $\max \frac{\|\Delta R\|}{\|R\|} \leq c_0 \cdot \text{cond}(R) \cdot 2^{-p}$.

Lemma 2 ([2, Le. 5.5]). If $B \in \mathbb{R}^{d \times d}$ with R-factor R is (δ, η, θ)-reduced then $\text{cond}(R) \leq \frac{\delta + 1}{\delta - 1} \rho^d$, with $\rho = (1 + \eta + \theta)\alpha$, with α as in Theorem 1.

These results imply that a column-wise truncation of a reduced basis with precision $\Omega(d)$ remains reduced. This explains why the parameter θ was introduced in Definition 1, as such a property does not hold if LLL-reduction is restricted to $\theta = 0$ (see [29, Se. 3.1]).

Lemma 3 ([2, Co. 5.1]). Let $\Xi_1 > \Xi_2$ be valid reduction parameters. There exists a constant c_1 such that for any Ξ_1-reduced $B \in \mathbb{R}^{d \times d}$ and any ΔB with $\max \frac{\|\Delta b_i\|}{\|b_i\|} \leq 2^{-c_1 d}$, the matrix $B + \Delta B$ is non-singular and Ξ_2-reduced.

As we will see in Section 3 (see Lemma 7) the latter lemmata will allow us to develop the gradual reduction strategy with truncation, which is to approximate the matrix to be reduced, reduce that approximation, and apply the unimodular transform to the original matrix, and repeat the process.

Lift-\tilde{L}^1. Our quasi-linear general lattice reduction algorithm, Lift-\tilde{L}^1, is composed of a sequence of calls to a specialized lift-reduction algorithm, Lift-\tilde{L}^1. Sections 2 and 4.4 show the relationship between general reduction and lift-reduction via HNF.

Inputs: B_0 reduced, and target lift ℓ.
Output: U_{small} such that $\sigma tB_0U_{\text{small}}$ is reduced.

1. Get $U_{1,\text{small}}$ from pseudo-Lift-$\tilde{L}^1(\text{truncate}(B_0), \ell/2)$.
2. $B_1 := \sigma tB_0U_{1,\text{small}}$.
3. Get U from refineReduction(C).
4. Get $U_{2,\text{small}}$ from pseudo-Lift-$\tilde{L}^1(\text{truncate}(B_1U), \ell/2)$.
5. $U_{\text{small}} := \text{clean}(U_{1,\text{small}} \cdot U \cdot U_{2,\text{small}})$.
6. Return U_{small}.

Fig. 1. pseudo-Lift-\tilde{L}^1.

When we combine lift-reduction (gradual feeding) and truncation we see another difficulty which must be addressed. That is, lift-reducing a truncation of B_0 will not give the same transformation as lift-reducing B_0 directly; likewise any truncation of U weakens our reduction even further. Thus after working with truncations we must apply any transformations to a higher
precision lattice and refine the result. In other words, we will need to have a method for strengthening the quality of a weakly reduced basis. Such an algorithm exists in [19] and we adapt it to performing lift-reductions in section 3.2. Small lift-reductions with this algorithm also become the leaves of our recursive tree. The Lift-\tilde{L}^1 algorithm in Figure 4 is a rigorous implementation of the pseudo algorithm in Figure 1: Lift-\tilde{L}^1 must refine current matrices more often than this pseudo algorithm to properly handle a specified reduction.

It could be noted that clean is stronger than mere truncation. It can utilize our new understanding of the structure of any lift-reducing U to provide an appropriate transformation which is well structured and efficiently stored.

Comments on the cost of \tilde{L}^1. The term $O(d^{5+\varepsilon})$ stems from a series of β calls to H-LLL [20] or L^2 [21] on integral matrices whose entries have bit-lengths $O(d)$. These calls are at the leaves of the tree of the recursive algorithm. An amortized analysis allows us to show that the total number of LLL switches performed summed over all calls is $O(d^2 \beta)$ (see Lemma 11). We recall that known LLL reduction algorithms perform two types of vector operations: Either translations or switches. The number of switches performed is a key factor of the complexity bounds. The H-LLL component of the cost of L^1 could be lowered by using faster LLL-reducing algorithms than H-LLL (with respect to d), but for our amortization to hold, they have to satisfy a standard property (see Section 3.2). The term $O(d^{5+\varepsilon} \beta^{1+\varepsilon})$ derives from both the HNF computation mentioned above and a series of product trees of balanced matrix multiplications whose overall product has bit-length $O(d \beta)$. Furthermore, the precise cost dependence of \tilde{L}^1 in β is $\text{Poly}(d \cdot M(\beta)) \log \beta$. We also remark that the cost can be proven to be $O(d^{4+\varepsilon} \log |\det B| + d^{5+\varepsilon} + d^{2} (\log |\det B|)^{1+\varepsilon}) + \mathcal{H}(d, \beta)$, where $\mathcal{H}(d, \beta)$ denotes the cost of computing the Hermite normal form. Finally, we may note that if the size-reduction parameter θ is not considered as a constant, then a factor $\text{Poly}(\log(1/\theta))$ is involved in the cost of the leaf calls.

Road-map. We construct \tilde{L}^1 in several generalization steps which, in the gcd framework, respectively correspond to Euclid’s algorithm (Section 2), Lehmer’s inclusion of truncations in Euclid’s algorithm (Section 3) and the Knuth-Schönhage recursive generalization of Lehmer’s algorithm (Section 4).

2 Lift-Reduction

In order to enable the adaptation of the gcd framework to lattice reduction, we introduce a new type of reduction which behaves more predictively and regularly. In this new framework, called lift-reduction, we are given a reduced matrix B and a lifting target $\ell \geq 0$, and we aim at computing a unimodular U such that $\sigma_\ell BU$ is reduced (with $\sigma_\ell = \text{diag}(2^\ell, 1, \ldots, 1)$). Lift-reduction can naturally be performed using any general purpose reduction algorithm, however we will design fast algorithms specific to lift-reduction in Sections 3 and 4. Lifting a lattice basis has a predictable impact on the $r_{i,i}$’s and the successive minima.

Lemma 4. Let B be non-singular and $\ell \geq 0$. If R (resp. R') is the R-factor of B (resp. $B' = \sigma_\ell B$), then $r'_{i,i} \geq r_{i,i}$ for all i and $\prod r'_{i,i} = 2^\ell \prod r_{i,i}$. Furthermore, if $(\lambda_i)_i$ (resp. $(\lambda'_i)_i$) are the successive minima of $L = L(B)$ (resp. $L' = L(B')$), then $\lambda_i \leq \lambda'_i \leq 2^\ell \lambda_i$ for all i.

Proof. The first statement is proven in [10, Le. 4]. For the second one, notice that $\prod r'_{i,i} = |\det B'| = 2^\ell |\det B| = 2^\ell \prod r_{i,i}$. We now prove the third statement. Let $(v_i)_i$ and $(v'_i)_i$ be linearly independent vectors in L and L' respectively with $\|v_i\| = \lambda_i$ and $\|v'_i\| = \lambda'_i$ for all i. For any i, we define $S'_i = \{\sigma_\ell v_j, j \leq i\}$ and $S_i = \{\sigma_\ell^{-1} v'_j, j \leq i\}$. These are linearly independent sets in L' and L respectively. Then for any i we have $\lambda_i \leq \max_{i} \|S'_i\| \leq \lambda'_i \leq \max_{i} \|S_i\| \leq 2^\ell \lambda_i$. \qed
We can now bound the entries of any matrix which performs lift-reduction.

Lemma 5. Let \(\Xi_1, \Xi_2 \) be valid parameters and \(\alpha_1 \) and \(\alpha_2 \) as in Theorem 1. Let \(\ell \geq 0, B \in \mathbb{R}^{d \times d} \) be \(\Xi_1 \)-reduced and \(U \) such that \(C = \sigma_\ell BU \) is \(\Xi_2 \)-reduced. Letting \(\zeta_1 = (1 + \eta_1 + \theta_1)\alpha_1\alpha_2 \), we have:

\[
\forall i, j : |u_{i,j}| \leq 4d^3 \zeta_1^d \frac{r_{i,j}}{r_{i,i}} \leq 2^{\ell+2} d^3 \zeta_2^d \cdot \frac{r_{j,j}}{r_{i,i}},
\]

where \(R \) (resp. \(R' \)) is the \(R \)-factor of \(B \) (resp. \(C \)). In addition, if \(V = U^{-1} \) and \(\zeta_2 = (1 + \eta_2 + \theta_2)\alpha_2\alpha_1 \):

\[
\forall i, j : |v_{i,j}| \leq 2^{\ell+2} d^3 \zeta_2^d \cdot \frac{r_{i,i}}{r_{j,j}} \leq 2^{\ell+2} d^3 \zeta_2^d \cdot \frac{r_{i,j}}{r_{j,j}}.
\]

Proof. Let \(B = QR, C = Q'R' \) be the QR-factorizations of \(B \) and \(C \). Then

\[
U = R^{-1}Q'\sigma_\ell^{-1}Q'R' = \text{diag}(r_{i,i})^\ell \bar{R}^{-1}(Q')^\ell \bar{R}' \text{diag}(r_{j,j}),
\]

with \(\bar{R} = R \cdot \text{diag}(1/r_{i,i}) \) and \(\bar{R}' = R' \cdot \text{diag}(1/r_{j,j}) \). From the proof of [2, Le. 5.5], we know that \(|\bar{R}^{-1}| \leq 2((1 + \eta_1 + \theta_1)\alpha_1)T \), where \(t_{i,j} = 1 \) if \(i \leq j \) and \(t_{i,j} = 0 \) otherwise. By Theorem 1, we have \(|\bar{R}'| \leq 2\alpha_2T \) (using \(\theta_2 \leq \alpha_2 \) and \(\eta_2 \leq 1 \)). Finally, we have \(|Q|, |Q'| \leq M \), where \(m_{i,j} = 1 \) for all \(i, j \). Using the triangular inequality, we obtain:

\[
|U| \leq 4d^3 \text{diag}(r_{i,i})^\ell TM^2T \text{diag}(r_{j,j}) \leq 4d^3 \text{diag}(r_{i,i})^\ell M \text{diag}(r_{j,j}).
\]

Now, by Theorem 1 and Lemma 4, we have \(r_{j,j}' \leq \alpha_2^{d-j} \lambda_j' \leq 2^\ell \alpha_2^{d-j} \lambda_j \leq 2^\ell \alpha_1^{d-j} \lambda_j r_{j,j} \), which completes the proof of the first statement.

For the second statement note that

\[
V = \text{diag}(r_{i,i}^{-1})^\ell \bar{R}^{-1}(Q')^\ell \sigma_\ell^\ell Q' \text{diag}(r_{j,j})
\]

is similar to the expression for \(U \) in the proof of the first statement, except that \(\sigma_\ell \) can increase the innermost product by a factor \(2^\ell \).

LLL-reduction as a sequence of lift-reductions. In the remainder of this section we illustrate that LLL-reduction can be achieved with an efficient sequence of lift-reductions.

Lift-reduction is specialized to reducing a scalar-shift/lift of an already reduced basis. In Figure 2 we create reduced bases (of distinct lattices from the input lattice) which we use to progressively create a reduced basis for the input lattice. Here we use an HNF triangularization and scalar shifts to find suitable reduced lattice bases. We analyze the cost and accuracy of Figure 2 using a generic lift-reduction algorithm. The remainder of the paper can then focus on specialized lift-reduction algorithms which each use Figure 2 to achieve generic reduction. We note that other wrappers of lift-reduction are possible.

Recall that the HNF of a (full-rank) lattice \(L \subseteq \mathbb{Z}^d \) is the unique upper triangular basis \(H \) of \(L \) such that \(-h_{i,i}/2 \leq h_{i,j} < h_{i,i}/2 \) for any \(i < j \) and \(h_{i,i} > 0 \) for any \(i \). Using [17,31], it can be computed in time \(O(d^{(d+1+\varepsilon)} \beta^{1+\varepsilon}) \), where the input matrix \(B \in \mathbb{Z}^{d \times d} \) satisfies \(\max \|b_i\| \leq 2\beta \).

Let \(H \) be the HNF of \(L(B) \). At the end of Step 1, the matrix \(B = H \) is upper triangular, \(\prod b_{i,i} = |\text{det} H| \leq 2^{d^3} \), and the \(1 \times 1 \) bottom rightmost sub-matrix of \(H \) is trivially \(\Xi \)-reduced.
In each iteration we \(\Xi \)-reduce a lower-right sub-matrix of \(B \) via lift-reduction (increasing the dimension with each iteration). This is done by augmenting the previous \(\Xi \)-reduced sub-matrix by a scaling down of the next row (such that the new values are tiny). This creates a \(C \) which is reduced and such that a lift-reduction of \(C \) will be a complete \(\Xi \)-reduction of the next largest sub-matrix of \(B \). The column operations of the lift-reduction are then applied to rest of \(B \) with the triangular structure allowing us to reduce each remaining row modulo \(b_{i,i} \). From a cost point of view, it is worth noting that the sum of the lifts \(\ell_k \) is \(\mathcal{O}(\log |\operatorname{det} H|) = \mathcal{O}(d\beta) \).

<table>
<thead>
<tr>
<th>Inputs:</th>
<th>LLL parameters (\Xi); a non-singular (B \in \mathbb{Z}^{d \times d}).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output:</td>
<td>A (\Xi)-reduced basis of (L(B)).</td>
</tr>
</tbody>
</table>

1. \(B := \text{HNF}(B) \).
2. For \(k \) from \(d - 1 \) down to 1 do
3. Let \(C \) be the bottom-right \((d - k + 1)\)-dimensional submatrix of \(B \).
4. \(\ell_k := \lfloor \log_2(b_{k,k}) \rfloor \), \(C := \sigma_i^{-1}C \).
5. Lift-reduction: Find \(U' \) unimodular such that \(\sigma_{\ell_k}CU' \) is \(\Xi \)-reduced.
6. Let \(U \) be the block-diagonal matrix \(\operatorname{diag}(I, U') \).
7. Compute \(B' := B \cdot U \), reducing row \(i \) symmetrically modulo \(b_{i,i} \), for \(i < k \).
8. Return \(B \).

Fig. 2. Reducing LLL-reduction to lift-reduction.

Lemma 6. The algorithm of Figure 2 \(\Xi \)-reduces \(B \) such that \(\max \|b_i\| \leq 2^\beta \) using

\[
\mathcal{O}(d^{\alpha+1 + \varepsilon} (\beta^{1+\varepsilon} + d)) + \sum_{k=d-1}^{1} C_k
\]

bit operations, where \(C_k \) is the cost of Step 5 for the specific value of \(k \).

Proof. We first prove the correctness of the algorithm. We let \(U_H \) be the unimodular transformation such that \(H = BU_H \). For \(k < d \), we let \(U_k' \) be the \((d - k + 1) \times (d - k + 1)\) unimodular transformation that reduces \(\sigma_{\ell_k}C \) at Step 5 and \(U_k'' \) be the unimodular transformation that reduces rows \(i \leq k \) at Step 7. With input \(B \) the algorithm returns \(B \cdot U_H \cdot \operatorname{diag}(I, U_{d-1}', \ldots, U_1'' \cdot U_1') \). Since \(B \) is multiplied by a product of unimodular matrices, the output matrix is a basis of the lattice spanned by the columns of \(B \).

We show by induction on \(k \) from \(d - 1 \) down to 1 that at the end of the \((d - k)\)-th loop iteration, the bottom-right \((d - k + 1)\)-dimensional submatrix of the current \(B \) is \(\Xi \)-reduced. The statement is valid for \(k = d \), as a non-zero matrix in dimension 1 is always reduced, and instantiating the statement with \(k = 1 \) ensures that the matrix returned by the algorithm is \(\Xi \)-reduced. The non-trivial ingredient of the proof of the statement is to show that for \(k < d \), the input of the lift-reduction of Step 5 is valid, i.e., that at the beginning of Step 5 the matrix \(C \) is \(\Xi \)-reduced. Let \(R \) be the R-factor of \(C \). Let \(C' \) be the bottom-right \((d - k) \times (d - k)\) submatrix of \(C \). By induction, we know that \(C' \) is \(\Xi \)-reduced. It thus remains to show that the first row of \(R \) satisfies the size-reducedness condition, and that Lovász’ condition between the first two rows is satisfied.

We have \(r_{1,j} = h_{k,k+j-1}/2^k \), for \(j \leq d - k + 1 \), thus ensuring the size-reducedness condition. Furthermore, by the shape of the unimodular transformations applied so far, we know that \(C' \) is a basis of the lattice \(L' \) generated by the columns of the bottom-right \((d - k)\)-dimensional submatrix of \(H \), which has first minimum \(\lambda_1(L') \geq \min_{i \neq k} h_{i,i} \geq 1 \). As \(r_{2,2} \) is the norm of the first vector of \(C' \), we have \(r_{2,2} \geq \lambda_1(L') \geq 1 \). Independently, by choice of \(\ell_k \), we have \(r_{1,1} \leq 1 \).

This ensures that Lovász’ condition is satisfied, and completes the proof of correctness.
We now bound the cost of the algorithm of Figure 2. We bound the overall cost of the \(d - 1 \) calls to lift-reduction by \(\sum_{k<d} C_k \). It remains to bound the contribution of Step 7 to the cost. The cost dominating component of Step 7 is the computation of the product of the last \(d - k + 1 \) columns of (the current value of) \(B \) by \(U' \). We consider separately the costs of computing the products by \(U' \) of the \(k \times (d - k + 1) \) top-right submatrix \(\overline{B} \) of \(B \), and of the \((d - k) \times (d - k + 1) \) bottom-right submatrix \(\overline{B} \) of \(B \).

For \(i \leq k \), the magnitudes of the entries of the \(i \)-th row of \(\overline{B} \) are uniformly bounded by \(h_{i,i} \). By Lemma 5, if \(e,j < d - k + 1 \), then \(|u'_{e,j}| \leq 2^{d+2}d^{3/4} r_1^{3/2} r_{e,e} \) (recall that \(R \) is the R-factor of \(C \) at the beginning of Step 5). As we saw above, we have \(r_{2,2} \geq 1 \), and, by reducedness, we have \(r_{e,e} \geq \alpha^{-e} \) for any \(e \geq 2 \) (using Theorem 1). Also, by choice of \(\ell_k \), we have \(r_{j,1} \geq 1/2 \). Overall, this gives that the \(j \)-th column of \(U' \) is uniformly bounded as \(\log |u'_{j,j}| = O(\ell_k + d + \log r_{j,j}) \). The bounds on the bit-lengths of the rows of \(\overline{B} \) and the bounds on the bit-lengths of the columns of \(U' \) may be very unbalanced. We do not perform matrix multiplication naively, as this unbalancedness may lead to too large a cost (the maxima of row and column bounds may be much larger than the averages). To circumvent this difficulty we use Recipe 1, given in Appendix 1 p.17, with \("S = \log \det H + d^2 + d\ell_k" \). Since \(\det H = |\det B| \) the multiplication of \(\overline{B} \) with \(U' \) can be performed within \(O(d^2 M((\log |\det B|)/d + d + \ell_k)) \) bit operations.

We now consider the product \(P := \overline{B} U' \). By reducedness of \(\overline{B} \), we have \(\|b_{j,j}\| \leq \alpha^{d} r_{j,j} \) (from Theorem 1). Recall that we have \(|u'_{e,j}| \leq 2^{d+2}d^{3/4} r_1^{3/2} r_{e,e} \). As a consequence, we can uniformly bound log \(\|u'_{j,j}\| \) and \(\log \|p_{j,j}\| \) by \(O(\ell_k + d + \log r_{j,j}) \) for any \(j \). We can thus use Recipe 3, given in Appendix 1 p.17, to compute \(P \), with \("S = O(\log \det H + d^2 + d\ell_k)" \) using \(O(d^{e+1}\mathcal{M}((\log |\det B|)/d + d + \ell_k)) \) bit operations.

The proof can be completed by noting that the above matrix products are performed \(d - 1 \) times during the execution of the algorithm and by also considering the cost \(O(d^{e+1+\varepsilon}\beta^{1+\varepsilon}) \) of converting \(B \) to Hermite normal form.

We use the term \(C_k \) in order to amortize over the loop iterations the costs of the calls to the lift-reducing algorithm. In the algorithm of Figure 2 and in Lemma 6, the lift-reducing algorithm is not specified. It may be a general-purpose LLL-reducing algorithm [16, 11, 21, 20] or a specifically designed lift-reducing algorithm such as Lift-L1, described in Section 4.

It can be noted from the proof of Lemma 6 that the non-reduction costs can be refined as \(O(d^{e+1}\mathcal{M}((\log |\det B|) + d^{e+1+\varepsilon}\mathcal{M}(d) + \mathcal{H}(d,\beta)) \). We note that the HNF is only used as a triangularization, thus any triangularization of the input \(B \) will suffice, however then it may be needed to perform \(d^2 \) reductions of entries \(b_{i,j} \) modulo \(b_{i,i} \). Thus we could replace \(\mathcal{H}(d,\beta) \) by \(O(d^2\beta^{1+\varepsilon}) \) for upper triangular inputs. Using the cost of H-LLL for lift-reduction, we can bound the complexity of Figure 2 by \(\mathcal{O}(\text{poly}(d) \cdot \beta^2) \). This is comparable to \(L^2 \) and H-LLL.

3 Truncating matrix entries

We will now focus on improving the lift-reduction step introduced in the previous section. In this section we show how to truncate the “remainder” matrix and we give an efficient factorization for the “quotient” matrices encountered in the process. This way the unimodular transformations can be found and stored at low cost. In the first part of this section, we show that given any \(B \) reduced and \(\ell \geq 0 \), finding \(U \) such that \(\sigma \beta \cdot BU \) is reduced can be done by looking at only the most significant bits of each column of \(B \). In the context of gcd algorithms, this is equivalent to saying that the quotients can be computed by looking at the most significant bits of the remainders only. In the gcd case, using only the most significant bits of the remainders allows one to efficiently
compute the quotients. Unfortunately, this is where the gcd analogy stops as a lift-reduction transformation U may still have entries that are much larger than the number of bits kept of B. In particular, if the diagonal coefficients of the R-factor of B are very unbalanced, then Lemma 5 does not prevent some entries of U from being as large as the magnitudes of the entries of B (as opposed to just the precision kept). The second part of this section is devoted to showing how to make the bit-size of U and the cost of computing it essentially independent of these magnitudes. In this framework we can then describe and analyze a Lehmer-like lift-reduction algorithm.

3.1 The most significant bits of B suffice for reducing $\sigma_\ell B$

It is a natural strategy to reduce a truncation of B rather than B, but in general it is unclear if some U which reduces a truncation of B would also reduce B even in a weaker sense. However, with lift-reduction we can control the size of U which allows us to overcome this problem. In this section we aim at computing a unimodular U such that $\sigma_\ell BU$ is reduced, when B is reduced, by working on a truncation of B. We use the bounds of Lemma 5 on the magnitude of U to show that a column-wise truncation precision of $\ell + \mathcal{O}(d)$ bits suffices for that purpose.

Lemma 7. Let Ξ_1, Ξ_2, Ξ_3 be valid reduction parameters with $\Xi_3 > \Xi_2$. There exists a constant c_3 such that the following holds for any $\ell \geq 0$. Let $B \in \mathbb{R}^{d \times d}$ be Ξ_1-reduced and ΔB be such that $\max \frac{||\Delta b||}{||b||} \leq 2^{-\ell-c_3 \cdot \epsilon}$. If $\sigma_\ell (B + \Delta B) U$ is Ξ_3-reduced for some U, then $\sigma_\ell BU$ is Ξ_2-reduced.

The proof is given in Appendix 2 p.19. The above result implies that to find a U such that $\sigma_\ell BU$ is reduced, it suffices to find U such that $\sigma_\ell (B' \cdot E)U$ is reduced (for a stronger Ξ), for well chosen matrices B' and E, outlined as follows.

Definition 2. For $B \in \mathbb{Z}^{d \times d}$ with $\beta = \log \max ||b_j||$ and precision p, we chose to store the p most significant bits of B, $\text{MSB}_p(B)$, as a matrix product $B' E$ or just the pair (B', E). This pair should satisfy $B' \in \mathbb{Z}^{d \times d}$ with $p = \log \max ||b'_j||$, $E = \text{diag}(2^{e_i-p})$ with $e_i \in \mathbb{Z}$ such that $2^{e_i-||b_i||} \leq 2^d$, and $\max ||(b_i-b'_i, 2^{e_i-p})||_{||b_i||} \leq 2^{-p}$.

3.2 Finding a unimodular U reducing $\sigma_\ell B$ at low cost

The algorithm TrLiftLLL (a truncated lift-LLL) we propose is an adaptation of the StrengthenLLL from [19], which aims at strengthening the LLL-reducedness of an already reduced basis, i.e., Ξ_2-reducing a Ξ_1-reduced basis with $\Xi_1 < \Xi_2$. One can recover a variant of StrengthenLLL by setting $\ell = 0$ below. We refer the reader to Appendix 3 p.19 for a complete description of TrLiftLLL.

Theorem 2. For any valid parameters $\Xi_1 < \Xi_2$ and constant c_4, there exists a constant c'_4 and an algorithm TrLiftLLL with the following specifications. It takes as inputs $\ell \geq 0$, $B \in \mathbb{Z}^{d \times d}$ and $E = \text{diag}(2^{e_i})$ with $\max ||b_i|| \leq 2^{c_4(\ell + d)}$, $e_i \in \mathbb{Z}$ and BE is Ξ_1-reduced; It runs in time $O(d^{2+\epsilon} \cdot (d+\ell)(d+\ell + \tau) + d^2 \log \max(1+|e_i|))$, where $\tau = O(d^2(\ell + d))$ is the number of switches performed during the single call it makes to H-LLL; And it returns two matrices U and D such that:

1. $D = \text{diag}(2^{d_i})$ with $d_i \in \mathbb{Z}$ satisfying $\max |e_i - d_i| \leq c'_4(\ell + d)$,
2. U is unimodular and $\max |u_{i,j}| \leq 2^{\ell + c'_4 \cdot d}$
3. $D^{-1}UD$ is unimodular and $\sigma_\ell (BE)(D^{-1}UD)$ is Ξ_2-reduced.
When setting $\ell = O(d)$, we obtain the base case of lift-\tilde{L}^1, the quasi-linear time recursive algorithm to be introduced in the next section. The most expensive step of TrLiftLLL is a call to an LLL-type algorithm, which must identify a standard property that we must identify hereafter.

When called on a basis matrix B with R-factor R, the L^3, L^2 and H-LLL algorithms perform two types of basis operations: They either subtract to a vector b_k an integer combination of b_1, \ldots, b_{k-1} (translation), or they exchange b_{k-1} and b_k (switches). Translations leave the r_i's unchanged. Switches are never performed when the optimal Lovász condition $r_{ii}^2 \leq r_{i,i+1}^2 + r_{i+1,i+1}^2$ is satisfied, and thus cannot increase any of the quantities $\max_{j \leq i} r_{jj}$ (for varying i), nor decrease any of the quantities $\min_{j \geq i} r_{jj}$. This implies that if we have $\max_{i<k} r_{ii} < \min_{i\geq k} r_{ii}$ for some k at the beginning of the execution, then the computed matrix U will be such that $u_{i,j} = 0$ for any (i,j) such that $i \geq k$ and $j < k$. We say that a LLL-reducing algorithm satisfies Property (P) if for any k such that $\max_{i<k} r_{ii} < \min_{i\geq k} r_{ii}$ holds at the beginning of the execution, then it also holds at the end of the execution.

Property (P) is for instance satisfied by L^3 ([16, p. 523]), L^2 ([21, Th. 6]) and H-LLL ([20, Th. 4.3]). We choose H-LLL as this currently provides the best complexity bound, although L^1 would remain quasi-linear with L^3 or L^2.

TrLiftLLL will also be used with $\ell = 0$ in the recursive algorithm for strengthening the reduction parameters. Such refinement is needed after the truncation of bases and transformation matrices which we will need to ensure that the recursive calls get valid inputs.

3.3 A Lehmer-like lift-LLL algorithm

By combining Lemma 7 and Theorem 2, we obtain a Lehmer-like Lift-LLL algorithm, given in Figure 3. In the input, we assume the base-case lifting target t divides ℓ. If it is not the case, we may replace ℓ by $t\lfloor \ell/t \rfloor$, and add some more lifting at the end.

Inputs: LLL parameters Ξ; a Ξ-reduced matrix $B \in \mathbb{Z}^{d \times d}$; a lifting target ℓ; a divisor t of ℓ.

Output: A Ξ-reduced basis of $\sigma \ell B$.

1. Let Ξ_0, Ξ_1 be valid parameters with $\Xi_0 < \Xi < \Xi_1$,
 - c_3 as in Le. 7 for $"(\Xi_1, \Xi_2, \Xi_3) := (\Xi, \Xi, \Xi)"$,
 - c_4 as in Le. 3 with $"(\Xi_1, \Xi_2, c_4) := (\Xi_0, \Xi_1, c_3 + 2)"$.
2. For k from 1 to ℓ/t do
3. - $(B', E) := \text{MSB}_{t+\ell>(c_3d)}(B)$.
4. - $(D, U) := \text{TrLiftLLL}(B', E, t).
5. - $B := \sigma \ell BD^{-1}UD$.
6. Return B.

Fig. 3. The Lehmer-LiftLLL algorithm.

Theorem 3. Lehmer-LiftLLL is correct. Furthermore, if the input matrix B satisfies $\max \|b_i\| \leq 2^{3^\ell}$, then its bit-complexity is $O(d^3 \ell((d^{1+\varepsilon} t + t^{-1+\varepsilon}(\ell + \beta)))$).

Proof. The correctness is provided by Lemmata 3 and 7 and by Theorem 2. At any moment throughout the execution, the matrix B is a Ξ-reduced basis of the lattice spanned by an ℓ'-lift of the input, for some $\ell' \leq \ell$. Therefore, by Theorem 1 and Lemma 4, the inequality $\max \|b_i\| \leq \alpha^d \max \|b_{i,i}\| \leq 2^{c(\ell + \beta)}$ holds throughout the execution, for some constant c. The cost of Step 3 is $O(d^2 (t + \log(\ell + \beta)))$. The cost of Step 4 is $O(d^{4+\varepsilon} t^2 + d^2 \log(\ell + \beta))$. Step 5 is performed by first
computing σ_tBD^{-1}, whose entries have bit-sizes $O(\ell + \beta)$, and then multiplying by U and finally by D. This costs $O(d^3(\ell + \beta)t^2)$ bit operations. The claimed complexity bound can be obtained by summing over the ℓ/t loop iterations.

Note that if ℓ is sufficiently large with respect to d, then we may choose $t = \ell^a$ for $a \in (0, 1)$, to get a complexity bound that is subquadratic with respect to ℓ. By using Lehmer-LiftLLL at Step 5 of the algorithm of Figure 2 (with $t = \ell^5$), it is possible to obtain an LLL-reducing algorithm of complexity $\mathcal{P}oly(d) \cdot \beta^{15+\varepsilon}$.

4 Quasi-linear algorithm

We now aim at constructing a recursive variant of the Lehmer-LiftLLL algorithm of the previous section. Because the lift-reducing unimodular transformations will be produced by recursive calls, we have little control over their structure (as opposed to those produced by TrLiftLLL). Before describing Lift-\tilde{L}^1, we thus study lift-reducing unimodular transformations, without considering how they were computed. In particular, we are interested in how to work on them at low cost. This study is robust and fully general, and afterwards is used to analyze Lift-\tilde{L}^1.

4.1 Sanitizing unimodular transforms

In the previous section we have seen that working on the most significant bits of the input matrix B suffices to find a matrix U such that $\sigma_tB \tilde{U}$ is reduced. Furthermore, as shown in Theorem 2, the unimodular U can be found and stored on few bits. Since the complexity of Theorem 2 is quadratic in ℓ we will use it only for small lift-reductions (the leaves of our recursive tree) and repairing reduction quality (when $\ell = 0$). For large lifts we will use recursive lift-reduction. However, that means we no longer have a direct application of a well-understood LLL-reducing algorithm which was what allowed such efficient unimodular transforms to be found. Thus, in this section we show how any U which reduces σ_tB can be transformed into a factored unimodular U' which also reduces σ_tB and for which each entry can be stored with only $O(\ell + d)$ bits. We also explain how to quickly compute the products of such factored matrices. This analysis can be used as a general framework for studying lift-reductions.

The following lemmata work because lift-reducing transforms have a special structure which we gave in Lemma 5. Here we show a class of additive perturbations which, when viewed as transformations, are in fact unimodular transformations themselves. Note that these entrywise perturbations are stronger than mere truncations since $\Delta u_{i,j}$ could be larger than $u_{i,j}$. Lemma 8 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix remains unimodular.

Lemma 8. Let Ξ_1, Ξ_2 be valid LLL parameters. There exists a constant c_t such that the following holds for any $\ell \geq 0$. Let $B \in \mathbb{R}^{d \times d}$ (with R-factor R) be Ξ_1-reduced, and U be unimodular such that σ_tBU (with R-factor R') is Ξ_2-reduced. If $\Delta U \in \mathbb{Z}^{d \times d}$ satisfies $|\Delta u_{i,j}| \leq 2^{-\ell(c_t+\beta)} \cdot \frac{r_{i,j}}{t^{1/4}}$ for all i, j, then $U + \Delta U$ is unimodular.

Proof. Since U is unimodular, the matrix $V = U^{-1}$ exists and has integer entries. We can thus write $U + \Delta U = U(I + U^{-1}\Delta U)$, and prove the result by showing that $U^{-1}\Delta U$ is strictly upper triangular, i.e., that $(U^{-1}\Delta U)_{i,j} = 0$ for $i \geq j$. We have $(U^{-1}\Delta U)_{i,j} = \sum_{k \leq d} v_{i,k} \cdot \Delta u_{k,j}$.

We now show that if $\Delta u_{k,j} \neq 0$ and $i \geq j$, then we must have $v_{i,k} = 0$ (for a large enough c_t).

The inequality $\Delta u_{k,j} \neq 0$ and the hypothesis on ΔU imply that $\frac{r_{k,j}}{t^{1/3}} \leq 2^{-\ell(c_t+\beta)d}$. Since $i \geq j$ and σ_tBU is reduced, Theorem 1 implies that $\frac{r_{k,j}}{t^{1/3}} \leq 2^{-\ell(c_t+\beta)d}$, for some constant $c > 0$.

By using the second part of Lemma 5, we obtain that there exists $c' > 0$ such that $|v_{i,k}| \leq 2^{\ell+c' \cdot d} \cdot \frac{t_{i,k}}{r_{i,k}} \leq 2^{(c+c' - c) \cdot d}$. As V is integral, setting $c_7 > c + c'$ allows us to ensure that $v_{i,k} = 0$, as desired.

Lemma 9 shows that a sufficiently small perturbation of a unimodular lift-reducing matrix remains lift-reducing.

Lemma 9. Let Ξ_1, Ξ_2, Ξ_3 be valid LLL parameters such that $\Xi_2 > \Xi_3$. There exists a constant c_8 such that the following holds for any $\ell \geq 0$. Let $B \in \mathbb{R}^{d \times d}$ (with R-factor R) be Ξ_1-reduced, and U be unimodular such that $\sigma_{\ell}BU$ (with R-factor R') is Ξ_2-reduced. If $\Delta U \in \mathbb{Z}^{d \times d}$ satisfies $|\Delta u_{i,j}| \leq 2^{-(\ell+c_8-d) \cdot \frac{r_{i,j}}{c_8}}$ for all i,j, then $\sigma_{\ell}B(U + \Delta U)$ is Ξ_3-reduced.

Proof. We proceed by showing that $|\sigma_{\ell}B\Delta U|$ is column-wise small compared to $|\sigma_{\ell}BU|$ and by applying Lemma 3. We have $|\Delta U| \leq 2^{-(\ell+c_8-d) \cdot \text{diag}(r_{i,j}^{-1}) \cdot \text{diag}(r_{j,j}')}$ by assumption, where $c_{i,j} = 1$ for all i,j. Since B is Ξ_1-reduced, we also have $|R| \leq \text{diag}(r_{i,j})T + \theta T \text{diag}(r_{j,j})$, where T is upper triangular with $t_{i,j} = 1$ for all $i \leq j$. Then using $|R\Delta U| \leq |R||\Delta U|$ we get

$$|R\Delta U| \leq 2^{-(\ell+c_8-d) \cdot \text{diag}(r_{i,j})T \text{diag}(r_{j,j}^{-1}) + \theta T} \text{diag}(r_{j,j}').$$

Since B is Ξ_1-reduced, by Theorem 1, we have $r_{i,i} \leq \alpha_1^d r_{j,j}$ for all $i \leq j$, hence it follows that

$$|R\Delta U| \leq 2^{-(\ell+c_8-d) \cdot (\alpha_1^d + \theta_1)TC \text{diag}(r_{j,j}')}.$$

As a consequence, there exists a constant $c > 0$ such that for any j:

$$\|(\sigma_{\ell}B\Delta U)_j\| \leq 2^{c\ell}\|(B\Delta U)_j\| = 2^{\ell\ell\|(R\Delta U)_j\|} \leq 2^{(\ell-c_8)d}r_{j,j}'.$$

We complete the proof by noting that $r_{j,j}' \leq \|(\sigma_{\ell}BU)_j\|$ and by applying Lemma 3 (which requires that c_8 is set sufficiently large).

Lemmata 8 and 9 allow us to design an algorithmically efficient representation for lift-reducing unimodular transforms.

Theorem 4. Let Ξ_1, Ξ_2, Ξ_3 be valid LLL parameters with $\Xi_2 > \Xi_3$. There exist constants $c_9, c_{10} > 0$ such that the following holds for any $\ell \geq 0$. Let $B \in \mathbb{R}^{d \times d}$ be Ξ_1-reduced, and U be unimodular such that $\sigma_{\ell}BU$ is Ξ_2-reduced. Let $d_i := \lfloor \log ||b_i|| \rfloor$ for all i. Let $D := \text{diag}(2^{d_i})$, $x := \ell + c_9 \cdot d$, $\hat{U} := 2^x DUD^{-1}$ and $U' := 2^{-x}D^{-1} \hat{U} D$. We write $\text{Clean}(U, (d_i), (\ell)) := (U', D, x)$. Then U' is unimodular and $\sigma_{\ell}BU'$ is Ξ_3-reduced. Furthermore, the matrix \hat{U} satisfies $\max|\hat{u}_{i,j}| \leq 2^{2\ell+c_9d}d$.

Proof. We first show that U' is integral. If $[\hat{u}_{i,j}] = \hat{u}_{i,j}$, then $u_{i,j}' = u_{i,j} \in \mathbb{Z}$. Otherwise, we have $\hat{u}_{i,j} \notin \mathbb{Z}$, and thus $x + d_i - d_j \leq 0$. This gives that $[\hat{u}_{i,j}] \in \mathbb{Z} \subseteq 2^{x+d_i-d_j} \mathbb{Z}$. We conclude that $u_{i,j}' \in \mathbb{Z}$.

Now, consider $\Delta U = U' - U$. Since $\Delta U = 2^{-x}D^{-1}((\hat{U} - \hat{U})D)$, we have $|\Delta u_{i,j}| \leq 2^{d_j - d_i - x}$, for all i,j. Thus by Theorem 1 and Lemma 4, we have $|\Delta u_{i,j}| \leq 2^{-(x+c \cdot d) \cdot \frac{r_{i,j}}{c}}$, for some constant c. Applying Lemmata 8 and 9 shows that U' is unimodular and $\sigma_{\ell}BU'$ is Ξ_3-reduced (if c_9 is chosen sufficiently large).

By Lemma 5, we have for all i,j:

$$|\hat{u}_{i,j}| = |u_{i,j}| 2^{x+d_i-d_j} \leq 2^{x+\ell+c' \cdot d} \cdot \frac{r_{j,j}}{\log ||b_i||} \frac{2^{\log ||b_i||}}{r_{i,i}} = \frac{r_{j,j}}{r_{i,i}},$$

for some constant c'. Theorem 1 then provides the result.
Quasi-Linear LLL A. Novocin, D. Stehlé, G. Villard 13

The above representation of lift-reducing transforms is computationally powerful. Firstly, it can be efficiently combined with Theorem 2: Applying the process described in Theorem 4 to the unimodular matrix produced by \(\text{TrLiftLLL} \) may be performed in \(O(d^2(d + \ell) + d \log(1 + |e_1|)) \) bit operations, which is negligible comparable to the cost bound of \(\text{TrLiftLLL} \). We call \(\text{TrLiftLLL}' \) the algorithm resulting from the combination of Theorems 2 and 4. \(\text{TrLiftLLL}' \) is to be used as base case of the recursion process of \(\text{Lift-LLL}^1 \). Secondly, the following result shows how to combine lift-LLL-reducing unimodular transforms. This is an engine of the recursion process of \(\text{Lift-LLL}^1 \).

Lemma 10. Let \(U = 2^{-x}D^{-1}U'D \in \mathbb{Z}^{d \times d} \) with \(U' \in \mathbb{Z}^{d \times d} \) and \(D = \text{diag}(2^{d_i}) \). Let \(V = 2^{-y}E^{-1}V'E \in \mathbb{Z}^{d \times d} \) with \(V' \in \mathbb{Z}^{d \times d} \) and \(E = \text{diag}(2^{e_i}) \). Let \(\ell \in \mathbb{Z} \) and \(f_i \in \mathbb{Z} \) for \(i \leq d \). Then it is possible to compute the output \((W', F, z) \) of \(\text{Clean}(U \cdot V, (f_i), \ell) \) (see Theorem 4) from \(x, y, \ell, U', V', (d_i), (e_i) \), \((f_i) \), in time \(O(d^2 \mathcal{M}(t + \log d)) \), where

\[
\max_{i,j} \max(|u'_{i,j}|, |u'_{ij}|) \leq 2^t
\]

and

\[
\max_i \max(|d_i - e_i|, |f_i - e_i|, |\ell - (x + y)|) \leq t.
\]

For short, we will write \(W := U \odot V \), with \(W = 2^{-x}F^{-1}W'F \) and \(F = \text{diag}(2^{f_i}) \).

Proof. We first compute \(m = \max |d_i - e_i| \). We have

\[
UV = 2^{(-x-y-m)} \cdot F^{-1}T \cdot F,
\]

where

\[
T = (FD^{-1})U'\text{diag}(2^{d_i-e_i+m})V'(EF^{-1}).
\]

Then we compute \(T \). We multiply \(U' \) by \(\text{diag}(2^{d_i-e_i+m}) \), which is a mere multiplication by a non-negative power of 2 of each column of \(U' \). This gives an integral matrix with coefficients of bit-sizes \(\leq 3t \). We then multiply the latter by \(V' \), which costs \(O(d^2 \mathcal{M}(t + \log d)) \). We multiply the result from the left by \((FD^{-1}) \) and from the right by \(EF^{-1} \). From \(T \), the matrix \(\tilde{W} \) of Theorem 4 may be computed and rounded within \(O(d^2 t) \) bit operations.

It is crucial in the complexity analysis of \(\text{Lift-LLL}^1 \) that the cost of the merging process above is independent of the magnitude scalings \((d_i, e_i \) and \(f_i) \).

4.2 Lift-LLL^1 algorithm

The \(\text{Lift-LLL}^1 \) algorithm given in Figure 4 relies on two recursive calls, on MSB, truncations, and on calls to \(\text{TrLiftLLL}' \). The latter is used as base case of the recursion, and also to strengthen the reducedness parameters (to ensure that the recursive calls get valid inputs). When strengthening, the lifting target is always 0, and we do not specify it explicitly in Figure 4.

Theorem 5. \(\text{Lift-LLL}^1 \) is correct.

Proof. When \(\ell \leq d \) the output is correct by Theorems 2 and 4. In Step 2, Theorems 2 and 4 give that \(BU_1 \) is \(\Xi_2 \)-reduced and that \(U_1 \) has the desired format. In Step 3, the constant \(c_3 \geq c_1 \) is chosen so that Lemma 3 applies now and Lemma 7 will apply later in the proof. Thus \(B_1 \) is \(\Xi_1 \)-reduced and has the correct structure by definition of MSB. Step 4 works (by induction) because \(B_1 \) satisfies the input requirements of \(\text{Lift-LLL}^1 \). Thus \(\sigma_{\ell/2}B_1U_{R_1} \) is \(\Xi_1 \)-reduced. Because of the selection of \(c_3 \) in Step 3 we know also that \(\sigma_{\ell/2}BU_1U_{R_1} \) is reduced (weaker than \(\Xi_1 \) using
Lemma 7. Thus by Theorem 4, the matrix B_2 is reduced (weakly) and has an appropriate format for TrLiftLLL^r. By Theorem 2, the matrix $\sigma_{\ell/2}BU_1R_1U_2$ is Ξ_3-reduced and by Theorem 4 we have that $\sigma_{\ell/2}BU_1R_1U_2$ is Ξ_2-reduced. By choice of c_3 and Lemma 3, we know that the matrix B_3 is Ξ_1-reduced and satisfies the input requirements of Lift-L1. Thus, by recursion, we know that $\sigma_{\ell/2}BU_1R_1U_2$ is Ξ_1-reduced. By choice of c_3 and Lemma 7, the matrix $\sigma_{\ell}BU_1R_1U_2$ is weakly reduced. By Theorem 4, the matrix B_4 is reduced and satisfies the input requirements of TrLiftLLL^r. Therefore, the matrix $\sigma_{\ell}BU_1R_1U_2$ is Ξ_4-reduced. Theorem 4 can be used to ensure U has the correct format and $\sigma_{\ell}BU$ is Ξ_1-reduced.

\begin{figure}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Valid LLL-parameters $\Xi_{\ell} > \Xi_{\ell-1} \geq \Xi_{\ell-2}$; a lifting target ℓ.} & \textbf{Inputs:}\tabularnewline & $\sigma_{\ell}BU$ is Ξ_4-reduced and by Theorem 4 \tabularnewline & and Lemma 7, the matrix $\sigma_{\ell}BU_1R_1U_2$ is Ξ_1-reduced. \tabularnewline & Thus, by recursion, we know that $\sigma_{\ell/2}BU_1R_1U_2$ is Ξ_1-reduced. By choice of c_3 and Lemma 7, the matrix $\sigma_{\ell}BU_1R_1U_2$ is weakly reduced. By Theorem 4, the matrix B_4 is reduced and satisfies the input requirements of TrLiftLLL^r. Therefore, the matrix $\sigma_{\ell}BU_1R_1U_2$ is Ξ_4-reduced. Theorem 4 can be used to ensure U has the correct format and $\sigma_{\ell}BU$ is Ξ_1-reduced. \tabularnewline
\hline
\textbf{Placing in B_4 with lifting target ℓ.} & \textbf{Proof.} We first bound the total cost of the calls to TrLiftLLL^r. There are $O(1 + \ell/d)$ such calls, and for any of these the lifting target is $O(d)$. Their contribution to the cost of Lift-L1 is therefore $O(d^{3+\epsilon}d + \ell + \tau)$. Also, the cost of handling the exponents in the diverse diagonal matrices is $O(d(1 + \ell/d) \log(\beta + \ell))$. \tabularnewline
\hline
\end{tabular}
\caption{The Lift-L1 algorithm.} \label{fig:lift-l1}
\end{figure}

4.3 Complexity analysis

\textbf{Theorem 6.} Lift-L1 has bit-complexity

$$O\left(d^{3+\epsilon}(d + \ell + \tau) + d^2 M(\ell) \log \ell + \ell \log(\beta + \ell)\right),$$

where τ is the total number of LLL-switches performed by the calls to H-LLL (through TrLiftLLL^r), and max $|b_{i,j}| \leq 2^\beta$.

\textbf{Proof.} We first bound the total cost of the calls to TrLiftLLL^r. There are $O(1 + \ell/d)$ such calls, and for any of these the lifting target is $O(d)$. Their contribution to the cost of Lift-L1 is therefore $O(d^{3+\epsilon}d + \ell + \tau)$. Also, the cost of handling the exponents in the diverse diagonal matrices is $O(d(1 + \ell/d) \log(\beta + \ell))$.

Now, let $C(d, \ell)$ be the cost of the remaining operations performed by Lift-L1, in dimension d and with lifting target ℓ. If $\ell \leq d$, then $C(d, \ell) = O(1)$ (as the cost of TrLiftLLL^r has been put aside). Assume now that $\ell > d$. The operations to be taken into account include two recursive
calls (each of them costing $O(d, \ell/2)$), and $O(1)$ multiplications of d-dimensional integer matrices whose coefficients have bit-length $O(d + \ell)$. This leads to the inequality $\mathcal{C}(d, \ell) \leq 2\mathcal{C}(d, \ell/2) + K \cdot d^e M(d + \ell)$, for some absolute constant K. This leads to $\mathcal{C}(d, \ell) = O(d^e M(d + \ell) \log(d + \ell))$. □

4.4 \tilde{L}^1 algorithm

The algorithm of Figure 4 is the Knuth-Schönhage-like generalization of the Lehmer-like algorithm of Figure 3. Now we are ready to analyze a general lattice reduction algorithm by creating a wrapper for Lift-\tilde{L}^1.

Algorithm \tilde{L}^1: We define \tilde{L}^1 as the algorithm from Figure 2, where Figure 5 is used to implement lift-reduction.

As we will see Figure 5 uses the truncation process MSB described in Definition 2 and TrLiftLLL to ensure that \tilde{L}^1 provides valid inputs to Lift-\tilde{L}^1. Its function is to process the input C from Step 5 of Figure 2 (the lift-reduction step) which is a full-precision basis with no special format into a valid input of Lift-\tilde{L}^1 which requires a truncated basis $B' \cdot E$. Just as in Lift-\tilde{L}^1 we use a stronger reduction parameter to compensate for needing a truncation.

This processing before Lift-\tilde{L}^1 is similar to what goes on inside of Lift-\tilde{L}^1. The accuracy follows from Lemma 3, Theorem 2, Theorem 5, and Lemma 7. While the complexity of this processing is necessarily less than the bit-complexity of Lift-\tilde{L}^1, $O(d^{\beta + \epsilon}(d+\ell_k+\tau_k)+d^e M(\ell_k) \log \ell_k+\ell_k \log(\delta_k + \ell_k))$ from Theorem 6, which we can use as C_k from Lemma 6.

We now amortize the costs of all calls to Step 5 using Figure 5. More precisely, we bound $\sum_k \ell_k$ and $\sum_k \tau_k$ more tightly than using a generic bound for the ℓ_k’s (resp. τ_k’s). For the ℓ_k’s, we have $\sum_k \ell_k \leq \log \det H \leq d\beta$. To handle the τ_k’s, we adjust the standard LLL energy/potential analysis to allow for the small perturbations of $r_{s,i}$’s due to the various truncations.

Lemma 11. Consider the execution of Steps 2–8 of \tilde{L}^1 (Figure 2). Let $H \in \mathbb{Z}^{d \times d}$ be the initial Hermite Normal Form. Let $\Xi_0 = (\delta_0, \eta_0, \theta_0)$ be the strongest set of LLL-parameters used within the execution. Let B be a basis occurring at any moment of Step 5 during the execution. Let R be the R-factor of B and n_{MSB} be the number of times MSB has been called so far. We define the energy of B as $\mathcal{E}(B, n_{MSB}) := \frac{1}{\log \eta_0} \left(\sum_i [(i-1) \cdot \log r_{s,i}] + d^e n_{MSB} \right)$ (using the natural logarithm). Then the number of LLL-switches performed so far satisfies $\tau \leq \mathcal{E}(B, n_{MSB}) = O(d \cdot \log \det H)$.

Proof. The basis operations modifying the energy function are the LLL switches, the truncations (and returns from truncations), the adjunctions of a vector at Steps 3–4 of the algorithm from Figure 2 and the lifts. We show that any of these operations cannot decrease the energy function.
As Ξ_0 is the strongest set of LLL parameters ever considered during the execution of the algorithm, each LLL switch increases the weighted sum of the $r_{i,i}$'s (see [16, (1.23)]) and hence E by at least 1.

We now consider truncations. Each increase of n_{MSB} possibly decreases each $r_{i,i}$ (and again when we return from the truncation). We see from Lemma 1 and our choices of precisions p that for any two LLL parameters $\Xi' < \Xi$ there exists an $\varepsilon < 1$ such that each $r_{i,i}$ decreases by a factor no smaller than $(1 + \varepsilon)$. Overall, the possible decrease of the weighted sum of the $r_{i,i}$'s is counterbalanced by the term “d^2n_{MSB}” from the energy function, and hence E cannot decrease.

Now, the act of adjoining a new row in Figure 2 does not change the previous $r_{i,i}$'s but increases their weights. Since at the moment of an adjoining all $\log r_{i,i}$'s except possibly the first one are non-negative and since the weight of the first one is zero, Steps 3–4 cannot decrease E.

Finally, each product by σ_ℓ (including those within the calls to TrLiftLLL') cannot decrease any $r_{i,i}$, by Lemma 4.

To conclude, the energy never decreases and any switch increases it by at least 1. This implies that the number of switches is bounded by the growth $E(B, n_{\text{MSB}}) - E((h_d,d), 0)$ of the energy is ≥ 0. Also, at the end of the execution, the term $\sum (i-1) \log r_{i,i}$ is $O(\log \det H)$. As there are 5 calls to MSB in the algorithm from Figure 4 (including those contained in the calls to TrLiftLLL'), we can bound d^2n_{MSB} by $5d^2 \sum_k (d_k/d) = 5 \log \det H$.

We obtain our main result by combining Theorems 5 and 6, and Lemma 11 to amortize the LLL-costs in Lemma 6 (we bound $\log \det H$ by $d\beta$).

Theorem 7. Given as inputs Ξ and a matrix $B \in \mathbb{Z}^{d\times d}$ with $\max \|b_{ij}\| \leq 2^d$, the \tilde{L}^1 algorithm returns a Ξ-reduced basis of $L(B)$ within $O(d^5 + \varepsilon \beta + d^\omega + 1 + \varepsilon \beta^{1+\varepsilon})$ bit operations.

Acknowledgements

Andrew Novocin and Damien Stehlé were partly funded by the LaRedA ANR project. Gilles Villard was partly funded by the Gecko ANR project and by a CNRS research collaboration grant to visit the MAGMA computational algebra group of the University of Sydney. Part of this work was done while Damien Stehlé was hosted by Macquarie University and the University of Sydney, whose hospitalities are gratefully acknowledged.

References

Let us first recall useful recipes for partially linearizing integer matrices and reducing the bit-cost of their products using asymptotically fast matrix multiplication algorithms. If one is interested in \(\omega = 3 \), then applying the naive matrix multiplication algorithm directly (without the linearization) already provides the given complexity upper bounds.
Recipe 1 Let B and U be two $d \times d$ integer matrices such that $\sum_{i=1}^{d} \log \max_{1 \leq j \leq d} |b_{i,j}|$ and $\sum_{j=1}^{d} \log \max_{1 \leq i \leq d} |u_{i,j}|$ are both bounded by some S. We show how to compute the product $B \cdot U$ within $O(d^2 M(S/d + \log d))$ bit operations.

We reduce the product $B \cdot U$ to a product with balanced row and column bit-sizes by splitting into several rows the rows of B for which $\log \max_{1 \leq j \leq d} |b_{i,j}| \geq \beta$, with $\beta := \lceil S/d \rceil$. We also split into several columns the columns of U for which $\log \max_{1 \leq i \leq d} |u_{i,j}| \geq \beta$. More precisely, for $1 \leq i \leq d$, let $s_i = \lceil (\log \max_{1 \leq j \leq d} |b_{i,j}|)/\beta \rceil$, and, for $1 \leq j \leq d$, let $t_j = \lceil (\log \max_{1 \leq i \leq d} |u_{i,j}|)/\beta \rceil$. If \mathbf{x} and \mathbf{y} respectively denote row i of B and column j of U, then they are respectively replaced by

$$
\begin{bmatrix}
 x_1^{(0)} & \cdots & x_d^{(0)} \\
 \vdots & \ddots & \vdots \\
 x_1^{(s_i-1)} & \cdots & x_d^{(s_i-1)}
\end{bmatrix}
$$

and

$$
\begin{bmatrix}
 y_1^{(0)} & \cdots & y_1^{(t_j-1)} \\
 \vdots & \ddots & \vdots \\
 y_d^{(0)} & \cdots & y_d^{(t_j-1)}
\end{bmatrix},
$$

where $x_k = \sum_{l=0}^{s_i-1} x_l^{(l,2\beta)}$, with $\log |x_k^{(l)}| \leq \beta$, and $y_k = \sum_{l=0}^{t_j-1} y_l^{(l,2\beta)}$, with $\log |y_k^{(l)}| \leq \beta$. The inner product $\mathbf{x} \cdot \mathbf{y}$ is then obtained by summing the entries of D_1PD_2, where P is the product of the two matrices above (which are sub-matrices of the expansions of B and U), $D_1 := \text{diag}_{l<s_i}(2^{l\beta})$, and $D_2 := \text{diag}_{l<t_j}(2^{l\beta})$. Summing along antidiagonals and then summing the partial sums costs $O(s_it_j(\beta + \log d))$. The number of rows of the expansion of B is less than $2d$. Similarly, the number of columns of the expansion of U is less than $2d$. To complete the proof, note that all the entries of these expanded matrices have bit-lengths $O(\beta)$.

Recipe 2 Let $k \leq \log d$. Let B be a $d \times (d/2^k)$ integer matrix whose entries have bit-size $\leq 2^{k-\gamma}$, and U a $d \times d$ integer matrix such that $\sum_{j=1}^{d} \log \|b_j\| \leq d\gamma$, for some γ. Let $C = BU$ and assume that the entries of C have bit-size $\leq 2^{k\gamma}$. We show how to compute C within $O(d^{2-\varepsilon} M(\gamma))$ bit operations, where $\varepsilon = o(1)$.

For $l \geq 0$ we see that B has at most $d/2^l$ columns b_j such that $\log \|b_j\| \geq 2^\gamma l$. For $l > 0$, let J_l denote the set of the indices of the columns of B such that $2^\gamma l \leq \log \|b_j\| < 2^{l+1}$. Note that $J_l = \emptyset$ for $l > \log d$. We denote by J_0 the set of indices of the columns with $\log \|b_j\| < 2\gamma$. For simplifying the cost bound discussion hereafter we assume that J_l has exactly $d/2^l$ elements (rather than $\leq d/2^l$). Let also $B^{(l)}$ be the submatrix of B formed by the columns whose indices are in J_l. Accordingly, let $U^{(l)}$ be the submatrix of U formed by the rows whose indices are in J_l. Then we may compute $C = BU$ in $\log d$ products since (taking a symmetric modulo representation)

$$
C = \sum_l B^{(l)}U^{(l)} \mod 2^{2^l+1},
$$

(1)

For $k \leq l$, the matrix $B^{(l)}$ has dimension $d \times (d/2^l)$, its entries may be taken modulo 2^{2^l+1} using $O((d^2/2^l)M(2^l/\gamma))$ hence $O(d^{2-\varepsilon} M(\gamma))$ bit operations. The resulting matrix is seen as the concatenation of 2^l square row blocks of dimension $d/2^l$. The matrix $U^{(l)}$ has $d/2^l$ rows and $d/2^l \geq d/2^l$ columns. We may decompose $U^{(l)}$ into $2^{2^l-\ell}$ square column blocks with $d/2^l$ columns.
The product $B^{(l)}U^{(l)}$ in (1) can be done by blocks within $O(2^l \times 2^{l-k} \times (d/2^k)^s \times \mathcal{M}(2^k\gamma))$ hence $O(d^{\varepsilon+2}\mathcal{M}(\gamma))$ bit operations.

For $k > l$ we proceed as for Recipe 1 with $\beta := 2^l\gamma$ for expanding $U^{(l)}$ into a matrix with $(d/2^k)\cdot (2^{k-l})$ columns. Hence $B^{(l)}$ is $d \times d/2^l$, and the expansion of $U^{(l)}$ is square of dimension $d/2^l$. Both have entries of bit size $O(2^l \gamma)$. By decomposing $B^{(l)}$ into 2^l square row blocks with $d/2^l$ rows, we can compute the product $B^{(l)}U^{(l)}$ in time $O(2^l(d/2^k)^s \cdot \mathcal{M}(2^l\gamma + \log d))$ and hence $O(d^{\varepsilon+2}\mathcal{M}(\gamma))$ bit operations. Overall, the cost for computing C using (1) is $O(d^{\varepsilon+2}\mathcal{M}(\gamma))$.

\textbf{Recipe 3} Let B, U and $C = BU$ be $d \times d$ integer matrices. Assume that there exists s_1, \ldots, s_d such that $\log \|c_j\|, \text{ and } \log \|u_j\| \leq s_j$, and $\sum_j \log \|b_j\|$, and $\sum_j s_j \leq S$, for some S. We show how to compute the product C within $O(d^{\varepsilon+2}\mathcal{M}(S/d))$ bit operations, where ε is $o(1)$.

We apply to C the column decomposition seen in Recipe 2 for B. For $0 < k \leq \log d$, we let I_k denote the set of the indices of the columns of C such that $2^kS/d \leq \log \|c_j\| < 2^{k+1}S/d$. We denote by I_0 the set of indices of the columns with $\log \|c_j\| < 2S/d$. Let also $U^{(k)}$ be the submatrix of U formed by the columns whose indices are in I_k. As prior, the cardinality of I_k is at most $d/2^k$.

To compute C, it suffices to compute the $B \cdot U^{(k)}$'s, for $0 \leq k \leq \log d$. This can be done within $O(d^{\varepsilon+2}\mathcal{M}(S/d))$ bit operations by using Recipe 2. Bounding the number of k's by $O(\log d)$ allows us to complete the proof.

\section*{Appendix 2 - Proof of Lemma 7}

\textbf{Lemma 12.} Let Ξ_1, Ξ_2, Ξ_3 be valid reduction parameters with $\Xi_3 > \Xi_2$. There exists a constant c_2 such that the following holds for any $\ell \geq 0$. Let $B \in \mathbb{R}^{d \times d}$ be Ξ_1-reduced, U such that σ_1BU is Ξ_3-reduced and ΔB with max $\frac{\|ab\|}{\|b\|} \leq 2^{-\ell-c_2d}$. Then $\sigma_1(B + \Delta B)U$ is Ξ_2-reduced.

\textbf{Proof.} By Lemma 5, there exists a constant c such that for all i,j we have $|u_{j,i}| \leq 2^{-d/\ell_{i,j}}$, where R (resp. R^t) is the R-factor of B (resp. $C = \sigma_1BU$). Let $C + \Delta C = \sigma_1(B + \Delta B)U$. The norm of $\Delta c_i = \sum_j u_{j,i} \sigma_1\Delta b_j$ is $\leq \sum_j 2^{-p+i+e_{i,j}} \cdot \|b_j\| \leq d \alpha_12^{-p+i+e_{i,j}}$, by Theorem 1 and with p such that max $\frac{\|ab\|}{\|b\|} \leq 2^{-p}$. Furthermore, we have $\|c_i\| \geq c_{i,j}$. This gives max $\frac{\|\Delta c_i\|}{\|c_i\|} \leq d \alpha_12^{-p+i+e_{i,j}}$. By Lemma 3 (applied to C and $C + \Delta C$), there exists c' such that if $p \geq \ell + c' \cdot d$, then $C + \Delta C$ is Ξ_2-reduced.

By combining Lemmata 12 and 3, we have that a reducing U can be found by working on a truncation of B.

\textbf{Lemma 7.} Let Ξ_1, Ξ_2, Ξ_3 be valid reduction parameters with $\Xi_3 > \Xi_2$. There exists a constant c_3 such that the following holds for any $\ell \geq 0$. Let $B \in \mathbb{R}^{d \times d}$ be Ξ_1-reduced and ΔB be such that max $\frac{\|ab\|}{\|b\|} \leq 2^{-\ell-c_3d}$. If $\sigma_1(B + \Delta B)U$ is Ξ_3-reduced for some U, then σ_1BU is Ξ_2-reduced.

\textbf{Proof.} Let $\Xi_0 < \Xi_1$ be a valid set of reduction parameters. By Lemma 3, there exists a constant c such that if max $\frac{\|ab\|}{\|b\|} \leq 2^{-c_1d}$, then $B + \Delta B$ is non-singular and Ξ_0-reduced. We conclude by using Lemma 12.

\section*{Appendix 3 - Proof of Theorem 2 and description of Algorithm TrLiftLLL}

\textbf{Theorem 2.} For any valid parameters $\Xi_1 < \Xi_2$ and constant c_4, there exists a constant c_4' and an algorithm TrLiftLLL with the following specifications. It takes as inputs $\ell \geq 0$, $B \in \mathbb{R}^{d \times d}$, and $\Delta B \in \mathbb{R}^{d \times d}$, and outputs $U \in \mathbb{R}^{d \times d}$ such that σ_1BU is Ξ_2-reduced.
and \(E = \text{diag}(2^{e_i}) \) with max \(\|b_i\| \leq 2\rho^{(\ell+d)} \), \(e_i \in \mathbb{Z} \) and \(BE \) is \(\Xi_1 \)-reduced; It runs in time \(O(d^2 + \tau(d + \ell + \rho) + d^2 \log \max(1 + |e_i|)) \), where \(\tau = O(d^2 + \rho + d) \) is the number of switches performed during the single call it makes to H-LLL; And it returns two matrices \(U \) and \(D \) such that:

1. \(D = \text{diag}(2^{d_i}) \) with \(d_i \in \mathbb{Z} \) satisfying max \(|e_i - d_i| \leq \rho'(\ell + d) \),
2. \(U \) is unimodular and max \(|u_{i,j}| \leq 2^{\ell + \rho' \cdot d} \),
3. \(D^{-1}UD \) is unimodular and \(\sigma_\ell(BE)(D^{-1}UD) \) is \(\Xi_2 \)-reduced.

The possible unbalancedness of the columns of \(BE \) (due to \(E \)), prevents us from applying H-LLL directly on \(C = \sigma_1 BE \). Indeed, even if we were dividing the full matrix by a large common power of 2, the resulting basis may have a bit-size that is arbitrarily large compared to \(d \) and \(\ell \). Our goal is to call H-LLL on an integral matrix whose entries have bit-sizes \(O(d + \ell) \). To circumvent the possible unbalanced-ness of the columns of \(C \), we find blocks of consecutive vectors whose \(r_{i,i}^{(C)} \)'s have similar magnitudes, where \(R^{(C)} \) is the R-factor of \(C \), and we apply a column-scaling to re-balance \(C \) before calling H-LLL.

Finding Blocks. The definition of block is motivated by Property (P) above. To determine meaningful blocks, the first step is to find good approximations to the \(r_{i,i}^{(C)} \)'s and \(r_{i,i}^{(BE)} \)'s (where \(R^{(BE)} \) is the R-factor of \(BE \)). Computing the R-factor of a non-singular matrix is most often done by applying Householder’s algorithm (see [8, Ch. 19]). The following lemma is a rigorous and explicit variant of standard backward stability results.

Lemma 13 ([2, Se. 6]). Let \(p \geq 0 \) and \(B \in \mathbb{R}^{d \times d} \) be non-singular with R-factor \(R \). Let \(\hat{R} \) be the R-factor computed by Householder’s algorithm with floating-point precision \(p \). If \(c_5 2^{-p} \) is not too small, there exists an orthogonal \(\hat{Q} \) such that \(\hat{Q}\hat{R} = B + \Delta B \) with max \(\|\Delta b\| \leq c_5 2^{-p} \).

By Lemma 2, we have that \(\text{cond}(R^{(BE)}) \leq \frac{\rho + 1}{\rho - 1} \rho^d \). Since \(R^{(BE)} = R^{(B)} \cdot E \), with \(R^{(B)} \) the R-factor of \(B \), we have \(\text{cond}(R^{(B)}) \leq \frac{\rho + 1}{\rho - 1} \rho^d \) (because \(\text{cond}(\cdot) \) is invariant under column scaling).

Now, by Lemma 1 and 13, for any \(c \) there exists \(c' \) such that Householder’s algorithm with precision \(p = c'd \) allows us to find \(\hat{R}^{(B)} \) with max \(\frac{\|F_i^{(B)} - F_i^{(BE)}\|}{\|F_i^{(BE)}\|} \leq 2^{-cd} \). By defining \(\hat{R}^{(BE)} \) by \(\hat{R}^{(B)} \cdot E \), we have max \(\frac{\|\hat{F}_i^{(BE)} - F_i^{(BE)}\|}{\|F_i^{(BE)}\|} \leq 2^{-cd} \). The latter can be made \(\leq \frac{1}{100} \).

We now show that we can also compute approximations to the \(r_{i,i}^{(C)} \)'s. Let \(B = Q^{(B)}R^{(B)} \) and \(\sigma_\ell B = \sigma^{(\ell)}(B)R^{(\sigma_\ell B)} \) be the QR factorizations of \(B \) and \(\sigma_\ell B \) respectively. We have:

\[
\text{cond}(R^{(\sigma_\ell B)}) = \frac{\|R^{(\sigma_\ell B)}\|}{\|R^{(\sigma_\ell B)^{-1}}\|} \leq \frac{\|Q^{(\sigma_\ell B)}\|}{\|Q^{(\sigma_\ell B)^{-1}}\|} \|Q^{(\sigma_\ell B)}\| \|R^{(B)}\| \|R^{(B)^{-1}}\| \|Q^{(\sigma_\ell B)}\| \leq d^2 2^d \text{cond}(R^{(B)}) \leq d^2 2^d \text{cond}(R^{(BE)}).
\]

Since \(R^{(B)}E \) is the R-factor of \(BE \) which is reduced, Lemma 2 gives that \(\text{cond}(R^{(\sigma_\ell B)}) \leq d^2 2^d \text{cond}(R^{(BE)}). \) Now, Lemmata 1 and 13 imply that for any \(c \) there exists \(c' \) such that Householder’s algorithm with precision \(p = 2\ell + c'd \) allows us to find \(\hat{R}^{(\sigma_\ell B)} \) with max \(\frac{\|F_i^{(\sigma_\ell B)} - F_i^{(\sigma_\ell B)}\|}{\|F_i^{(\sigma_\ell B)}\|} \leq \frac{1}{100} \).
\[2^{-\ell-cd}.\] Since \(|r_i^{(\sigma_B)}| \leq 2^\ell|x_i^{(B)}| \leq 2^\ell \alpha^d r_i^{(B)} \leq 2^\ell \alpha^d r_i^{(\sigma_B)}\) (using Theorem 1 and Lemma 4), we obtain that Householder’s algorithm with precision \(2\ell + \mathcal{O}(d)\) provides some \(\tilde{r}_{i,i}^{(\sigma_B)}\)’s such that
\[
\max \left| \frac{r_i^{(\sigma_B)} - r_i^{(\sigma_B)}}{r_i^{(\sigma_B)}} \right| \leq \frac{1}{100}. \quad \text{since} \quad R(C) = R(\sigma_B)E, \text{we have max} \left| \frac{R_i^{(C)} - R_i^{(C)}}{R_i^{(C)}} \right| \leq \frac{1}{100}, \text{with} \quad \tilde{R}(C) = \tilde{R}(\sigma_B)E. \] Furthermore, as the run-time of Householder’s algorithm in precision \(p\) is \(\mathcal{O}(d^3 p^{1+c})\), the computation of these \(\tilde{r}_{i,i}^{(C)}\)’s costs \(\mathcal{O}(d^3 (\ell + d)^{1+c})\).

We define the blocks of vectors of \(C\) as follows: The first block starts with \(c_{i_1} = c_1\) and stops with \(c_{i_2-1}\) where \(i_2\) is the smallest \(i\) such that \(min_{j \geq i} r_j^{(C)} > \nu \cdot \max_{j < i} r_j^{(C)}\) (if \(i_2 = d + 1\), then the process ends); The \(k\)th block starts with \(c_{i_k}\) and stops with \(c_{i_{k+1}-1}\) where \(i_{k+1}\) is the smallest \(i\) such that \(min_{j \geq i} r_j^{(C)} > \nu \cdot \max_{j < i} r_j^{(C)}\). The purpose of the constant \(\nu \geq 4\), to be set later, is to handle the inaccuracy of \(\tilde{R}(C)\) and to ensure that the matrix \(CD^{-1}U\) eventually obtained by \(\text{Tr}lif\text{LLL}\) will be size-reduced.

Let \(I_k = [i_k, i_{k+1}].\) Since \(\nu \geq 4\), Property (P) implies that if we were to call H-LLL on \(C\), the unimodular \(U\) that we would obtain would satisfy \(u_{i,j} = 0\) if \(i \in I_k\) and \(j \in I_k\) with \(k_1 < k_2\), i.e., \(U\) would be \((I_k)\)-block upper triangular. Any diagonal block-submatrix of \(U\) would be unimodular. Computing the \(i_k\)’s from the \(r_j^{(C)}\)’s may be done in time \(\mathcal{O}(d^2 (d + \ell + \log \max(1 + |e_i|)).\)

By construction of the blocks, the amplitude of \(r_{i,i}^{(C)}\)’s within a block is bounded.

Lemma 14. We use the same notations as above. Let \(\ell_i = r_{i,i}^{(C)} / r_{i,i}^{(BE)}\). There exists a constant \(c_6\) (depending on \(\Xi_1\) and \(\nu\) only) such that for any \(k\), we have \(\frac{\max_{i \in I_k} r_{i,i}^{(C)}}{\min_{i \in I_k} r_{i,i}^{(C)}} \leq 2^{c_6}|I_k|, \max_{i \in I_k} \ell_i\).

Proof. Let \(i, j \in I_k\). We are to compute an upper bound for \(\frac{r_{i,j}^{(C)}}{r_{i,i}^{(C)}}\). If \(j \leq i\), the reducedness of \(BE\) implies that \(r_{j,i}^{(C)} \leq \alpha^{i-j} r_{i,i}^{(C)} / \ell_i\), for \(\alpha\) as in Theorem 1. The fact that \(\ell_i \geq 1\) (see Lemma 4) provides the result. Assume now that \(j > i\). If \(r_{i,i}^{(C)} = \max_{l \geq i} r_{l,l}^{(C)}\), then the bound holds. Otherwise, by definition of the blocks, there exists \(i' > i\) in \(I_k\) such that \(r_{i',i'}^{(C)} \leq 2\nu \cdot r_{i,i}^{(C)}\) (the factor 2 takes the inaccuracy of \(\tilde{R}\) into account). By induction, it can be shown that \(r_{i''i''}^{(C)} \leq (2\nu)|I_k| r_{i,i}^{(C)}\), with \(i'' = i_{k+1} - 1\). We conclude that \(\frac{r_{i,j}^{(C)}}{r_{i,i}^{(C)}} \leq (2\nu)|I_k| r_{i,j}^{(C)} / r_{i,i}^{(C)} \leq (2\nu|I_k| |\ell_j|, \text{by using the first part of the proof (since} j \leq i''\).

Re-balancing the columns of \(C\). The blocks allow us to define the diagonal matrix \(D\) of Theorem 2. We define the gap between two blocks \(I_k\) and \(I_{k+1}\) to be \(g_k = \min_{j \in I_{k+1}} r_{j,j}^{(BE)} / \max_{j \in I_k} r_{j,j}^{(C)}\).

We define \(D = \text{diag}(2d_j)\) such that the block structure is preserved, but the gaps get shrunk: For \(i \in I_k\), we set \(d_i = e_i + \sum_{k' < k} \log_2 g_{k'}/\sqrt{\nu}\).

We prove several facts about this scaling.

1. The matrix \(B' = BED^{-1}\) is \(\Xi_1\)-reduced, because \(r_{j,j}^{(C)} \geq r_{j,j}^{(BE)}\) for all \(j\).
2. The matrix \(C' = CD^{-1}\) with R-factor \(R(C') = R(C)D^{-1}\) admits the same block-structure a \(C\): For any \(k\), we have \(\min_{j \in I_{k+1}} r_{j,j}^{(C')} \geq \max_{j \in I_k} r_{j,j}^{(C)}\), with \(\nu' = \sqrt{\nu}/2 \geq 1\).
3. The \(d_i\)’s satisfy Property 1 of Theorem 2: Thanks to the reducedness of \(BE\), the size condition on \(B\), and Lemma 4, each \(e_i\) is within \(\mathcal{O}(\ell + d)\) of \(\log r_{i,i}^{(C)}\). Thanks to Lemmata 14 and 4 (in particular the fact that the product of all \(\ell_j\)’s is \(2^\ell\)), the same holds for the \(d_i\)’s.
LLL-reducing. We now call H-LLL on input matrix C', with LLL-parameters $\Xi > \Xi_2$, and let $C^{(2)}$ be the output matrix. Thanks to (iii), the matrix C' belongs to $2^{-c(\ell + d)}Z^{d \times d}$ for some constant c, and each $c'_{i, j}$ may be stored on $O(\ell + d)$ bits. I.e., the matrix C' is balanced. As a consequence, the call to H-LLL costs $O(d^2 + \varepsilon (d + \ell) (d + \ell))$ bit operations (see [20, Th. 4.4]), where τ be the number of switches performed.

Let U be the corresponding unimodular transform (which can be recovered from C' and $C^{(2)}$ by a matrix inversion, costing $O(d^3 (d + \ell) 1 + \varepsilon)$). Lemma 5 and the fact that B' is Ξ_1-reduced (by (i)) ensure that Property 2 of Theorem 2 is satisfied. Also, since C' follows the block-structure defined by the I_k’s (by (ii)), Property (P) may be used to assert that U is $(I_k)_k$-block upper triangular and that its diagonal blocks are unimodular. The coefficients of D are non-decreasing, and they are constant within any I_k. This ensures that $D^{-1} UD$ is integral and that its diagonal blocks are exactly those of U, and thus that $D^{-1} UD$ is unimodular.

Let $C^{(3)} = \sigma \ell E D^{-1} UD = C^{(2)} D$. It remains to show that $C^{(3)}$ is Ξ_2-reduced. Let $R^{(2)}$ (resp. $R^{(3)}$) be the R-factor of $C^{(2)}$ (resp. $C^{(3)}$). Let $\Xi = (\delta, \eta, \theta)$ and $\Xi_2 = (\delta_2, \eta_2, \theta_2)$. If i and j belong to the same I_k, then $|r_{i, j}^{(3)}| \leq \eta r_{i, i}^{(3)} + \theta r_{j, j}^{(3)}$, because this holds for $R^{(2)}$ and $\frac{r_{i, j}^{(3)}}{r_{i, i}^{(3)}} = \frac{r_{i, i}^{(2)}}{r_{i, i}^{(2)}} = \frac{r_{j, j}^{(3)}}{r_{j, j}^{(3)}} = 2^{d_i k}$.

Since $\eta < \eta_2$ and $\theta < \theta_2$, the size-reduction condition for (i, j) is satisfied. Similarly, the Lovász conditions are satisfied inside the I_k’s. They are also satisfied for any $i = i_k - 1$, since $c^{(2)}_{i, k}$ is multiplied by $2^{d_i k} \geq 2^{d_i k - 1}$. It remains to check the size-reduction conditions for (i, j) with $i \in I_k$, $j \in I_{k'}$ and $k' > k$. By reducedness of $C^{(2)}$, we have $|r_{i, j}^{(2)}| \leq \eta r_{i, i}^{(2)} + \theta r_{j, j}^{(2)}$. Since it was the case for R', by Property (P), we have that $r_{i, j}^{(2)} \leq \frac{1}{\nu} r_{j, j}^{(2)}$ (with $\nu = \sqrt{\nu'/2}$), and thus $|r_{i, j}^{(2)}| \leq (\theta + \frac{1}{\nu}) r_{j, j}^{(2)}$. This gives $|r_{i, j}^{(3)}| \leq (\theta + \frac{1}{\nu'}) r_{j, j}^{(3)}$. In order to ensure size-reducedness, it thus suffices to choose ν such that $\theta + \frac{1}{\nu'} \leq \theta_2$. □