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Abstract—We study the complexity of traversing tree-shaped
workflows whose tasks require large I/O files. Such workflows
typically arise in the multifrontal method of sparse matrix
factorization. We target a classical two-level memory system,
where the main memory is faster but smaller than the sec-
ondary memory. A task in the workflow can be processed
if all its predecessors have been processed, and if its input
and output files fit in the currently available main memory.
The amount of available memory at a given time depends
upon the ordering in which the tasks are executed. What
is the minimum amount of main memory, over all postorder
schemes, or over all possible traversals, that is needed for an
in-core execution? We establish several complexity results that
answer these questions. We propose a new, polynomial time,
exact algorithm which runs faster than a reference algorithm.
Next, we address the setting where the required memory
renders a pure in-core solution unfeasible. In this setting, we
ask the following question: what is the minimum amount of
I/O that must be performed between the main memory and
the secondary memory? We show that this latter problem is
NP-hard, and propose efficient heuristics. All algorithms and
heuristics are thoroughly evaluated on assembly trees arising
in the context of sparse matrix factorizations.

Keywords-Sparse matrix factorization, Multifrontal method,
Assembly tree, Tree traversal, Postorder tree traversal, I/O
minimization.

I. INTRODUCTION

We consider the following memory-aware traversal prob-
lem for rooted trees. The nodes of the tree correspond to
tasks, and the edges correspond to the dependencies among
the tasks. The dependencies are in the form of input and
output files: each node accepts a large file as input, and
produces a set of large files, each of them to be accepted
by a different child node. We are to execute such a set of
tasks on a two-level memory system. The execution scheme
corresponds to a traversal of the tree where visiting a node
translates into reading the associated input file and producing
output files. How one can traverse the tree so as to optimize
memory usage? For convenience we refer to the two-levels
of storage as the main memory and the secondary memory,
and also as in-core and out-of-core. Many combinations such
as cache and RAM, or RAM and disk, or even disk and
tape, lead to the same association of a faster but smaller

storage device together with a larger but slower device.
The difficulty remains the same for all combinations: find
an execution scheme that makes the best use of the main
memory, and minimizes accesses to the secondary memory.

Throughout the paper, we consider out-trees where a
task can be executed only if its parent has already been
executed. However, we show in Section III that all results
equivalently apply to in-trees, where tasks are processed
from the leaves up to the root. Each task (or node) i in
the tree is characterized by the size fi of its input file (data
needed before the execution and received from its parent),
and by the size ni of its execution file.

During execution, non-leaf nodes generate several output
files, one for each child, which can have different sizes. A
task can be processed only in-core; its execution is feasible
only if all its files (input, output, and execution) fit in
currently available memory. More formally, let M be the
size of the main memory, and S the set of files stored in this
memory when the scheduler decides to execute task i. Note
that S must contain the input file of task i. The processing
of task i is possible if we have:

MemReq(i) = fi+ni+
∑

j∈Children(i)

fj ≤M−
∑

j∈S,j 6=i

fj (1)

where MemReq(i) denotes the memory requirement of
task i (and Children(i) its child nodes in the tree). Once i
has been executed, its input file and execution file can be
discarded, and replaced by other files in main memory; the
output files can either be kept in main memory, in order
to execute some child of the task, or they can temporarily
be stored into secondary memory (and retrieved later when
the scheduler decides to execute the corresponding child
of i). The volume of accesses (reads or writes) to secondary
memory is referred to as the I/O volume.

Clearly, the traversal, i.e., the order chosen to execute
the tasks, plays a key role in determining which amount of
main memory and I/O volume are needed for a successful
execution of the whole tree. More precisely, there are two
main problems which the scheduler must address:
MINMEMORY Determine the minimum amount of main

memory that is required to execute the tree without any



access to secondary memory.
MINIO Given the size M of the main memory, determine

the minimum I/O volume that is required to execute the
tree.

Obviously, a necessary condition for the execution to be
successful is that the size M of main memory exceeds the
largest memory requirement over all tasks:

max
i

MemReq(i) ≤M

However, this condition is not sufficient, and a much larger
main memory size may be needed for the MINMEMORY
problem.

The main motivation for this work comes from numerical
linear algebra. Tree workflows (assembly or elimination
trees) arise during the factorization of sparse matrices, and
the huge size of the files involved makes it absolutely neces-
sary to reduce the memory requirement of the factorization.
The trees arising in this context are in-trees (as said before,
and as we will discuss later, there is no difference between
in-trees and out-trees). We build upon two key results from
the literature [1], [2]. Liu [1] discusses how to find the best
traversal for the MINMEMORY problem when the traversal
is required to correspond to a postorder traversal of the tree.
In the follow-up study [2], an exact algorithm is proposed
to solve the MINMEMORY problem, without the postorder
constraint on the traversal.

In this paper, we propose a new exact algorithm called
MinMem for the MINMEMORY problem. The MinMem
algorithm is based upon a novel approach that systematically
explores the tree with a given amount of memory. This ap-
proach is quite different from the techniques used in [2]. Al-
though the worst-case complexity of the proposed MinMem
algorithm is the same as that of Liu’s, i.e., quadratic in the
number of nodes in the tree, it turns out that it is much more
efficient in practice, as demonstrated by our experiments
with elimination trees arising in sparse matrix factorization
(see Section VI for details). We also compare MinMem and
Liu’s algorithms with the best postorder traversal (common
in sparse matrix factorization packages), in terms of both
quality (memory needed) and execution time. We report that
the best postorder traversals result in only a little additional
memory requirement than the optimal one in practice, which
is good news for the current sparse matrix factorization
libraries. However, we show that there exist trees where
postorder based traversals require arbitrarily larger amounts
of main memory than the optimal one.

As for the MINIO problem, we show that it is NP-hard,
both for postorder based and for arbitrary traversals, even for
simple harpoon graphs, while it is polynomial for arbitrary
trees with unit-size files (in which case MINIO reduces to
the I/O pebble game introduced by Hong and Kung [3]).
This shows that introducing files of different sizes does
add a level of difficulty in memory-aware scheduling of

tree workflows. We provide a set of heuristics to solve
the MINIO problem. Our heuristics use various greedy
criteria to select the next node to be scheduled, and those
files to be temporarily written to secondary memory. All
these heuristics are evaluated using assembly trees arising
in sparse matrix factorization methods.

The paper is organized as follows. We start with an
overview of related work in Section II. Then we describe the
framework in Section III. The next three sections constitute
the heart of the paper. We deal with the MINMEMORY
problem in Section IV, presenting complexity results for
postorder traversals and proposing the exact MinMem algo-
rithm. Then we consider the MINIO problem in Section V,
assessing the NP-hardness of this problem, and designing
heuristics. The experimental evaluation of all MINMEMORY
algorithms and MINIO heuristics is conducted in Section VI.
Finally we provide some concluding remarks and hints for
future work in Section VII.

II. BACKGROUND AND RELATED WORK

A. Elimination tree and the multifrontal method

As mentioned above, determining a memory-efficient tree
traversal is very important in sparse numerical linear algebra.
The elimination tree is a graph theoretical model that repre-
sents the storage requirements, and computational dependen-
cies and requirements, in the Cholesky and LU factorization
of sparse matrices. Here we give a brief description of such
trees; we refer to [4] for the first formalization of elimination
trees, and to [5] for an excellent survey on the subject.

There are at least two interpretations of elimination
trees [5]. Among those, the one describing the dependencies
of numerical values among the columns of the Cholesky
factor serves well for our purposes in this paper. Assume that
A is an n×n sparse, symmetric, positive definite matrix with
a lower triangular Cholesky factor L such that A = LLT .
It is known that for i > j, the numerical values of column
i of L depend on column j of L if and only if `ij 6= 0.
Consider building a directed graph on n vertices with edges
representing the column dependencies, i.e., we add an edge
from the vertex vj to the vertex vi whenever the column i
of L depends on the column j. The transitive reduction (if
there is a directed path of length at least two from vj to
vi, then the edge (vj , vi) is discarded) of this graph yields
the elimination tree. Given such a model, it is clear that the
column i of L can only be computed after all the columns
corresponding to the children of vi in the elimination tree.

The multifrontal method of sparse matrix factorization [6],
[7] organizes the computations of sparse factorizations as a
sequence of dense matrix operations using the elimination
tree. The method associates a block 2× 2 matrix with each
node of the elimination tree—the block matrix contains a
diagonal element and the nonzeros in the corresponding
row and column of the matrix currently being eliminated.
The (1, 1)-block of a node can be eliminated (it is called



fully summed) only if all the updates to the corresponding
diagonal entry have been computed. The Schur complement
formed by the elimination of the fully summed variable on
the (2, 2)-block of a node cannot be eliminated until later
in the factorization. This Schur complement is called the
contribution block, and it is passed to the father node for
the assembly operation. Therefore the operations that are at
the heart of the multifrontal method are as follows. The first
one is to assembly the contribution blocks from the children
nodes, and the original entries from the matrix (if we are at
a leaf, there is no contribution block); the second one is to
eliminate the fully summed variable; and the third one is to
compute and send the contribution block to the father. This
leads to an in-tree where the computations proceed from the
leaves to the root.

Since the elimination tree is defined with one variable
(row/column) per node, it only allows one elimination per
node and the (1,1) block would be of order one. Therefore,
there would be insufficient computation at a node for effi-
cient implementation. It is thus advantageous to combine or
amalgamate nodes of the elimination tree. The amalgamation
can be restricted so that two nodes of the elimination tree
are amalgamated only if the corresponding columns of the
L factor have the same structure below the diagonal [6].
As even this technique may not give a large enough (1,1)
block, a threshold based amalgamation strategy can be used
in which the columns to be amalgamated are allowed to have
discrepancies in their patterns [8]. The resulting tree is often
called the assembly tree.

B. Pebble game and its variants

On the more theoretical side, this work builds upon the
many papers that have addressed the pebble game and its
variants. The MINMEMORY problem amounts to revisiting
the I/O pebble game with pebbles of arbitrary sizes that must
be loaded into main memory before firing (executing) the
task. The pioneering work of Sethi and Ullman [9] deals
with a variant of the pebble game that translates into the
simplest instance of MINMEMORY, with fi = 1 and ni = 0
for any task i. The concern in [9] was to minimize the
number of registers that must be used while computing an
arithmetic expression. The problem of determining whether
a general DAG can be executed with a given number of
pebbles has been shown NP-hard by Sethi [10] if no vertex
is pebbled more than once (the general problem allowing
recomputation, that is, re-pebbling a vertex which have
been pebbled before, has been proven PSPACE complete by
Gilbert, Lengauer and Tarjan [11]). However, this problem
has a polynomial complexity for tree-shaped graphs [9].

A variant of the game with two levels of storage has been
introduced by Hong and Kung [3] under the name of I/O
pebble game, which was used to derive lower bounds on I/O
operations and study the trade-off between I/O operation and
main memory size for particular graphs. A comprehensive

summary of results for pebble games can be found in the
book by Savage [12].

In [9], the algorithm proposed by Sethi and Ullman for
processing tree-shaped graphs and minimizing the number
of allocated registers also has a minimum number of store
instructions, which makes it optimal both for memory and
for I/O minimization. It is quite interesting to see that the
classical pebble game problem with trees remains polyno-
mial with files of arbitrary sizes instead of pebbles (this
is the MINMEMORY problem,) while the I/O pebble game
becomes NP-hard (see Theorem 2).

On the application side, there are many variants of MIN-
MEMORY, some of which being discussed in Section III-C.
The execution model summarized by Equation (1) applies
to a large variety of scenarios, including divide-and-conquer
algorithms. For high-degree trees, simultaneously loading
all children files into main memory may be a bottleneck
requirement. While some applications could allow for pro-
cessing the children one after the other, like in map-reduce
problems, other scenarios call for generating all children
data concurrently. Along the same line, a relaxation of the
MINIO problem would allow to write fractions of files into
secondary memory, leading to a divisible version of the
problem. Again, while this may make sense in some cases
(e.g., when the main memory is naturally divided into small
pages, and if it is possible to unload some pages containing
fractions of files), it is not always possible (e.g., when the
main memory is a complex file system).

III. MODELS AND PROBLEMS

A. Application model
The tree workflow T is composed of p nodes, or tasks,

numbered from 1 to p. Nodes in the tree have an input file,
an execution file (or program), and several output files (one
per child). More precisely:
• Each node i has an input file of size fi. If i is not the

root, its input file is produced by its parent parent(i);
if i is the root, its input file can be of size zero, or
contain input from the outside world.

• Each node i in the tree has an execution file of size ni.
• Each non-leaf node i in the tree, when executed,

produces a file of size fj for each j ∈ Children(i).
Here Children(i) denotes the set of the children of i. If
i is a leaf-node, then Children(i) = ∅ and i produces a
file of null size: we then consider that the terminal data
produced by leaves are directly written to the secondary
memory or sent to the outside world, independently
from the I/O mechanism.

The memory requirement MemReq(i) of node i is the total
amount of main memory that is needed to execute node i, as
underlined in Equation (1). After i has been processed, its
input file and program can be discarded, while its output files
can either be kept in main memory (to process the children
of i) or be stored in secondary memory temporarily.



Algorithm 1: Checking an in-core traversal.
Input: tree T with p nodes, available memory M ,

ordering σ of the nodes
Output: whether the traversal is feasible
Ready ← {root}
Mavail ←M − froot
for step = 1 to p do

Let i be the task such that σ(i) = step
if i /∈ Ready , or MemReq(i) > Mavail + fi then

return FAILURE

Mavail ← Mavail + fi −
∑
j∈Children(i) fj

Ready ← Ready \ {i} ∪
⋃
j∈Children(i){j}

return SUCCESS

B. In-core traversals and the MINMEMORY problem

For the MINMEMORY problem, we are given a tree T
with p nodes and an initial amount of memory M . A
traversal is an ordering of the p nodes that specifies at which
step whey are executed. A traversal must obey precedence
constraints (a node is always scheduled after its parent)
and must never exceed the available memory. Algorithm 1
checks if a given traversal is feasible: it computes the mem-
ory Mavail that is available at each step, which corresponds
to the original memory M minus the size of the files of ready
nodes (nodes which are not executed yet, but whose parents
have been processed). A formal definition of a traversal is
given below.

Definition 1 (INCORETRAVERSAL). Given a tree T
and a amount M of available memory, the problem
INCORETRAVERSAL(T ,M) consists in finding a feasible
in-core traversal σ described by a permutation of the nodes
of a tree T such that:

∀i 6= root , σ(parent(i)) < σ(i) (2)

∀i,
∑

σ(j)<σ(i)

 ∑
k∈Children(j)

fk − fj


+ ni +

∑
k∈Children(i)

fk ≤M
(3)

In this definition, Equation (2) accounts for precedence
constraints and Equation (3) deals with memory constraints.
A postorder traversal is a traversal where nodes are visited
according to some top-down postorder ordering of the tree
nodes. Hence, in a postorder traversal, after processing
a vertex i, the whole subtree rooted in i is completely
processed.

Definition 2 (MINMEMORY). Given a tree T , deter-
mine the minimum amount of memory M such that

INCORETRAVERSAL(T ,M) has a solution. MINMEMORY-
POSTORDER is the same problem restricted to postorder
traversals.

C. Model variants

In this section, we discuss three variants of the model.
Bottom-up traversals for in-trees: Let T be an in-tree

with p nodes and M the amount of main memory. As the
tasks have to be executed from the leaves to the root, a task
now has many input files and a single output file. We do
not change the notations and assume that the output file has
size fi (to the parent, instead of from the parent in an out-
tree), and the input files have the size fj for each child j
of i. A valid traversal of such an in-tree should respect the
order of the tasks (from the leaves to the root) and should
satisfy Equation (1) for each task i. Suppose σ(T , p,M)
is a valid traversal of the in-tree T . Then σ̃(T̃ , p,M) is a
valid traversal of the out-tree T̃ where σ̃ denotes the reverse
permutation of σ, defined as σ̃(i) = p − σ(i) + 1 for all i.
This is easy to verify as the reverse permutation guarantees
the order of the tasks for T̃ , and the memory constraint is
satisfied for any task. The relation between a valid traversal
of an in-tree T and the inverted traversal of the out-tree T̃
holds for the other way round too.

Model with replacement: In some variants of the
pebble game, the player is allowed to move a pebble
from one pebbled node to an unpebbled node. Extending
the game to pebbles with non-unit costs, this amounts
to the variant of the model where the memory occupied
by the input file of node i (of size fi) is replaced by
the memory occupied by the output files of node i (of
size

∑
j∈Children(i) fj). The amount of memory needed to

process node i is max(fi,
∑
j∈Children(i) fj) (note that in

the pebble game, there is no cost ni). This variant can be
simulated by our model as follows: given an instance of
the problem with the replacement policy, we add a negative
weight ni = −min(fi,

∑
j∈Children(i) fj) to each node i (an

example is given in Figure 1).

Model with replacement
max(fi,

∑
j∈Children(i) fj) ≤ M

E

1
1 2

1 21 3

G H

A

C DB

E F

⇒

Current model
fi + ni +

∑
j∈Children(i) fj ≤ M

E

1 21 3

1
1 2

-1

G

A

C DB

E F H

-1

0 0 0

0

-2

0

Figure 1. Transformation from the model with replacement.

Liu’s model: In [2], the author introduces a bottom-
up framework modelling sparse matrix LU factorization.



In this framework, the tree T modelling the application is
modified as follows: each original node x of T is expanded
in two nodes x+ and x−. Here x+ represents x during the
processing of a column, x− being x after its processing.
Note that in this model, parameter fx is not used.

The cost nx+ associated to node x+ represents the number
of nonzeros in columns of the matrix L from the subtree of
T rooted in x, that are required during the processing of the
column x in the factorization: in other words the memory
peak associated to node x. Conversely, the cost nx− is the
number of nonzeros in columns of matrix L associated with
the subtree of T rooted in x that are still required after the
processing of x, which is the storage requirement of the
subtree of T rooted in x.

This variant can be simulated in our framework by merg-
ing back each pair of nodes (i+,i−) into node i, with an
input file of size fi = ni− and an extra memory cost during
processing ni = ni+ − ni− −

∑
j−∈Children(i+) nj− . An

example is given in Figure 2.

Liu’s model

c+

3

x−

b− 2

0

f+

2f−

5

g+

2g−

6

b+ 2

d− 3

d+ 5 e+ 2

e−

3 h+ 3

h− 2

1

x+ 1

c−

⇒

Current model

b

e

0

2 3

3 1

2 2

c 0

x -4

2

f 0

g 1 h 1

-4

d 2 1

Figure 2. Reduction for Liu’s model.

D. Out-of-core traversals and the MINIO problem

Out-of-core processing enables solving large problems,
when the size of the data cannot fit into the main memory. In
this case, some temporary data are copied into the secondary
memory, and unloaded from the main memory, so as to leave
room for other computations. Since secondary memory has a
smaller access rate, the usual objective is to limit the volume
of I/O operations.

Defining traversals that perform I/O operations is more
complicated than defining in-core traversals: in addition to
determining the ordering of the nodes (the permutation σ),
at each step we have to identify which files are written into
secondary memory (if necessary). When a task i is scheduled
for execution but its input file was moved to secondary
memory, that file must be read and loaded back into the
main memory before processing task i. Thus, a given file
is written at most once in the main memory. The ordering
of the I/O operations is done via a second function τ , such
that τ(i) is the step when the input file of task i (of size fi)

Algorithm 2: Checking an out-of-core traversal.
Input: tree T with p nodes, available memory M ,

ordering σ of the nodes, ordering τ of the
output transfers to secondary memory

Output: whether the traversal is feasible, and the
amount of I/O

Ready ← {root}
Mavail ←M − froot
IO ← 0
Written ← ∅
for step = 1 to p do

foreach i such that τ(i) = step do
if σ(i) ≥ step then

return FAILURE

Written ←Written ∪ {i}
Mavail ← Mavail + fi
IO ← IO + fi

Let i be the task such that σ(i) = step
if i ∈Written then

Written ←Written \ {i}
Mavail ← Mavail − fi

if i /∈ Ready , or MemReq(i) > Mavail + fi then
return FAILURE

Mavail ← Mavail + fi −
∑
j∈Children(i) fj

Ready ← Ready \ {i} ∪
⋃
j∈Children(i){j}

return (SUCCESS, IO)

should be moved to secondary memory (τ(i) = ∞ means
that this file is never moved to the secondary memory).

Algorithm 2 is used to check whether an out-of-core
traversal is feasible. It makes use of Written , the set of
files that have been moved to secondary memory. Similarly
to the in-core case, Mavail denotes the memory which is
available at a current step, and Ready the set of ready
nodes. The algorithm also computes IO , the total amount
of data transferred from/to main memory. Note that each
data written (once) to the secondary memory is read only
once. At each step, the algorithm checks that the files
written to secondary memory have been produced earlier,
that precedence constraints are satisfied, and that there is
enough memory to process the chosen node. More formally,
a valid out-of-core traversal can be defined as follows.

Definition 3 (OUTOFCORETRAVERSAL). Given a tree T
and a fixed amount of main memory M , the problem
OUTOFCORETRAVERSAL(T ,M) consists in finding an
out-of-core traversal, described by a permutation σ of the
nodes in T (corresponding to the schedule of computations),
and a function τ : {1, . . . , n} → {1, . . . , n} ∪ {∞}



(corresponding to the schedule of I/O operations), such that:

∀i 6= root , σ(parent(i)) < σ(i) (4)
∀i 6= root , σ(parent(i)) < τ(i) (5)
∀i 6= root , if τ(i) <∞ , then τ(i) < σ(i) (6)

∀i,
∑

σ(j)<σ(i)

 ∑
k∈Children(j)

fk − fj


−

∑
τ(j)<σ(i)
σ(j)>σ(i)

fj + ni +
∑

k∈Children(i)

fk ≤M
(7)

Then the amount of data written in secondary memory is
given by

IO =
∑

τ(i) 6=∞

fi

In Equation (7), the term
∑

τ(j)<σ(i)
σ(j)>σ(i)

fj corresponds to

the files that have been written into secondary memory at
step σ(i). We now define the MINIO problem, which asks
for an out-of-core traversal with the minimum amount of
I/O volume.

Definition 4 (MINIO). Given a tree T , and a fixed amount
of main memory M , determine the minimum I/O volume IO
needed by a solution of OUTOFCORETRAVERSAL(T ,M).

IV. THE MINMEMORY PROBLEM

In this section, we present algorithms for the MINMEM-
ORY problem. We first present the best possible postorder
traversal, and show that its performance can be arbitrarily
bad. Then we propose an alternative to the optimal algorithm
introduced by Liu [2].

A. Postorder traversals

Postorder traversals are very natural for the MINMEMORY
problem, and they are widely used in sparse matrix software
like MUMPS [13], [14]. Liu [1] has characterized the best
postorder traversal, leading to a fast but sub-optimal solution
for MINMEMORY. In a nutshell, the best postorder is
obtained by guaranteeing that in the resulting order, the
children of a node are listed in the increasing order of
the memory requirement of their respective subtrees. The
algorithm is called PostOrder . In another study, Liu [2] has
also provided an optimal algorithm for MINMEMORY whose
worst case execution time is O(p2), where p is the number of
tree nodes. The algorithm that finds the best postorder runs
in O(p log(p)) time, which calls for a tradeoff between speed
and performance. But while postorder traversals are widely
used in practice, their efficiency has never been thoroughly
assessed (to the best of our knowledge). We now show that
the best postorder may require arbitrarily more main memory
than the optimal traversal.

Theorem 1. Given any arbitrarily large integer K, there
exist trees for which the best postorder traversal requires at
least K times the amount of main memory needed by the
optimal traversal for MINMEMORY.

M

. . .. . .
M/b M/b

M/bM/b

MM M

ε ε ε ε

. . .

(a) One level.

. . .. . .

M/b M/b M/b

. . .
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(b) Two levels.

Figure 3. First levels of the graph for the proof of Theorem 1. Here b is
the number of children of the nodes with more than one child.

Proof: Consider the harpoon graph with b branches in
Figure 3(a). All branches are identical and all tasks have a
zero length execution file. Any postorder traversal requires
an amount of M + ε+(b− 1)M/b main memory, while the
optimal traversal (which alternates between branches) only
requires Mmin =M + bε. Now replace each leaf by a copy
of the harpoon graph, as shown in Figure 3(b). The value of
Mmin becomes M+ε+(2b−1)ε, while a postorder traversal
requires MPO = M + ε + 2(b − 1)M/b. Replacing the
leaves again with the harpoon graph for L times, postorder
requires MPO = M + ε + L(b − 1)M/b while Mmin =
L(b−1)ε+M+ε. Thus, for any ratio K, there exists L such
that when iterating the process L times, MPO/Mmin > K.

B. The Explore and MinMem algorithms

Liu [2] proposes an algorithm for MINMEMORY which
is optimal among all possible traversals, not only postorder



ones. It is a recursive bottom-up traversal of the tree which,
at each node of the tree, combines the optimal traversals
built for all subtrees. The combination is based on the notion
of Hill-Valley Segments and requires some sophisticated
multi-way merging algorithm, in order to reach the O(p2)
complexity. In this section, we introduce MinMem , another
exact algorithm which proceeds top-down and maintains
the best reachable cut of the tree at each step. While the
worst-case complexity of MinMem is the same as Liu’s
exact algorithm, it runs faster in practical cases resulting
from multifrontal methods (see Section VI). The MinMem
algorithm is based on an advanced tree exploration routine:
the Explore algorithm.

The Explore algorithm requires a tree T , a node i to start
the exploration, and an amount of available memory Mavail .
The last two parameters (Linit and Tr init ) are optional, and
useful to speed-up the algorithm by avoiding the repeated
exploration of some parts of the tree. With these parameters,
the algorithm computes the minimal memory consumption
that can be reached. If the whole tree can be processed, then
the minimal memory is zero. Otherwise, the algorithm stops
before reaching the bottom of the tree, because some parts
of the tree require more memory than what is available. In
this case, the state with minimal memory corresponds to a
cut in the tree: some subtrees are not yet processed, and the
input files of their root nodes are still stored in memory. The
Explore algorithm outputs the cut with minimal memory
occupation, as well as a possible traversal to reach this
state with the provided memory. In the case where the
whole subtree cannot be executed, it also gives the minimum
amount of memory (called memory peak) which is needed
to explore an additional node in the subtree.

When called on a node i, the algorithm first checks if the
current node can be executed. If not, the algorithm stops and
returns the current requirement as memory peak. Otherwise,
it recursively proceeds in its subtree. The optimal cut is
initialized with its children, and iteratively improved. All
the nodes in the cut are explored: if the cut Lj found in the
subtree of a child j has a smaller memory occupation than
the child itself, the cut is updated by removing child j, and
by adding the corresponding cut Lj . When no more nodes
in the cut can be improved (which is easily tested using
their respective memory peak), then the algorithm outputs
the current cut.

The Explore algorithm can be used to check whether a
given tree can be processed using a given memory. If not,
it provides a refined lower bound on the necessary memory.
The MinMem algorithm makes use of this information to
solve the MINMEMORY problem.

To assess the complexity of the MINMEMORY problem,
we consider the moment when each node is first visited
by Explore, that is, for each node i, the first call on
Explore(T, i). There are p such events, which we denote
as F1, . . . , Fp. We observe that between two such events,

Algorithm 3: Explore (T, i,M avail, Linit,Tr init)
Input: tree T , root i of the subtree to explore,

available memory M avail, initial set of nodes
Linit, initial traversal Tr init

Output: 〈Mi, Li,Tr i,M
peak
i 〉, where:

Mi: the minimum memory requirement in the subtree
rooted in i, reachable with memory M ,
Li: set of input files related to Mp,
Tr i: the traversal from node i to L
M peak
i : minimum memory to be able to visit a new node

1 if node i is a leaf and ni + fi ≤M avail then
2 return 〈0, ∅, [i],∞〉
3 if ni + fi +

∑
j∈Children(i) fj > M avail then

4 M peak
i ← ni + fi +

∑
j∈Children(i) fj

5 return 〈∞, ∅, [ ],M peak
i 〉

6 if Linit 6= ∅ then
7 Li ← Linit
8 Tr i ← Tr init
9 else

10 Li ← Children(i)
11 Tr i ← [i]

12 Candidates ← Li
13 while Candidates 6= ∅ do
14 foreach j ∈ Candidates do
15 〈Mj , Lj ,Tr j ,M

peak
j 〉 ←

Explore(T, j,M avail −
∑
k∈Li\{j} fk, ∅, ∅)

/* Process j */
16 if Mj ≤ fj then
17 Li ← Li\{j} ∪ Lj
18 Tr i ← Tr i ⊕ Tr j /* append

traversal Tr j to the end of Tr i
*/

19 Candidates ←{
j ∈ Li such that M avail −

∑
k∈Li\{j} fk ≥M

peak
j

}
20 Mi ←

∑
j∈Li

fj

21 M peak
i ← minj∈Li

(
M peak
j +

∑
k∈Li\{j} fk

)
22 return

〈
Mi, Li,Tr i,M

peak
i

〉

no node is visited more than twice by Explore. Firstly, in
Explore, a subtree is re-visited only if the available memory
is larger than its peak, which induces that a new node will
be visited. Secondly, MinMem asks Explore to re-visit the
whole tree with its peak value, which similarly leads to visit
a new node. Thus, there are at most 2p calls to Explore
between two events Fi and Fi+1. Altogether, the overall
complexity of the algorithm is O(p2).



Algorithm 4: MinMem (T )
Input: tree T
Output: minimum memory M needed to process the

whole tree, traversal Tr
1 M peak ← maxi∈T MemReq(i)/* lower bound */
2 M avail ← 0
3 L← ∅
4 Tr ← [ ]
5 while M peak <∞ do
6 M avail ←M peak

7 〈M,L,Tr ,M peak〉 ←
Explore(T, root ,M avail, L,Tr)

8 return 〈M avail,Tr〉

V. THE MINIO PROBLEM

Contrarily to MINMEMORY, the MINIO problem turns
out to be combinatorial. The difficulty goes beyond finding
the best traversal. Indeed, even when the traversal is given,
it is hard to determine which files should be transferred into
secondary memory at each step.

A. NP-completeness

We prove that the following three variants of the problem
are NP-complete.

Theorem 2. Given a tree T with p nodes, and a fixed
amount of main memory M , consider the following prob-
lems:
(i) given a postorder traversal σ of the tree, determine the
I/O schedule so that the resulting I/O volume is minimized,
(ii) determine the minimum I/O volume needed by any
postorder traversal of the tree,
(iii) determine the minimum I/O volume needed by any
traversal of the tree.
The (decision version of) each problem is NP-complete.

. . .. . .
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Figure 4. Graph corresponding to Inst2 in the proof of Theorem 2.

Note that (iii) is the original MINIO problem. Also note
that the NP-completeness of (i) does not a priori imply that
of (ii), because the optimal postorder traversal could have a
particular structure. The same comment applies for (ii) not
implying (iii).

Proof: We use the same reduction for the three prob-
lems, which clearly all belong to NP. Consider an instance
Inst1 of 2-Partition [15], with n integers {a1, a2, . . . , an}.
The instance Inst2, common for all three problems, consists
in the harpoon graph depicted on Figure 4, with 2n+3 nodes.
We let M = 2S, which is the largest memory requirement
of a node (the root node Tin ). We let the I/O bound be
IO = S/2. The construction of Inst2 is clearly polynomial
in the size of Inst1.

Note that all traversals are postorder traversals. Any
traversal must start with the root Tin . After it has been
processed, 2S units of memory are occupied. In order to
process the rest of the tree, one has two main choices:
• either execute one of the n tasks Ti first, with 1 ≤ i ≤
n. This requires loading the output file of Ti of size S
into main memory, hence to transfer some files whose
total sizes are at least S into secondary memory. This
violates the I/O bound.

• either execute task Tbig first. This requires to load its
output file of size S/2 into main memory, hence to
transfer some files whose total sizes are at least S/2
into secondary memory.

For (ii) and (iii), the reduction from 2-Partition goes as fol-
lows. Suppose first that Inst1 has a solution, with

∑
i∈I ai =∑

i/∈I ai = S/2. Then, after unloading files of size ai with
i ∈ I (thus increasing the available memory by S/2), one
is able to process the entire branch of Tbig up to the root.
This means Inst2 has a solution.

Suppose now that Inst2 has a solution. That means that
some files were unloaded in order to process Tbig . The
amount of memory to free is at least S/2. It is also at most
S/2 so as to meet the bound IO. Therefore, exactly S/2
units of memory were unloaded to be able to host Tbig . If I
is the set of the unloaded files, then

∑
i∈I ai = S/2, which

means that Inst1 has a solution and concludes our proof.
Now for (i), take any ordering of the nodes σ which

executes Tbig just after the root task Tin . The proof is the
same, independently of the rest of the ordering.

B. Heuristics

The NP-completeness of problem (i) in Theorem 2 shows
that it is difficult to select which files to unload to secondary
memory, even when the traversal is given. We introduce six
heuristics that greedily choose such files. In the following, j
denotes the next node to be processed. First, if fj has been
previously unloaded, it must be stored back into main mem-
ory. Then an amount of MemReq(j)− fj of main memory
must be available to execute node j. Let M avail be the cur-
rently available memory. If MemReq(j)− fj ≤M avail, then



node j can be processed without I/O. Otherwise, we have to
unload a volume IOReq(j) = M avail − (MemReq(j)− fj).
In that case, we order the set S = {fi1 , fi2 , . . . , fij} of the
files already produced and still residing in main memory,
so that σ(i1) > σ(i2) > · · · > σ(ij). Hence fi1 is the file
which will be used at the latest iteration in the traversal, and
so on. We greedily select the first files from S according to
various criteria which we describe below.

Last Scheduled Node First (LSNF): We select the first
files from S until their total size is at least IOReq(j). The
rationale is to unload the files that will be used the latest in
the traversal, in order to avoid swapping intermediate files.
This heuristic can easily be shown to be optimal for the
divisible version of MINIO, where fractions of file can be
written from and to secondary memory (see Section II-B.)

First Fit: This heuristic writes out the first file in S
whose size is at least IOReq(j). If no such file exists, the
LSNF strategy is used.

Best Fit: This heuristic writes out the file in S whose
size is the closest of IOReq(j): it chooses ik such that
|IOReq(j) − fik | is minimal. This step is repeated until
enough space has been freed.

First Fill: This heuristic writes out the first file in S
whose size is smaller than IOReq(j). This step is repeated
until enough space has been freed. If not enough space can
be freed, the LSNF strategy is then used. The rationale
here is to avoid unduly writing big files out to secondary
memory, thus significantly increasing I/O volume. Instead
this heuristic tries to ‘’fill‘’ out the required I/O volume
with the first eligible files.

Best Fill: This heuristic writes out the file whose size
is the closest to IOReq(j) among those files in S whose
size is smaller than IOReq(j). This step is repeated until
enough space has been freed. If not enough space can be
freed, the LSNF strategy is then used. The rationale here is
to ‘’fill‘’ out the required I/O volume, but this time with the
best eligible files.

Best K Combination: This last heuristic considers the
first K files in S (we use K = 5 in the experiments) and
selects the best combination, i.e., the subset whose size is the
closest to IOReq(j). This step is then repeated until enough
memory has been freed.

VI. EXPERIMENTS

In this section, we experimentally compare the three
algorithms for MINMEMORY, namely PostOrder (which
finds the best postorder traversal of the tree) and the two
optimal variants Liu (exact algorithm of [2]) and MinMem .
We evaluate the deviation of PostOrder form the optimal
solution, and we study the execution cost of each algorithm.
Next we report on the performance of the heuristics for
MINIO.

A. Setup

Each algorithm has been implemented in highly optimized
C++ versions. The PostOrder and Liu algorithms are
written as iterative codes while MinMem is a recursive
code. Their behavior has been validated on a platform based
on an Intel Xeon 5250 processor. Source code for all the
algorithms, heuristics and experiments is publicly available
at http://graal.ens-lyon.fr/∼mjacquel/minmem.html.

Experiments were conducted within the Matlab environ-
ment for commodity reasons, especially ease of access to
various data sets. We use a generic tool called performance
profiles [16] to assess the proposed algorithms and heuristics.
The main idea behind performance profiles is to use a
cumulative distribution function as the performance metric,
instead of taking averages over all test cases. We investigate
the performance of the algorithms and heuristics in terms of
running times and the quality of the solution (the memory
requirement, or the total I/O volume). For a given metric,
a profile plot shows the fraction of cases where a specific
method gives results which are within some value τ of the
best result reached by all algorithms. Therefore the higher
the fraction, the more preferable the method. For example,
for the runtime metric, a τ value shows the fraction of cases
where the running time of the target algorithm is within τ
of the fastest algorithm shown in the same plot. Similarly,
for the memory requirement metric, a τ value shows the
fraction of cases where the memory requirement of the
target algorithm is within τ of the best result found by any
algorithm shown in the same plot.

B. The Data Set

The data set contains assembly trees of a set of sparse
matrices obtained from the University of Florida Sparse
Matrix Collection (http://www.cise.ufl.edu/research/sparse/
matrices/). The matrices satisfy the following assertions:
square, number of rows is between 2 × 104 and 2 × 105,
the number of nonzeros per row is at least 2.5, and the
number of nonzeros is at most 5×106. At the time of testing
there were 291 matrices satisfying these properties. We use
the symmetrized pattern of the matrices, e.g., the pattern of
|A|+ |A|T +I . We first order the matrices using MeTiS [17]
(through MeshPart toolbox [18]) and amd (available in
Matlab), and then build the corresponding elimination trees
using the symbfact routine of Matlab. We also perform
relaxed node amalgamation on these elimination trees to
create assembly trees. We have created a large set of
instances by allowing 1, 2, 4, and 16 (if n > 1.6 × 105)
relaxed amalgamations per node. We always realize perfect
amalgamations, e.g., when a node is the only child of
its parent and the parent has only one less entry in the
associated column in L, the two nodes are amalgamated.
When the current amalgamated node does not contain more
than the allowed amalgamation per node, we amalgamate
the node with its densest child. At the end we compute the
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Figure 5. Performance profile for comparing the memory requirement
obtained by PostOrder with the optimum values for the assembly trees
for which PostOrder does not find an optimal solution.

Non optimal PostOrder traversals 4.2%
Max. PostOrder to opt. cost ratio 1.18
Avg. PostOrder to opt. cost ratio 1.01
Std. Dev. of PostOrder to opt. cost ratio 0.01

Table I
STATISTICS ON MEMORY COST OF PostOrder FOR ASSEMBLY TREES.

weight of a node as η2+2η(µ−1), where η is the number of
nodes amalgamated, and µ is the number of nonzeros in the
column of L which is associated with the highest node (in
the starting elimination tree). Edge weights are computed as
(µ− 1)2. These numbers correspond respectively to ni and
fi as described in Section III.

C. Results for MINMEMORY

The first objective is to evaluate the performance of
PostOrder in terms of the memory requirement of the
resulting traversal with respect to the optimal value. In
95.8% of the cases, PostOrder is optimal. Only the non-
optimal cases are depicted on Figure 5, PostOrder requiring
up to 18% more memory than the optimal solution. Detailed
statistics are given in Table I. As a conclusion, PostOrder
statistically gives very good results for assembly trees,
except in rare cases where it can require up to 20% more
main memory than the optimal traversal.

The second objective is to compare the running times of
the three algorithms. We observe on Figure 6 that MinMem
is the fastest algorithm in 80% of the cases, and clearly
outperforms Liu .

Altogether, these experiments show that in the context of
sparse matrix assembly trees, PostOrder frequently offers
optimal or near-optimal results. When PostOrder is not
optimal, it is reasonably close to the minimum memory
required to process the tree. Nevertheless, whenever mem-
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Figure 6. Performance profiles for comparing the running time of the
three algorithms for the MINMEMORY problem on the assembly trees.
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Figure 7. Performance profiles for comparing the resulting I/O volume of
the heuristics for the MinMem algorithm on the assembly trees.

ory becomes a key resource, MinMem can compete with
PostOrder in terms of running time, and it always produces
the optimum memory requirement, therefore constituting an
interesting alternative.

D. Results for MINIO

This experiment aims at evaluating the six heuristics intro-
duced in Section V-B for the MINIO problem. Tree traver-
sals are obtained using PostOrder , Liu and MinMem for
the MINMEMORY problem. The available memory ranges
from maxi∈T MemReq(i), to the minimal memory required
for the traversal.

On Figure 7, the performance profile of all heuristics
applied on traversals produced by MinMem is depicted. The
best heuristic is clearly First Fit, which is almost tied by Best
K Combination. Then Best Fill and First Fill provide almost
the same I/O volume, and in turn perform better than Last
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Figure 8. Performance profiles for comparing the resulting I/O volume of
the three algorithms equipped with the First Fit heuristic on the assembly
trees.

Scheduled Node First and Best Fit, which are very close.
As a consequence, because of its good behavior and low
complexity, First Fit represents the best alternative among
the six policies. This conclusion remains true when applying
the heuristics to traversals produced by PostOrder or Liu .

The next experiment aims at characterizing the behavior
of the algorithms designed for MINMEMORY in the context
of out-of-core traversals. The policy used for I/O is First
Fit. The performance profile of every traversal is reported
on Figure 8. The best results are provided by PostOrder .
This experiment also shows that MinMem does not produce
good out-of-core tree traversals, and is outperformed by Liu
which provides better traversals for MINIO. This interesting
result is due to the fact that contrarily to MinMem , Liu
produces long chains of dependent tasks by construction.
These chains reduce the pressure on main memory since
files produced by a task will be consumed soon, thereby
reducing the I/O volume. PostOrder also benefits from this
phenomenon.

E. More on PostOrder Performance

This last experiment comes almost as a digression, be-
cause we do not use assembly trees here. The objective is
to further assess the performance of PostOrder in terms
of the resulting memory requirement. While the theory tells
us that PostOrder can be arbitrarily bad (see Theorem 1),
it turns out that its performance on assembly trees is very
good (see Table I). We wanted to assess the performance
of PostOrder on randomly generated trees. We keep the
structure of every actual assembly tree from the data set
discussed above, and assign random integers ranging from
1 to N/500 to the node weights and from 1 to N for the
edge weights (N denoting the number of tree nodes). This
leads to a comprehensive data set containing more than 3200
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Figure 9. Performance profile for comparing the memory requirement
obtained by PostOrder with the optimum values on the random trees.

Non optimal PostOrder traversals 61%
Max. PostOrder to opt. cost ratio 2.22
Avg. PostOrder to opt. cost ratio 1.12
Std. Dev. of PostOrder to opt. cost ratio 0.13

Table II
STATISTICS ON MEMORY COST OF PostOrder FOR RANDOM TREES.

trees, and allows for a more refined performance evaluation
of PostOrder .

The experiment (see Figure 9) shows that PostOrder
requires more than the minimum memory in 61% of the
cases. In some cases, PostOrder may require more than
twice as much memory as the optimal solution. More details
are given in in Table II. All in all, this experiment shows
that when dealing with general trees, it is mandatory to use
an optimal algorithm if main memory is a scarce resource.

VII. CONCLUSION

We have discussed how to traverse the nodes of a tree-
shaped workflow so as to optimize the memory used in a
two-level memory system. We have investigated two main
problems. In the MINMEMORY problem, the aim is to
minimize the memory requirement, while in the MINIO
problem, the aim is to minimize the I/O volume, given a
limited memory. Our motivating application was the mul-
tifrontal method of sparse matrix factorization in which
elimination (or assembly) trees are used to reorganize the
computations. The MINMEMORY problem corresponds to
the problem of minimizing the memory requirement of an in-
core execution of the multifrontal method, while the MINIO
problem corresponds to the problem of minimizing the I/O
requirement in an out-of-core execution.

For the MINMEMORY problem, we have proposed an ex-
act algorithm which runs faster than the reference alternative
of Liu [2]. The current state of the art software for sparse



matrix factorization finds the best postorder as a solution
to the MINMEMORY problem. This is done both for con-
venience and for the in-core memory requirement. We have
investigated how good this choice is, and concluded that in
most practical cases, the minimum memory requirement due
to a postorder is usually close to the optimal one (in a large
set of instances we have seen at most 18% increase with
respect to the memory minimizing traversal). However, we
also showed that on general trees, the best postorder can
result in memory requirements that are arbitrarily large.

We have shown that the MINIO problem is NP-complete,
as well as some of its variations (for example, we have
shown that finding the postorder traversal that minimizes
the I/O volume is NP-complete). We have designed heuris-
tics for the problem and have performed thorough experi-
mental comparisons. Our experiments are based on highly
optimized versions of three tree traversal algorithms, and
precisely assess the quality of each proposed algorithm and
I/O heuristic. We have shown that our MinMem algorithm
outperforms the running time of Liu’s exact algorithm, but
we have also observed that it was less suited for out-of-core
execution.

With respect to the MINIO problem, there remain several
challenging problems. Future research involves finding a
lower bound for the minimum I/O volume when a fixed
amount of main memory is permitted. This would allow to
help assessing the absolute performance of the heuristics,
rather than only comparing their relative performance. Even
better than a bound, establishing a guarantee on the per-
formance of the heuristics (showing that their achieved I/O
volume always remain within a certain factor of the optimal)
would be a very interesting contribution. Such a result seems
out of reach for general traversals, but there is hope to derive
an approximation algorithm for postorder traversals, which
are simpler to analyze than arbitrary traversals.

More generally, we observe that the development of multi-
core platforms with non-uniform memory access introduces
new levels of hierarchy in the whole memory system, from
distributed caches to shared caches, to main memory, and to
disk. Such platforms call for re-designing the whole compu-
tational chain of sparse matrix factorization, by introducing
memory-aware computational kernels at every level. This
paper is only a small step in this important direction.
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