Smirnov's fermionic observable away from criticality

Abstract : In a recent and celebrated article, Smirnov [Ann. of Math. (2) 172 (2010) 1435–1467] defines an observable for the self-dual random-cluster model with cluster weight q = 2 on the square lattice Z2, and uses it to obtain conformal invariance in the scaling limit. We study this observable away from the self-dual point. From this, we obtain a new derivation of the fact that the self-dual and critical points coincide, which implies that the critical inverse temperature of the Ising model equals 12 log(1 + √ 2). Moreover, we relate the correlation length of the model to the large deviation behavior of a certain massive random walk (thus confirming an observation by Messikh [The surface tension near criticality of the 2d-Ising model (2006) Preprint]), which allows us to compute it explicitly.
Type de document :
Article dans une revue
Annals of Probability, Institute of Mathematical Statistics, 2012, 40 (6), pp.2667 - 2689. 〈10.1214/11-AOP689〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00523497
Contributeur : Vincent Beffara <>
Soumis le : jeudi 25 janvier 2018 - 18:39:41
Dernière modification le : vendredi 26 janvier 2018 - 14:18:06

Fichier

BD:ising.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Vincent Beffara, Hugo Duminil-Copin. Smirnov's fermionic observable away from criticality . Annals of Probability, Institute of Mathematical Statistics, 2012, 40 (6), pp.2667 - 2689. 〈10.1214/11-AOP689〉. 〈ensl-00523497〉

Partager

Métriques

Consultations de la notice

65

Téléchargements de fichiers

5