X. Chang and C. C. Paige, Componentwise perturbation analyses for the QR factorization, Numerische Mathematik, vol.88, issue.2, pp.319-345, 2001.
DOI : 10.1007/PL00005447

X. Chang, C. C. Paige, and G. W. Stewart, Perturbation Analyses for the QR Factorization, SIAM Journal on Matrix Analysis and Applications, vol.18, issue.3, pp.775-791, 1997.
DOI : 10.1137/S0895479896297720

X. Chang and D. Stehlé, Rigorous Perturbation Bounds of Some Matrix Factorizations, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.5, pp.31-2841, 2010.
DOI : 10.1137/090778535

URL : https://hal.archives-ouvertes.fr/hal-00546885

H. Cohen, A course in computational algebraic number theory, 1995.
DOI : 10.1007/978-3-662-02945-9

U. Fincke and M. Pohst, A procedure for determining algebraic integers of given norm, Proceedings of EUROCAL, pp.194-202, 1983.
DOI : 10.1007/3-540-12868-9_103

N. J. Higham, Accuracy and stability of numerical algorithms Accuracy and stability of numerical algorithms, Society for Industrial and Applied Mathematics, issue.8, 1996.

R. Kannan, Improved algorithms for integer programming and related lattice problems, Proceedings of the fifteenth annual ACM symposium on Theory of computing , STOC '83, pp.99-108, 1983.
DOI : 10.1145/800061.808749

D. Knuth, The analysis of algorithms, Actes du Congrès International des Mathématiciens de 1970, pp.269-274, 1971.

H. Koy and C. P. Schnorr, Segment LLL-Reduction with Floating Point Orthogonalization, Proceedings of the 2001 Cryptography and Lattices Conference (CALC'01), pp.81-96, 2001.
DOI : 10.1007/3-540-44670-2_8

A. K. Lenstra, H. W. Lenstra, J. , and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen, vol.32, issue.4, pp.515-534, 1982.
DOI : 10.1007/BF01457454

L. Lovász, An Algorithmic Theory of Numbers, Graphs and Convexity, CBMS-NSF Regional Conference Series in Applied Mathematics, 1986.
DOI : 10.1137/1.9781611970203

I. Morel, D. Stehlé, G. Villard, and H. , Using Householder inside LLL, Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation (ISSAC'09), pp.271-278, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00550979

W. H. Mow, Maximum likelihood sequence estimation from the lattice viewpoint, [Proceedings] Singapore ICCS/ISITA `92, pp.1591-1600, 1994.
DOI : 10.1109/ICCS.1992.254963

P. Nguyen and D. Stehlé, Floating-Point LLL Revisited, Proceedings of Eurocrypt 2005, Lecture Notes in Computer Science, pp.215-233, 2005.
DOI : 10.1007/11426639_13

URL : https://hal.archives-ouvertes.fr/inria-00000377

P. Nguyen and J. Stern, The Two Faces of Lattices in Cryptology, Proceedings of the 2001 Cryptography and Lattices Conference (CALC'01), pp.146-180, 2001.
DOI : 10.1007/3-540-44670-2_12

A. Novocin, D. Stehlé, and G. Villard, An LLL-reduction algorithm with quasi-linear time complexity, Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC '11
DOI : 10.1145/1993636.1993691

URL : https://hal.archives-ouvertes.fr/ensl-00534899

C. P. Schnorr, A more efficient algorithm for lattice basis reduction, Fast LLL-type lattice reduction Progress on LLL and lattice reduction, pp.47-62, 1988.
DOI : 10.1016/0196-6774(88)90004-1

A. Schönhage and S. Berechnung-von-kettenbruchentwicklungen, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Informatica, vol.1, issue.2, pp.139-144, 1971.
DOI : 10.1007/BF00289520

A. Schönhage and V. Strassen, Fast multiplication of large numbers, Computing, vol.150, issue.3-4, pp.281-292, 1971.
DOI : 10.1007/BF02242355

G. Villard, Certification of the QR factor R and of lattice basis reducedness, Proceedings of the 2007 international symposium on Symbolic and algebraic computation , ISSAC '07, pp.143-150, 2007.
DOI : 10.1145/1277548.1277597

URL : https://hal.archives-ouvertes.fr/hal-00127059

H. Zha, A Componentwise Perturbation Analysis of the $QR$ Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.14, issue.4, pp.1124-1131, 1993.
DOI : 10.1137/0614076