
HAL Id: ensl-00531721
https://ens-lyon.hal.science/ensl-00531721

Submitted on 3 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Generation of Fast and Certified Code for
Polynomial Evaluation

Christophe Mouilleron, Guillaume Revy

To cite this version:
Christophe Mouilleron, Guillaume Revy. Automatic Generation of Fast and Certified Code for Poly-
nomial Evaluation. ARITH: Computer Arithmetic, Jul 2011, Tübingen, Germany. pp.233-242,
�10.1109/ARITH.2011.39�. �ensl-00531721�

https://ens-lyon.hal.science/ensl-00531721
https://hal.archives-ouvertes.fr


Automatic Generation of Fast and Certified Code for Polynomial

Evaluation

Christophe Mouilleron1, 2 Guillaume Revy3

1ENS de Lyon 2Université de Lyon 3Université de Perpignan Via Domitia

Laboratoire LIP, École normale supérieure de Lyon — 46 allée d’Italie, 69364 Lyon cedex 07, France

Laboratoire ELIAUS-DALI, Université de Perpignan Via Domitia — 52 avenue Paul Alduy, 66860 Perpignan cedex 9, France

Abstract

Designing an efficient floating-point implementation of a function based on polynomial evaluation

requires being able to find an accurate enough evaluation code, exploiting at most the target architecture

features. This article introduces CGPE, a tool dealing with the generation of fast and certified codes

for the evaluation of bivariate polynomials. First we discuss the issue underlying the evaluation scheme

combinatorics before giving an overview of the CGPE tool. The approach we propose consists in two

steps: the generation of evaluation schemes by using some heuristics so as to quickly find some of low

latency; and the selection that mainly consists in automatically checking their scheduling on the given

target and validating their accuracy. Then, we present on-going development and ideas for possible

improvements of the whole process. Finally, we illustrate the use of CGPE on some examples, and show

how it allows us to generate fast and certified codes in a few seconds and thus to reduce the development

time of libms like FLIP.

Keywords: polynomial evaluation schemes, code generation, automatic accuracy certification, floating-

point implementation.

1 Introduction

The floating-point implementation of a function in software often relies on the evaluation of an accu-

rate enough polynomial that approximates this function on a small interval. In that case, this evaluation

remains usually the most expensive part of the whole implementation, and the key point is to make

it as efficient as possible, while being accurate enough. The development time for such hand-written

implementations may be quite long [15, p.197], tedious and error-prone. Also, a new implementation

has to be designed each time a new target comes out or a new format is required. Hence, it is highly

desirable to automate and certify this process. So today’s challenge is to design methodologies and tools

to help in automatically writing efficient and accurate floating-point function implementations. We can



cite several generators, like FloPoCo1 for hardware or Sollya2 and Metalibm3 for software. The SPIRAL

project4 also aims at generating fast codes (in both hardware and software) for DSP algorithms. Since

the generation process can usually be described as a sequence of very distinct specific tasks, another ap-

proach, embraced by the LEMA project [17], is to develop some language, expressive enough to cover

all the process, as well as a library with support for many external dedicated tools, thus enabling to

design easily an appropriate toolchain. Finally, one could also start from some existing code and try to

improve it. For instance, [18] discusses code transformation for increasing the numerical accuracy of

a floating-point computation, and [19] extends it to minimize the number of bits needed for the integer

part in a computation with fixed-point arithmetic.

This work takes mainly part in the context of the development of the library FLIP,5 a floating-point

operator library optimized for the ST231, a 4-issue 32-bit VLIW integer processor, and where some

operators are implemented using fast as well as accurate enough polynomial evaluation, for ensuring

correct rounding of the underlying implementation, in the sense of the IEEE 754-2008 standard [9, § 2.1].

Therefore, the main goal of the tool presented here, called CGPE (for Code Generation for Polynomial

Evaluation), is to automate the design of fast and certified code for the evaluation of polynomial in fixed-

point arithmetic. Hence, unlike what is done within the SPIRAL project for example, we do not focus on

the algorithm speed only, but also on their accuracy, by adding a systematic certified numerical analysis

phase to the generation process.

The motivation for such tools is first to speed up both polynomial evaluation codes and their design,

and provide certificates on their speed and numerical accuracy. Also, it would make possible to explore

quickly a significant part of the space of the evaluation schemes, to study compromises between speed

and accuracy for various targets, as in [14].

The main contributions of this work are first an algorithm for generating all the possible schemes

for evaluating bivariate polynomials using only additions and multiplications, second some heuristics to

speed up the search for some schemes reducing evaluation latency on unbounded parallelism, and third

a set of filters for selecting schemes satisfying some given criteria: speed on the target architecture and

numerical accuracy.

This article is organized as follows. After some background on polynomial evaluation and its com-

binatorics in Section 2, the software tool CGPE is presented in Section 3, and some improvements are

discussed in Section 4. Then, some experimental results are reported in Section 5, before concluding in

Section 6.

2 Background

In the 60’s, multiplication being much slower than addition [12], some evaluation schemes have been

built, for reducing the number of involved multiplications. We can cite, for example, Knuth and Eve [4,

13] or Paterson and Stockmeyer [24] algorithms. These methods are based on the precomputation of

new coefficients done once before all the evaluations. Nevertheless, they remain ill-adapted for our

context (fixed-point arithmetic), since we may lose too much accuracy during the precomputation phase.

1
See http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/.

2
See http://sollya.gforge.inria.fr/ and [15].

3
See http://lipforge.ens-lyon.fr/www/metalibm/.

4
See http://www.spiral.net/ and [26].

5
See http://flip.gforge.inria.fr/ and [11].



So, hereafter, let us focus on methods based on parenthesization modifications. Even in that framework,

various schemes may be used for evaluating polynomials. This section is organized as follows. First,

in Section 2.1, we recall some classical schemes for evaluating univariate polynomials, that can be

extended to bivariate polynomials. Then, in Section 2.2, we formally define what we call evaluation

scheme, before giving some elements on the combinatorics of such schemes in Section 2.3.

2.1 Classical evaluation schemes

Let a(x) be a univariate degree-n polynomial. The evaluation of a(x) requires exactly n additions,

whatever the scheme in use. Hence, in the following of this section, we focus on the number of required

multiplications. Let us now present some classical evaluation schemes.

+

a0 +

×

a1 x

+

×

a2 ×

x x

×

a3 ×

x ×

x x

(a) Dot-product rule.

+

a0 ×

x +

a1 ×

x +

a2 ×

x a3

(b) Horner’s rule.

+

+

a0 ×

×

x x

a2

×

x +

a1 ×

×

x x

a3

(c) Second-order Horner’s

rule.

+

+

a0 ×

x a1

×

×

x x

+

a2 ×

x a3

(d) Estrin’s rule.

Figure 1. Classical rules for degree-3 univariate polynomial evaluation.

Dot-product rule. One of the most naive ways for evaluating a(x) consists in computing each power xi,

evaluating each monomial ai ·xi, and adding all these terms with n additions. This first scheme is shown

in Figure 1(a) for n = 3. Even if an efficient way is used for computing the xi’s, this would require

exactly 2n− 1 multiplications, and would be inefficient for implementing fast polynomial evaluation.

Horner’s rule. This is one of the most commonly used schemes for evaluating polynomial in operator

floating-point implementation. Its interest lies in its good numerical stability, especially when x is not

too close to a zero of a(x) [1]. It consists in n multiplications and n additions as shown in Figure 1(b),

and is uniquely optimal in term of the number of multiplications involved [23]. However, this sequen-

tial scheme does not expose any instruction-level parallelism (ILP) and thus gets inefficient as soon as

parallelism is available.



Second-order Horner’s rule. This third rule extends Horner’s rule in order to expose some ILP. It

consists in splitting up a(x) into its odd and even parts, evaluating both parts using Horner’s rule, and

finally combining both intermediate results using a last Horner’s iteration [13, § 4.6.4]. It requires exactly

n+1 multiplications, as shown in Figure 1(c). Remark that it uses at most two ways of the architecture,

and gets inefficient as soon as more parallelism is available.

Estrin’s rule. This last rule is based on the divide-and-conquer paradigm, and consists in splitting

up a(x) into its low and high parts. Then, both parts are evaluated in a recursive way, until getting

degree-1 polynomials, as shown in Figure 1(d). Its implementation tends to expose more ILP than the

previous rules, but to the detriment of an increase of the number of multiplications, since it requires

about n+ log(n+ 1)− 1 multiplications.

All these schemes can be adapted for evaluating bivariate polynomials, as shown in [2, 25] for

Horner’s rule. The problem is now to find some efficient polynomial evaluation schemes, depending

on some architectural constraints, like the number of ways or the nature of the available operators.

2.2 Formal definition of evaluation scheme

Our goal is to evaluate univariate or bivariate polynomials using only additions and multiplications

(eventually replaced with squarings or shift operations, depending on the operands). Thereafter, let us

call expression the mathematical object corresponding to the polynomial a(x, y) to be evaluated. A

subexpression of a(x, y) will then be any mathematical polynomial q(x, y) such that a(x, y) = r(x, y)+
xi · yj · q(x, y) for some polynomial r(x, y) and some integers i, j. Intuitively, the subexpressions are all

the polynomials that may appear when evaluating a(x, y).
By fixing some implicit rules, like precedence of × over + plus left-to-right parenthesization, we

can deduce one parenthesization for a given expression. All the parenthesizations are then obtained by

applying one or more of the following mathematical properties of operators + and ×: commutativity

of + and ×, associativity of + and ×, and distributivity of × over + and factorization. The latter will

be of great use as it is the one responsible for the increase of parallelism. All these parenthesizations

can be represented as ordered binary trees (like the ones in Figure 1), and correspond to various mathe-

matically equivalent ways to perform the evaluation of our initial expression with binary additions and

multiplications.

Computation will be carried out using a standard fixed-point or floating-point arithmetic so that only

commutativity for + and × still holds [21, §2.4]. Hence we define the set of evaluation schemes as

the equivalence classes of the parenthesizations modulo commutativity (i.e. modulo swaps of sons

in our trees). Thus, the set of evaluation schemes represents all the potentially numerically distinct

implementations of a given expression. For instance, for a univariate polynomial of degree 2, we can

find 208 parenthesizations from which we get the 7 following evaluation schemes:

(a0 + (a1 ·x)) + (a2 ·(x·x)) (a0 + (a1 ·x)) + ((a2 ·x)·x))
(a0 + (a2 ·(x·x))) + (a1 ·x) (a0 + ((a2 ·x)·x)) + (a1 ·x)
a0 + ((a1 ·x) + (a2 ·(x·x))) a0 + ((a1 ·x) + ((a2 ·x)·x)))
a0 + (a1 + (a2 ·x))·x

2.3 Combinatorics of evaluation schemes

The number of evaluation schemes has been studied for several classes of arithmetic expressions. The

most complete results have been obtained for the two following cases:



• the sum x1 + · · ·+ xn of n variables, for which the number of evaluation schemes is exactly6

(2n− 3)!! =
n−2
∏

i=1

(2i+ 1),

• the power xn, for which the number of evaluation schemes is the nth Wedderburn-Etherington num-

ber.7 When n tends to infinity, the asymptotic equivalent is

η ξn

n3/2
, with

{

ξ ≈ 2.48325
η ≈ 0.31877

(see [22] or [5, §5.6]).

These two cases are included in our problem of polynomial evaluation. Indeed, one way to evaluate

a univariate polynomial is to proceed like in the dot-product scheme mentioned above: First compute

xi for 2 ≤ i ≤ n, then perform all the multiplications ai · xi. The remaining step can finally be seen

as a sum of n + 1 variables. As both of theses subcases are at least exponential with respect to n, we

could expect a quite huge number of schemes for univariate polynomials, and even worse for the special

bivariate polynomials a(x, y) = α + y · p(x) we are interested in.

We have computed the number of schemes for univariate polynomials8 of degree n, and for special

bivariate polynomials.9 We have found 1304066578 schemes for a univariate degree-6 polynomial, and

122657263474 for a(x, y) when degp! = 5. Therefore, aggressive heuristics will be necessary to tackle

problems with degrees higher than 5.

3 The CGPE tool

This section presents CGPE10 (standing for Code Generation for Polynomial Evaluation), the tool

we have implemented for automatically writing fast and certified C codes for evaluating univariate and

bivariate polynomials in fixed-point arithmetic by using as much as possible the features of the target.

Hereafter, by fast, we mean that reduces the evaluation latency on a given target, while by certified we

mean that we can bound the error entailed by its evaluation.

Given a polynomial, we have seen so far that different evaluation schemes may be used for its eval-

uation, exposing more or less ILP. Recall that we want to compute schemes using only additions and

multiplications (or shifts, on integer architectures), and without precomputing any new coefficients.

Hence it turns out that decreasing the evaluation latency on unbounded parallelism implies increasing

the number of multiplications to expose much more ILP, the number of addition remaining the same.

After a reminder of some related works in Section 3.1, we describe precisely the input and output

of our problem in Section 3.2, before giving a global description of CGPE in Section 3.3. Then, our

heuristics are presented in Sections 3.4 and 3.5.

6
http://www.research.att.com/˜njas/sequences/A001147.

7
http://www.research.att.com/˜njas/sequences/A001190.

8
http://www.research.att.com/˜njas/sequences/A169608.

9
http://www.research.att.com/˜njas/sequences/A173157.

10
Available at http://gforge.inria.fr/projects/cgpe/.



3.1 Related work

Some work has already been done about code generation for function implementation based on poly-

nomial evaluation. For example in [3, 16], the implementation is done using Horner’s rule. We have

already seen that when parallelism is available, we can speed up the evaluation by using a scheme that

exposes more ILP than Horner’s rule. In [7], an approach is presented for generating optimal evaluation

schemes for univariate polynomial on the Itanium R© processor by using only the fma operator ; another

proposal is done in [6] where a brute force approach (inspired from the previous one) is used for gener-

ating polynomial evaluation schemes using at best SIMD instructions, for the implementation of faster

mathematical functions for the PlayStation R©2.

In our context, we have only addition and multiplication, and no fma. Also, brute force method may

not be well adapted since, in the long term, our goal is to generate schemes at compile-time: we cannot

generate all the evaluation schemes and choose the one we want to keep according to the parameters,

especially for high degree bivariate polynomial. Hence, we need some heuristics for getting rid of “bad”

schemes as soon as possible during the generation.

3.2 Statement of our problem

Let us now detail the input and output of CGPE, as well as the architectural constraints to be consid-

ered.

Input of CGPE. CGPE takes as input a polynomial given by its support, that is, the list of its non-

zero coefficients. For each coefficient, the user may provide a value, a fixed-point format and some

information like being a power of 2, so that a multiplication by this coefficient on integer arithmetic can

be replaced with a shift operation (usually less expensive). The user may also give an interval of values

for each variable.

This work has been highly guided by the implementation of the library FLIP on the ST231, where

some operator implementations are based on the evaluation of special bivariate polynomials. In this

context, the actual value of one of the two variables is obtained a few cycles after the other [10]. This

delay can also be given to CGPE.

Finally, CGPE takes a set of criteria to be achieved, like a maximum error bound for the evaluation,

or a bound on latency (one can asks for the lowest latency as well).

Architectural constraints. For tuning the program to be efficient on a given target, CGPE has to

know some architectural features, like the cost of each operators or the degree of parallelism (number

of available issues). Our experiments have been done on the ST231, a 4-issue 32-bit VLIW integer

processor, with only two 32 × 32 → 32-bit multipliers. All the operations (addition, subtraction, and

shift) have a latency of 1 cycle, but the multiplication, which has a latency of 3 cycles.

Output of CGPE. At the end of the process, CGPE produces a set of C codes that implement the

evaluation of the given polynomial on the given architecture, and whose latency on this target satisfies

the latency constraint. Also, CGPE attaches an accuracy certificate to each C code, which ensures that

the evaluation error entailed by the program is less than the given maximum error bound.



3.3 Global architecture of CGPE

Code generation process using CGPE works in two steps. Its general architecture is shown in Fig-

ure 2(a). First, it computes a set of evaluation schemes for the polynomial given in input, and then

it checks each schemes in order to keep only the ones satisfying both speed and accuracy constraints.

We have seen so far that schemes can be represented with trees. Actually, CGPE manipulates DAGs

(Directed Acyclic Graphs) for representing the computed evaluation schemes. This is mainly motivated

by the fact that common subexpressions are thus not duplicated. Moreover, we do not need an explicit

phase of common subexpression elimination before any treatment (like error bound computation). In-

deed, during the depth-first traversal of a DAG, we can easily detect whether an operation has already

been processed or not. In the following of this section, we briefly describe the two steps.

Computation of DAGs. At this point, we assume unbounded parallelism and consider only the costs of

each available operator for being able to compute the latency of each DAG on unbounded parallelism.

The algorithm we have implemented in CGPE, detailed in [28, §6.1], works as an iterative process

that computes DAGs in a bottom-to-top way, starting with the coefficients and variables. At iteration

i, it computes all the evaluation schemes for all the subexpressions of total degree i from those of

subexpressions of degree less than i. Since the number of such DAGs is getting huge as soon as n ≥ 6,

we have implemented some heuristics, detailed in Section 3.4, to reduce the number of produced DAGs.

DAG selection. At this second point, we take into account all the characteristics of our problem that have

been neglected during the first step, that is, bounded parallelism (depending on the parallelism available

on the target architecture) and the behavior of each available operators (mainly for computing error

bounds). In this step, we perform a succession of tests on each generated DAG in order to determine

those which really are solution of our problem. These tests are presented in Section 3.5.

3.4 Heuristics in DAG set computation

As seen in Section 2.3, the number of evaluation schemes grows extremely fast with respect to the

total degree n, so that exhaustive search cannot be performed as soon as n ≥ 6. Therefore, we have

implemented two heuristics to restrict the search space. The first heuristic consists in discarding, as soon

as possible, DAGs that cannot fulfill the latency requirement on unbounded parallelism, while the second

one aims at restricting the search space by considering only some specified subset of all the evaluation

schemes.

Early elimination of DAGs. The goal of the first heuristic is to compute DAGs of low latency on

unbounded parallelism. For doing this, we first compute a target latency, denoted by τ . The key point

is then to decide all along the DAG set computation if the encountered DAGs can be used to evaluate

the input polynomial with a latency at most τ . Thus, intermediate DAGs with a latency on unbounded

parallelism greater than τ are discarded.

If at the end of the computation process we have not found any DAG fulfilling the speed requirement

(on unbounded parallelism), we increase the target latency and restart the computation. Therefore, it

is important to define a target latency as close as possible to the minimal latency: neither smaller to

avoid running the process uselessly, nor larger to get only DAGs of merely optimal latency (at least on

unbounded parallelism). We propose to start with:

τstatic = ⌈log2(dx + dy + 1)⌉ · C× + C+,



computation using heuristics

or

DAG set computation

exhaustive computation

C code
Accuracy

certificate

arithmetic operator choice

numerical accuracy checking

Sorting DAG by increasing latency

and number of multiplications

For each selected DAG

Architectural constraints

DAG selection step

DAG selection step

Polynomial description

Set of criteria

Pre-analysis

(exhaustive modulo heuristics)

DAG generation guided
by the previous pre-analysis

DAG sorting according
to numerical accuracy

schedule checking

schedule checking

(a) Current architecture. (b) Possible improvements.

Figure 2. Architecture of CGPE.

with C+ and C× the addition and multiplication costs respectively. In fact, τstatic corresponds to the best

latency for evaluating a0,0 + adx,dy · xdx · ydy on unbounded parallelism: a complete tree of products

for the right part plus a final addition. Assuming a0,0 6= 0 (it is always the case in our applications),

a0,0+ adx,dy ·xdx · ydy is a subexpression of the polynomial a(x, y) given in input. As we need at least to

evaluate this subexpression in order to evaluate a(x, y), τstatic is a lower bound of the latency for a(x, y).
Moreover, it is very close to the actual latency on unbounded parallelism, since it was chosen to be the

best latency of the critical part of a(x, y) (in terms of number of operations).

When the user provides a delay, meaning that the actual values for x and y are not available at the same

time, τstatic is not so relevant anymore. In this case, we would rather use a dynamically computed target

latency τdynamic, obtained by considering each way to evaluate the subexpression a0,0+adx,dy ·xdx ·ydy and

finding out the best achievable latency on unbounded parallelism. This computation is a special case of

Algorithm 1 presented thereafter in Section 4.1.

Optimized search. The cost for exhaustive DAG set computation is prohibitive, even if we discard

DAGs with too high latency on unbounded parallelism like we did above. The main reason lies in the

fact that a given polynomial has an exponential number of subexpressions with respect to the size of

its support, all of these having to be considered during the DAG set computation. Hence, we have

designed a recursive top-to-bottom procedure whose goal is to select only a specified part of the divide-

and-conquer decompositions of the given polynomial. For instance, if we have a degree-n univariate

polynomial a(x) =
∑n

i=0 ai x
i, we will only consider the evaluations based on a factorization by some

power of x or on a splitting into low and high parts:

a(x)=
(

a0 +1 · · ·+i-1 ai−1 x
i−1

)

+i

(

ai x
i +i+1 · · ·+n an x

n
)

,



with 1 ≤ i ≤ n. This strategy is executed recursively until:

• either we have reached a given recursion depth,

• or the considered polynomial has a support (number of coefficients) no greater than a given parameter.

In these cases, exhaustive search is launched instead of this recursive-based approach. Typical choice

for recursion depth is 2 or 3. As for the parameter limiting the size of the support, it has to be no greater

than 5.

Despite the use of the two heuristics mentioned in this section, the number of schemes may still be

too large, so we have added another parameter indicating the number of DAGs to be kept at each step of

the process. Combined with the two previous heuristics, it allows us to quickly generate DAGs with a

low latency, as we will see in Section 5.

3.5 Filters in the DAG selection step

Now that the DAG set computation step has produced several evaluation schemes, fast on unbounded

parallelism, what remains is to check each and every DAG in order to determine whether the evaluation

can be performed on the target architecture, and whether it is fast and accurate enough.

Arithmetic operator choice. This filter consists in first determining the fixed-point format of each

intermediate variable, and verifying that no comma alignment is required, otherwise it may imply an

increase of the evaluation latency of the considered DAG. Then it computes a certified enclosure of its

evaluation value (denoted value, further in this article), and checks if the scheme represented by the

DAG can be evaluated in fixed-point arithmetic using only intermediate variables of constant sign, so

that we do not have to store any sign bit. The advantage is twofold.

• Assuming the sign is stored in 1 bit, if we multiply two such numbers, the sign will be represented

with 2 bits: at the end of the evaluation these bits “lost” at each iterations may have a significant

impact on the accuracy of the evaluation result.

• To compensate the side effect presented in the first point, we may shift the result of each multiplication

to keep just one bit for representing the sign. But in that case, each multiplication will have a possible

extra cost of 1 cycle (4 instead of 3 cycles on ST231, for example), that may lead to a sizeable growth

of the evaluation latency.

This is mainly done using interval arithmetic rules with MPFI,11 by scanning the DAG from bottom to

top.

Schedule on a simplified model of the target architecture. The second filter consists in checking

if the DAG can be evaluated on the target without any increase of latency compared to the latency

on unbounded parallelism. To do that, we have implemented a scheduler based on the list-scheduling

algorithm with backtracking: at each step, we have a list of operations that can be launched. According to

the parallelism available on the target, the parameters of the problem (delays, . . . ), and the architectural

constraints, we choose some of them and try to carry on the scheduling. If some operations remain

11
See http://gforge.inria.fr/projects/mpfi/ and [27].



after τ cycles, we might have taken a bad branch in the search, thus we go back to the previous state

and choose other operations, that is another branch. This work has been mainly guided by the ST231

architecture, and today, this scheduler is parameterized by the number of issues and multipliers available,

while the strategy for encoding instructions into bundles memains ST231 dependent.

In the worst case, we scan all the possible schedulings, but at the end, we know exactly whether the

DAG can be scheduled or not.

Evaluation error bound checking. It remains now to select the evaluation schemes that satisfy the

criterion of accuracy, that is, those for which the evaluation error is less than a given bound. This

accuracy checking is done using Gappa,12 which allows us to compute a certified evaluation error bound

entailed by the execution of the program. We observe that this step using Gappa may be quite expensive

and may be a bottleneck in the process. Hence, we are currently implementing an approach based on

naive interval arithmetic using MPFI, which is intended to be used during the DAG set computation step

so that it makes this filter useless. This new approach is presented further in Section 4.2.

4 Future development of CGPE

In Section 3, we have introduced the CGPE tool as it is in its current stable version. While this version

already provides a complete framework for generating efficient codes given a polynomial and a set of

criteria (latency and accuracy bounds, architectural constraints), there is still room for improvements.

We are thus currently working on the next version of the tool. This section gives an overview of what we

are planning out, as shown in Figure 2(b): First, we propose to add a new initial step that aims at quickly

identifying a set of subexpressions worth considering during the DAG set computation step. Second, we

aim at incorporating some accuracy checkings within the phase of early elimination of DAGs. Let us

now detail these future improvements.

4.1 Guiding the DAG set computation

As we have seen in Section 3.4, one way to reduce the cost of the DAG set computation step is to

limit the number of generated DAGs. The optimized search introduced before does this by restricting the

number of decompositions considered for subexpressions. We propose here to perform a precomputation

whose purpose is to find out the set of all the subexpressions leading to an optimal final DAG for a

given criterion. Thus, it becomes possible to start the DAG set computation and drop on the fly all the

evaluation schemes that do not belong to the set obtained by this precomputation. While this approach

introduces some extra cost, it has the advantage of isolating optimal schemes with respect to the given

criterion, so that the underlying restriction heavily relies on this criterion instead of being somewhat

arbitrary as before.

Algorithm 1 illustrates this technique with latency on unbounded parallelism as a criterion. It is

a divide-and-conquer function that computes the minimum latency for each subexpression of a(x, y)
recursively, saving at the same time all the decompositions leading to this latency. This way, we can

forget about complete schemes and really focus on the minimum latency itself. Determining which

subexpression will be worth considering during the DAG set computation then consists in looking at

each decomposition stored for a(x, y) in h, marking the two corresponding subexpressions, and going

on recursively.

12
See http://gappa.gforge.inria.fr/ and [20].



Algorithm 1: MinLat

Input: a bivariate polynomial a(x, y).
Data: the costs C+ for + and C× for ×, a table d with the delays for x, y and each ai,j , and a

mapping h where we will store the good decompositions for each subexpression.

Output: minimal latency to evaluate a(x, y)

begin

r ←∞1

if a(x, y) = ai,j or x or y then r ← d[a(x, y)]2

else3

foreach (⋄, p1, p2) such that p1 and p2 are subexpressions of a, and a = p1 ⋄ p2 do4

r1 ←MinLat(p1)5

r2 ←MinLat(p2)6

if C⋄ +max{r1, r2} < r then7

r ← C⋄ +max{r1, r2}8

h[a(x, y)]← {(⋄, p1, p2)}9

else if C⋄ +max{r1, r2} = r then10

h[a(x, y)]← h[a(x, y)] ∪ {(⋄, p1, p2)}11

return r12

end

In practice, we use memoization in order to be efficient, that is, we save the already computed mini-

mum latencies so as to reuse them later if needed. Thus, the cost for Algorithm 1 can be bounded with

the number of subexpressions encountered times the treatment cost for one subexpression. So, if we

start with the polynomial a(x, y) = a0,0 + y · p(x) with degp = n, we will get O(2n) subexpressions

recursively, and finding the latency for one subexpressions cost at most O(2n). The total cost is therefore

O(22n).
As it may still take too much time for some applications, we can use the restriction on the divide-

and-conquer decompositions presented in Section 3.4 in order to speed up this precomputation. When

considering only splitting into low and upper parts, we get O(n3) subexpressions13 and a cost per subex-

pression in O(n), which gives us a O(n4) complexity. Notice that this is polynomial with respect to the

degree n, making this approach slightly scalable.

4.2 Early elimination of DAGs based on accuracy checking

We have seen in Section 3.4 how to use the latency of a DAG in order to decide whether we keep it or

not for the sequel of the DAG set computation step. This early elimination of DAGs, designed to reduce

the number of generated DAGs, was only based on some latency criterion, whereas we also have some

constraints on the accuracy. Moreover, we put a limitation on the number of DAGs associated to each

subexpression, so that we only keep, for subexpressions admitting lots of DAGs, a limited number of

13We have
(

n+2

2

)

= O(n2) ways to get a contiguous support included in the support of a(x, y), and each of them admits

O(n) factorizations.



them. This heuristic allows us to speed up the generation significantly but the choice of the kept DAGs

is mainly arbitrary.

One way to improve this elimination of DAGs lies in using some accuracy measurement to help us

in choosing better DAGs, at least for the accuracy point of view. Therefore, we propose to attach to

each generated DAG a certified enclosure of its evaluation error, denoted by error, in addition to an

interval enclosing its possible values. Let G be such a DAG, with Gℓ and Gr its left and right children.

The evaluation error bound of G can be computed, using interval arithmetic with the library MPFI, as

follows:

• It G is reduced to one node corresponding to a coefficient or a variable, we have error(G) = [0, 0],
since coefficients and variables are exactly representable.

• If G represents an addition of two subexpressions, they have to be in the same fixed-point format.

When it is the case and when value(G) has a constant sign, if no overflow occurs, the addition entails

no error so we define

error(G) = error(Gℓ) + error(Gr).
Otherwise, the current scheme is not suitable in the sense detailed in Section 3.5 for the arithmetic

operator choice, and so we discard it.

• If G represents a multiplication, we first check whether the fixed-point numbers in value(G) can

be stored with f bits for the integer part, where f is the integer part size chosen for the current

subexpression. If not, the current scheme is not suitable and thus discarded. Otherwise, the error

bound is computed as follows:

error(G) = errormul + error(Gℓ) · error(Gr)
+ error(Gℓ) ·mag

{

value(Gr)
}

+ error(Gr) ·mag
{

value(Gℓ)
}

,

where errormul is the error entailed by the multiplication itself, and mag{I} is the magnitude of I
(the maximum between the absolute value of each end-point of I). On the ST231 processor, we have

errormul = [0, 2f−32].
Notice that with this model, having a smaller error bound for Gℓ and/or Gr leads to a better bound for

G. Thus, keeping only the best DAGs with respect to accuracy at each step allows us to optimize the

evaluation error bounds for the DAGs obtained at the end of the process.

If the user provides some maximal error bound, it is then straightforward to select among the final set

of DAGs those satisfying this constraint. Moreover, now that we have these error bounds at the DAG set

computation step, and because they are certified thanks to interval arithmetic, a numerical accuracy filter

in the selection step becomes useless. When no formal proof is required, we can thus avoid the calls to

Gappa, and thus save some time for the whole process.

One can think of other criteria to guide the early elimination of DAGs. For instance, we can adapt

the model introduced above so that it fits with some other architecture. We can also sort the current

DAGs with respect to their number of multiplications, and keep only the ones with few multiplications,

which will more likely pass the scheduling filter. Using this criterion is less effective than considering

the accuracy since optimizing the number of multiplications for the evaluation of each subexpression

does not guarantee that we will end up with a scheme with a minimal number of multiplications for



the expression (because of common subexpressions). Nevertheless, this is still quite interesting to try to

decrease the final number of multiplications in order to have DAGs likely to admit a satisfactory schedule

because testing whether a DAG can be scheduled can be costly, especially when the test actually fails

(see Section 5.2 for more details).

5 Application examples

This section presents some experimental examples, and results are discussed. Here, we assume that

the target architecture is the ST231, a 4-issue 32-bit VLIW integer processor. Recall that addition,

subtraction and shift have a latency of 1 cycle, while multiplication costs 3 cycles. Experiments have

been carried out on a laptop ThinkPad Duo Core2 2.53GHz, under GNU/Linux environment.

5.1 Impact of our heuristics when dealing with a small-degree polynomial

Let us consider the implementation of the binary16 square root function, in precision 11 [9, Ta-

ble 3.5], optimized for a 32-bit architecture like the ST231 processor. Using [28, Script 3.1], we know

that it may be implemented with a bivariate polynomial approximant P (s, t) = 2−12 + s · a(t), with

s ∈ {1,RN31(
√
2)} and t ∈ [0, 1−2−10], and a(t) a degree-3 univariate polynomial.14 In this example,

s is known 2 cycles after t. Polynomial coefficients are computed using Sollya: a0 = 536914839 · 2−29,

a1 = 1067301943·2−31, a2 = −115190619·2−30, and a3 = 52601099·2−31. To ensure correct rounding,

the evaluation error has to be no greater than 2−12.92.15

Exactly 88384 schemes may be used for evaluating such a polynomial. We have computed with

CGPE all these schemes and checked which ones satisfy the accuracy constraint. This experiment was

handled in about 3h40m. Finally, only 42672 of the 88384 schemes passed the first filter (arithmetic

operator choice), but among these ones, all passed the next two filters, and in particular the numerical

checking. We observe that the fastest program evaluates the polynomial P in 10 cycles by using only 4

multiplications, with an evaluation error of ≈ 2−28.73.

Then, we run CGPE with our heuristics, asking for lowest latency, keeping 50 schemes at each step of

the computation, and bounding the recursion depth to 2 levels. This second experiment was handled in

about 10s. At the end of the process, the 41 computed schemes that passed the first filter were all accurate

enough for ensuring correct rounding. Among these 41 schemes, the fastest one evaluates the polynomial

P in 10 cycles by using only 6 multiplications, and with an evaluation error of≈ 2−28.73. This generated

program is presented in Listing 1, where T = t ·232, S = s ·231, and mul(A,B) = ⌊A ·B/232⌋. Remark

that if we keep only 5 schemes at each step, we obtain 5 schemes at the end of the process, in about 1s.

Moreover, the best one still evaluates P in 10 cycles, using only 6 multiplications, and with an evaluation

error of ≈ 2−28.73.

These experiments show the impact of our heuristics. In particular, we observe that they allow us to

reduce significantly the generation cost, while the generated programs remain as fast as the “best” one,

and still accurate enough.

14Here RNk(X) denotes the RoundTieToEven of X in precision k.
15Certified evaluation error bound computed with Sollya:

87403536213963961648795024419639755× 2−129.



// a0 = +0x8002ae5cp-31, a1 = +0x3f9dbc37p-31

// a2 = -0x0dbb56b6p-31, a3 = +0x0322a10bp-31

// Input formats: T -> 0.32 and S -> 1.31

uint32_t binary16sqrt(uint32_t T, uint32_t S)

{ // Formats

uint32_t r0 = mul(T, 0x3f9dbc37); // 1.31

uint32_t r1 = 0x8002ae5c + r0; // 1.31

uint32_t r2 = mul(S, r1); // 2.30

uint32_t r3 = 0x00040000 + r2; // 2.30

uint32_t r4 = mul(T, T); // 0.32

uint32_t r5 = mul(S, r4); // 1.31

uint32_t r6 = mul(T, 0x0322a10b); // 1.31

uint32_t r7 = 0x0dbb56b6 - r6; // 1.31

uint32_t r8 = mul(r5, r7); // 2.30

uint32_t r9 = r3 - r8; // 2.30

return r9;

}

Listing 1. Generated evaluation program.

x1/2 x−1/2 x1/3 x−1/3 log2(1 + x) 1√
1+t2

exp(1+x)
1+x

sin(1+x)
1+x

+ 1 exp(cos(1 + x))

Degree (8,1) (9,1) (8,1) (9,1) (6,0) (7,0) (10,0) (5,0) (8,0)

Approximation interval {1, 21/2}×[0, 1] {1, 21/3, 22/3}×[0, 1] [0.5, 1] [0, 0.5] [0, 1] [0, 1] [0, 1]

Target / Minimal latency 13 / 13 13 / ? 16 / 16 16 / 16 10 / 11 10 / 11 13 / 13 10 / 10 13 / 13

Achieved latency 13 14 16 16 11 11 13 10 13

Scheme computation 195ms 73ms 26s 25s 17ms 10ms 40ms 1ms 205ms

[50] [50] [50] [50] [50] [50] [50] [50] [50]

Arithmetic operator choice 3ms 3ms 7ms 11ms 1ms 2ms 3ms 1ms 4ms

[35] [29] [30] [26] [2] [12] [27] [8] [16]

Scheduling checking 16s 1m33s 43ms 439ms 2ms 64ms 49s 1ms 91ms

[11] [1] [30] [24] [1] [5] [5] [8] [15]

Certification (Gappa) 10s 1s 27s 27s 230ms 1s 7s 1s 9s

[11] [1] [30] [24] [1] [5] [4] [8] [13]

Total time (≈) 27s 1m35s 55s 53s 1s 2s 57s 1s 9s

Table 1. Timings for certified code generation for some functions.



5.2 Timings for each step

Let us now observe the time spent in each phases of the generation. For doing this, we have considered

the implementation of various functions. For each of them, we have computed a polynomial approximant

and a certified evaluation error bound using Sollya and the framework presented in [28, § 6.4]. Finally,

using CGPE, we have generated some evaluation programs. At each step of the generation, we have

kept only 50 schemes. As shown in Table 1, the approach we have presented in this article allows us to

quickly generate fast and certified programs for implementing various functions. Numbers in brackets

represent how many schemes we got at each step.

The two most expensive steps are the scheduling and the certification with Gappa. For the reciprocal

square root (x−1/2), the 50 computed schemes have a latency of 13 cycles, but none of them can be

scheduled in 13 cycles. Actually, our scheduler tries to schedule each DAG in 13 cycles first, before

finding a schedule in 14 cycles in a second step: roughly, it does two steps of scheduling. Therefore, in

this case, the time spent in scheduling is much longer.

Concerning the certification, it consists in an external call to Gappa, that uses interval arithmetic as

well as rewriting rules and theorems to provide tighter bounds than naive interval arithmetic. However,

when Gappa checks if the evaluation error is less than a given bound, it may perform some bisections on

the intervals enclosing the values of the variables. That is why it can be more costly than MPFI, which

only provides an enclosure. Consequently, it explains our interest in implementing the certification

step using MPFI, especially since, in our context, accuracy constraints are not so restrictive: there exists

enough DAGs for which we can prove that they are accurate enough using only naive interval arithmetic.

One can see the impact of the three filters by looking at the example of exp (cos (1 + x)). It clearly

shows that each filter removes successively various invalid schemes.

The last remark concerns the optimality in terms of evaluation latency of some computed evaluation

programs. Indeed, let us consider the example of the square root function x1/2. The computed programs

have a latency of 13 cycles. But the target latency is also of 13 cycles, which means that no scheme has a

latency less than 13 cycles. Hence, it implies that the these computed evaluation programs have optimal

evaluation latency. The same conclusion holds for various other functions.

6 Conclusions

In this paper, we have introduced CGPE, a tool dedicated to the automatic generation of fast and

certified C code for bivariate polynomial evaluation in fixed-point arithmetic. The underlying problem

lies in the number of evaluation schemes being too large even for small degrees. Hence the efficiency of

this tool relies on the heuristics we have implemented to reduce the combinatorics, and thus to speed up

significantly the whole process.

CGPE has been mainly validated within the development of FLIP, a libm optimized for the ST231,

a 4-issue 32-bit VLIW integer processor. We estimate that today it helps us to automate the design of

about 50 % of this library. It remains now to validate the generated codes for other kinds of architectures.

We are currently implementing some new heuristics, that should reduce the running time of CGPE.

In addition to these first improvements, various directions could be explored. The first one would be

to extend this work for generating programs for evaluating polynomials in floating-point arithmetic.

This would just consist in modifying the arithmetic model in use for the computation of interval ranges

and error bounds. A second direction would be to handle other kinds of polynomials, given in other



representations than the monomial basis (Newton, orthogonal bases, factored form, Knuth and Eve, or

Paterson and Stockmeyer). Indeed, in some contexts and on some architectures, such polynomials may

be accurate enough, and their implementation much faster. More generally, it is interesting to aim at

generating efficient codes for evaluating some other kinds of expressions. For instance, we may want

to cover polynomials of matricesnn so as to automatically find non-trivial fast schemes such as the one

presented in [8, p. 244].

Finally, CGPE enables to solve one specific problem that usually occurs at the end of a toolchain for

code generation of mathematical functions. Adding some support for our tool in a library like the one

coming alongside the language LEMA would increase its potential. On the other side, we would benefit

from the LEMA script language and thus improve the scripts we currently use to get the polynomial

coefficients and the error bound we give as an input to CGPE.

References

[1] S. Boldo. Preuves formelles en arithmétiques à virgule flottante. PhD thesis, ÉNS Lyon, November 2004.

[2] M. Ceberio and V. Kreinovich. Greedy algorithms for optimizing multivariate Horner schemes. SIGSAM

Bulletin, 38(1):8–15, 2004.

[3] R. C. C. Cheung, D.-U. Lee, O. Mencer, W. Luk, and P. Y. K. Cheung. Automating custom-precision function

evaluation for embedded processors. In CASES ’05: Proceedings of the 2005 international conference on

Compilers, architectures and synthesis for embedded systems, pages 22–31, New York, NY, USA, 2005.

ACM.

[4] J. Eve. The evaluation of polynomials. Numerische Mathematik, (6):17–21, 1964.

[5] S. R. Finch. Mathematical Constants. Cambridge University press, 1994.

[6] R. Green. Faster Math Functions. Tutorial at Game Developers Conference, 2002.

[7] J. Harrison, T. Kubaska, S. Story, and P. Tang. The computation of transcendental functions on the IA-64

architecture. Intel Technology Journal, 1999-Q4:1–7, 1999.

[8] N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, USA, 2008.

[9] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. Aug. 2008.

[10] C.-P. Jeannerod, H. Knochel, C. Monat, and G. Revy. Computing floating-point square roots via bivariate

polynomial evaluation. Technical Report RR2008-38, LIP, 2008.

[11] C.-P. Jeannerod, C. Mouilleron, J.-M. Muller, G. Revy, C. Bertin, J. Jourdan-Lu, H. Knochel, and C. Monat.

Techniques and tools for implementing IEEE 754 floating-point arithmetic on VLIW integer processors. In

Proc. of the 4th International Workshop on Parallel and Symbolic Comp. (PASCO ’10), pages 1–9, New

York, NY, USA, 2010. ACM.

[12] D. E. Knuth. Evaluation of polynomials by computers. Communications of the ACM, 5(12):595–599, 1962.

[13] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley,

Third edition, 1998.

[14] P. Langlois, M. Martel, and L. Thévenoux. Accuracy versus time: a case study with summation algorithms.

In Proc. of the 4th International Workshop on Parallel and Symbolic Computation (PASCO ’10), pages

121–130, New York, NY, USA, 2010. ACM.

[15] C. Lauter. Arrondi correct de fonctions mathématiques - fonctions univariées et bivariées, certification et

automatisation. PhD thesis, Univ. de Lyon - ÉNS Lyon, Oct. 2008.

[16] D.-U. Lee and J. D. Villasenor. Optimized Custom Precision Function Evaluation for Embedded Processors.

IEEE Transactions on Computers, 58(1):46–59, 2009.

[17] V. Lefévre, P. Théveny, F. de Dinechin, C.-P. Jeannerod, C. Mouilleron, D. Pfannholzer, and N. Revol.

LEMA: towards a language for reliable arithmetic. SIGSAM Bull., 44(1/2):41–52, 2010.



[18] M. Martel. Enhancing the Implementation of Mathematical Formulas for Fixed-Point and Floating-Point

Arithmetics. In Journal of Formal Methods in System Design, volume 35, pages 265–278. Springer, 2009.

[19] M. Martel. Program transformation for numerical precision. In PEPM’09. ACM Press, 2009.

[20] G. Melquiond. De l’arithmétique d’intervalles à la certification de programmes. PhD thesis, ÉNS Lyon,

Nov. 2006.

[21] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé,

and S. Torres. Handbook of Floating-Point Arithmetic. Birkhäuser Boston, 2010.

[22] R. Otter. The number of trees. The Annals of Mathematics, 49(3):pp. 583–599, 1948.

[23] V. Y. Pan. Methods of Computing Values of Polynomials. Russian Mathematical Surveys, 21(1):105–136,

1966.

[24] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary to evalutate

polynomials. SIAM Journal on Computing, 2(1):60–66, 1973.

[25] J. M. Peña and T. Sauer. On the multivariate Horner scheme. SIAM Journal on Num. Analysis, 37(4):1186–

1197, 2000.

[26] M. Püschel, F. Franchetti, and Y. Voronenko. Encyclopedia of Parallel Computing, chapter Spiral. Springer,

2011.

[27] N. Revol and F. Rouillier. Motivations for an arbitrary precision interval arithmetic and the MPFI library.

Reliable Computing, 11(4):275–290, 2005.

[28] G. Revy. Implementation of binary floating-point arithmetic on embedded integer processors - Polynomial

evaluation-based algorithms and certified code generation. PhD thesis, Univ. de Lyon - ÉNS Lyon, Dec

2009.


