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Abstract

We introduce from an experimental point of view the main concepts of �uctuation theorems for work,
heat and entropy production in out of equilibrium systems. We will discuss the important difference between
the applications of these concepts to stochastic systems and to a second class of systems (chaotic systems)
where the �uctuations are induced either by chaotic �ows or by �uctuating driving forces. We will mainly
analyze the stochastic systems using the measurements performed in two experiments : a) a harmonic
oscillator driven out of equilibrium by an external force b)a colloidal particle trapped in a time dependent
double well potential. We will rapidly describe some consequences of �uctuation theorems and some useful
applications to the analysis of experimental data. As an example the case of a molecular motor will be
analyzed in some details. Finally we will discuss the problems related to the applications of �uctuation
theorems to chaotic systems.
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1 Introduction

This article is a review of the main experimental applications of Fluctuation Theorems (FTs) and summarizes
the plenary talk given at STATPHYS24. In order to de�ne the main contents let us consider several simple
examples. The simplest and most basic out of equilibrium system is a thermal conductor whose extremities are
connected to two heat baths at different temperatures, as sketched in �g.1. The second law of thermodynamics
imposes that in average the heat �ows from the hot to the cold reservoir (from H to C in �g.1). However the
second law does not say anything about �uctuations and in principle one can observe for a short time a heat
current in the opposite direction. What is the probability of observing these rare events ? As a general rule
when the size of the system decreases the role of �uctuationsincreases. Thus from an experimental point of
view it is reasonable to think that such rare events can be observed in systems that are small. A good candidate
could be for example the thermal conduction in a nanotube whose extremities are connected to two heat baths
[1], exactly in the spirit of �g.1. In reality in this kind of experiments the measure of the mean quantities [1]
is already dif�cult and of course the analysis of �uctuations is even more complicated. However there is an
electrical analogy, shown in �g.1b), of the thermal model of �g.1a). Let us consider an electrical conductor
connected to a potential differenceV = VA � VB and kept at temperatureT by a heat bath . If the mean
current�I = V=R(R being the electrical resistance of the conductor) is of the order of10� 13 A and the injected
power is about100kB T ' 10� 19 J (kB is the Boltzmann constant) then the instantaneous current inside the
resistance has �uctuations whose amplitude is comparable to the mean, as shown in �g.1c). The variance of
these �uctuations is�I 2 ' kB T=(R � 0) where� 0 is the characteristic time constant of the electrical circuit.
In the speci�c case of Fig.1c) the current reverses with respect to the mean value. The probability of having
those negative currents have been studied both theoretically and experimentally in ref. [2, 3] within the context
of �uctuation theorems, that we will present in sec.3.

We discuss a second example where the source of �uctuation isnot the coupling with a thermal bath, as in
the case of the electrical conductor, but it is either a chaotic �ows or a chaotic force produced by the non-linear
interaction of many degrees of freedom of a dissipative system sustained by an external driving. We will refer
to them as chaotic systems. Let us consider a turbulent wind �owing around an object as sketched in �g.2a),b).
The wind exerts a mean forceF0 on the object but the instantaneous force, plotted in �g.2c), is a strongly
�uctuating quantity which presents negative values [4], i.e. the object moves against the wind,�g.2b). In such a
case the mean work done by the wind on the object is about0: J' 1020kB T and obviously thermal �uctuations
do not play any role but so does the chaotic �ow, which produces the �uctuations. Other similar examples can
be found for example in shaken granular media [5, 6], discussed in sec.6.

These examples stress that in the two experiments the electrical conductor and the turbulent wind we may
observe the counterintuitive effect that the instantaneous response of the system is opposite to the mean value,
in other words the system has an instantaneous negative entropy production rate. This effect is induced by
the thermal �uctuations in the �rst case and by the chaotic �ow in the second case. The question that we
want analyze in this article is whether the Fluctuations Theorem (de�ned in section 3) is able to predict the
probability of these rare events in both cases, i.e. for the stochastic and the chaotic systems. We will take an
experimentalist approach and we will use experimental results in order to introduce the main concepts.
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Figure 1: a) Schematic representation of a conductor whose extremities are in contact with two heat baths at
temperatureTH andTC with TH > T C . b) Electrical analogy. A conductor of electrical resistanceR and kept
at a temperatureT is submitted to a potential differenceV = Va � Vb. c) Instantaneous currentI �owing into
the resistance usingR = 10 M
 , T = 300 K and� 0 = 2 ms.

Figure 2: a)and b) Schematic representation of an object suspended by an elastic beam and submitted to the
pressure of a turbulent wind a) average behavior b) rare event. c) Time evolution of the measured instantaneous
force exerted by the turbulent wind on the object. The details of this experiment can be found [4]

The largest part of the article concerns stochastic systemsdescribed by a Langevin dynamics. For chaotic
systems we will mainly discuss the dif�culty of comparing the experimental results with the theoretical pre-
dictions. The article is organized as follows. In section 2 we present the experimental results on the energy
�uctuations measured in a harmonic oscillator driven out ofequilibrium by an external force. In section 3
the experimental results on the harmonic oscillator are used to introduce the property of Fluctuation Theorems
(FTs). In section 4 the non linear case of a Brownian particlecon�ned in a time dependent double well potential
is presented. In section 5 we introduce the applications of the FT, and as a more speci�c example we describe
the measure of the torque of a molecular motor. Finally in section 6 we discuss the chaotic systems and we
conclude in section 7.

2 Work and heat �uctuations in the harmonic oscillator

The choice of discussing the dynamics of the harmonic oscillator is dictated by the fact that it is relevant for
many practical applications such as the measure of the elasticity of nanotubes[7], the dynamics of the tip of an
AFM [8], the MEMS and the thermal rheometer that we developed several years ago to study the rheology of
complex �uids [9, 10].
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Figure 3: a) The torsion pendulum. b) The magnetostatic forcing. c) Picture of the pendulum. d) Cell where
the pendulum is installed.

2.1 The experimental set-up

This device is a very sensitive torsion pendulum as sketchedin �g. 3a). It is composed by a brass wire (length
10 mm, width0:5 mm, thickness50 � m) and a glass mirror with a golden surface, �g.3c). The mirror (length
2 mm, width8 mm, thickness1 mm) is glued in the middle of the brass wire. The elastic torsional stiffness
of the wire isC = 4 :65 � 10� 4 N.m.rad� 1. It is enclosed in a cell, �g.3d), which is �lled by a �uid. We used
either air or a water-glycerol mixture at60%concentration. The system is a harmonic oscillator with resonant
frequencyf o =

p
C=Ie� =(2� ) = ! 0=(2� ) and a relaxation time� � = 2 I e� =� = 1=� . I e� is the total moment

of inertia of the displaced masses (i.e. the mirror and the mass of displaced �uid) [11]. The damping has two
contributions : the viscous damping� of the surrounding �uid and the viscoelasticity of the brasswire.

The angular displacement of the pendulum� is measured by a differential interferometer [12, 13, 14, 15]
which uses the two laser beams re�ected by the mirror �g.3a). The measurement noise is two orders of mag-
nitude smaller than thermal �uctuations of the pendulum.� (t) is acquired with a resolution of24 bits at a
sampling rate of8192Hz, which is about 40 timesf o. We drive the system out-of-equilibrium by forcing it
with an external torqueM by means of a small electric currentJ �owing in a coil glued behind the mirror
(Fig. 3b). The coil is inside a static magnetic �eld. The displacements of the coil and therefore the angular
displacements of the mirror are much smaller than the spatial scale of inhomogeneity of the magnetic �eld. So
the torque is proportional to the injected current :M = A:J ; the slopeA depends on the geometry of the
system. The practical realization of the montage is shown in�gs. 3c), 3d). In equilibrium the variance�� 2

of the thermal �uctuations of� can be obtained from equipartition, i.e.�� =
p

kB T=C ' 2 nrad for our
pendulum, whereT is the temperature of the surrounding �uid.

2.2 The equation of motion

The dynamics of the torsion pendulum can be assimilated to that of a harmonic oscillator damped by the
viscoelasticity of the torsion wire and the viscosity of thesurrounding �uid, whose equation of motion reads in
the temporal domain

I e�
•� +

Z t

�1
G(t � t0) _� (t0)dt0+ C� = M + �; (1)

whereG is the memory kernel and� the thermal noise. In Fourier space (in the frequency range of our interest)
this equation takes the simple form

[� I e� ! 2 + Ĉ] �̂ = M̂ + � ; (2)

wherê� denotes the Fourier transform andĈ = C + i [C00
1 + !C 00

2 ] is the complex frequency-dependent elastic
stiffness of the system.C00

1 andC00
2 are the viscoelastic and viscous components of the damping term.
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Figure 4: Equilibrium: The pendulum inside a glycerol-water mixture with M = 0 . a) Square root of the
power spectral density of� . � directly measured spectrum, black dotted line is the spectrum estimated from the
measure of� and using eq.3 The red dashed and dotted lines show the viscous and viscoelastic component of
the damping respectively. b) Probability density functionof � . The continuous line is a Gaussian �t

2.2.1 Equilibrium

At equilibrium,i.e. M = 0 , the Fluctuation Dissipation Theorem (FDT) gives a relation between the amplitude
of the thermal angular �uctuations of the oscillator and itsresponse function. The response function of the
system�̂ = �̂= M̂ = �̂

A Ĵ
can be measured by applying a torque with a white spectrum. WhenM = 0 , the am-

plitude of the thermal vibrations of the oscillator is related to its response function via the �uctuation-dissipation
theorem (FDT). Therefore, the thermal �uctuation power spectral density (psd) of the torsion pendulum reads
for positive frequencies

hĵ� j
2
i =

4kB T
!

Im �̂ =
4kB T

!
C00

1 + ! C 00
2

[� I e� ! 2 + C]2 + [ C00
1 + ! C 00

2 ]2
: (3)

The brackets are ensemble averages. As an example, the spectrum of � measured in the glycerol-water mixture
is shown in �g.4a). In this case the resonance frequency isf o =

p
C=Ie� =(2� ) = ! 0=(2� ) = 217 Hz and

the relaxation time� � = 2 I e� =� = 1=� = 9 :5 ms The measured spectrum is compared with that obtained
from eq.3 using the measured� . The viscoelastic component at low frequencies correspondto a constant
C00

1 6= 0 . Indeed if ! ! 0 then from eq.3 hĵ� j
2
i / 1=! as seen in �g.4a). Instead ifC00

1 = 0 then for
! ! 0 from eq.3 the spectrum is constant as a function of! . It is important to stress that in the viscoelastic
case the noise� is correlated and the process is not Markovian, whereas in the viscous case the process is
Markovian. Thus by changing the quality of the �uid surrounding the pendulum one can tune the Markovian
nature of the process. In the following we will consider onlythe experiment in the glycerol-water mixture
where the viscoelastic contribution is visible only at verylow frequencies and is therefore negligible. This
allows a more precise comparison with theoretical predictions often obtained for Markovian processes. The
probability density function (pdf) of� , plotted in �g.4b), is a Gaussian.

2.3 Non-equilibrium Steady State (NESS): Sinusoidal forcing

We now consider a periodic forcing of amplitudeM o and frequency! d, i.e. M (t) = M o sin(! dt) [14]-[17].
This is a very common kind of forcing which has been already studied in the case of the �rst order Langevin
equation [18] and of the two level system [19] and in a different context for the second order Langevin equation
[20]. Furthermore this is a very general case because using Fourier transform, any periodical forcing can be
decomposed in a sum of sinusoidal forcing. We explain here the behavior of a single mode. Experiments have
been performed at variousM o and! d. We present here the results for a particular amplitude and frequency:
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M o = 0 :78 pN.m and! d=(2� ) = 64 Hz. This torque is plotted in Fig.5a. The mean of the response to
this torque is sinusoidal, with the same frequency, as can beseen in Fig.5b. The system is clearly in a non-
equilibrium steady state (NESS).

Figure 5: a) Sinusoidal driving torque applied to the oscillator. b) Response of the oscillator to this periodic
forcing (gray line) ; the dark line represents the mean responseh� (t)i .

The work done by the torqueM (t) on a time� n = 2 � n=! d is

Wn = W� = � n =
Z t i + � n

t i

M (t)
d�
dt

dt (4)

As � �uctuates alsoWn is a �uctuating quantity whose probability density function (pdf) is plotted in �g.6a)
for variousn. This plot has interesting features. Speci�cally, work �uctuations are Gaussian for all values of
n andW� takes negative values as long as� n is not too large. The probability of having negative values of
W� decreases when� n is increased. There is a �nite probability of having negative values of the work, in
other words the system may have an instantaneous negative entropy production rate although the average of
the work < W n > is of course positive (< : > stands for ensemble average). In this speci�c example is
< W n > = 0 :04 n(kB T). We now consider the energy balance for the system.

Figure 6: Sinusoidal forcing. a) Pdf ofW� ; n = 7 (� ), n = 15 (� ), n = 25 (� ) andn = 50 (� ). b) Pdf of� U�

2.4 Energy balance

As the �uid is rather viscous we will take into account only the standard viscosity that isC00
1 = 0 andC00

2 = � .
In such a case eq.1 simpli�es

I e�
d2�
dt2 + �

d�
dt

+ C � = M + �; (5)
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where� is the thermal noise, which in this case is delta-correlatedin time: < � (t) � (t0) > = 2 kB T �� (t � t0).
When the system is driven out of equilibrium using a deterministic torque, it receives some work and a

fraction of this energy is dissipated into the heat bath. Multiplying Eq. (5) by _� and integrating betweent i and
t i + � , one obtains a formulation of the �rst law of thermodynamicsbetween the two states at timet i andt i + �
(Eq. (6)). This formulation has been �rst proposed in ref.[21] and used in other theoretical and experimental
works [22, 18]. The change in internal energy� U� of the oscillator over a time� , starting at a timet i , is written
as:

� U� = U(t i + � ) � U(t i ) = W� � Q� (6)

whereW� is the work done on the system over a time� :

W� =
Z t i + �

t i

M (t0)
d�
dt

(t0)dt0 (7)

andQ� is the heat dissipated by the system. The internal energy is the sum of the potential energy and the
kinetic energy :

U(t) =

(
1
2

I e�

�
d�
dt

(t)
� 2

+
1
2

C� (t)2

)

: (8)

The heat transferQ� is deduced from equation (6) ; it has two contributions :

Q� = W� � � U�

=
Z t i + �

t i

�
�

d�
dt

(t0)
� 2

dt0�
Z t i + �

t i

� (t0)
d�
dt

(t0)dt0: (9)

The �rst term corresponds to the viscous dissipation and is always positive, whereas the second term can be
interpreted as the work of the thermal noise which has a �uctuating sign. The second law of thermodynamics
imposeshQ� i to be positive.

Figure 7: Sinusoidal forcing. a) Pdf ofW� b) Pdf ofQ� for variousn: n = 7 (� ), n = 15 (� ), n = 25 (� ) and
n = 50 (� ). The continuous lines in this �gures are not �ts but are analytical predictions obtained from the
Lnagevin dynamics as discussed in sect.3.4

2.5 Heat �uctuations

The dissipated heatQ� can not be directly measured because we have seen that eq.9 contains the work of the
noise (the heat bath) that experimentally is impossible to measure, because� is unknown. HoweverQ� can
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be obtained indirectly from the measure ofW� and� U� , whose pdf measured during the periodic forcing are
exponential for any� , as shown in �g.6b. We �rst do some comments on the average values. The averageof
� U� is obviously vanishing because the time� is a multiple of the period of the forcing. ThereforehWn i and
hQn i are equal.

We rescale the workW� (the heatQ� ) by the average workhW� i (the average heathQ� i ) and de�ne:
w� = W �

hW � i (q� = Q �
hQ � i ). In the present article,x � , respectivelyX � , stands for eitherw� or q� , respectivelyW�

or Q� .
We compare now the pdf ofw� andq� in Fig. 7. The pdfs of heat �uctuationsqn have exponential tails

(Fig. 7b). It is interesting to stress that although the two variables W� andQ� have the same mean values
they have a very different pdf. The pdf ofw� are gaussian whereas those ofq� are exponential. On a �rst
approximation the pdf ofq� are the convolution of a Gaussian (the pdf ofW� ) and exponential (the pdf of
� U� ). In Figs.7 the continuous lines are analytical predictions obtained from the Langevin dynamics with no
adjustable parameter (see sect.3.4).

3 Fluctuation theorem

In the previous section we have seen that bothW� and Q� present negative values,i.e. the second law is
veri�ed only on average but the entropy production can have instantaneously negative values. The probabilities
of getting positive and negative entropy production are quantitatively related in non-equilibrium systems by the
Fluctuation Theorem (FTs).

There are two classes of FTs. TheStationary State Fluctuation Theorem(SSFT) considers a non-equilibrium
steady state. TheTransient Fluctuation Theorem(TFT) describes transient non-equilibrium states where� mea-
sures the time since the system left the equilibrium state. AFluctuation Relation (FR) examines the symmetry
around0 of the probability density function (pdf)p(x � ) of a quantityx � , as de�ned in the previous section. It
compares the probability to have a positive event (x � = + x) versus the probability to have a negative event
(x � = � x). We quantify the FT using a functionS (symmetry function) :

S(x � ) =
kB T
hX � i

ln
�

p(x � = + x)
p(x � = � x)

�
: (10)

TheTransient Fluctuation Theorem(TFT) states that the symmetry function is linear withx � for any values
of the time integration� and the proportionality coef�cient is equal to1 for any value of� .

S(x � ) = x � ; 8x � ; 8�: (11)

Contrary to TFT, theStationary State Fluctuation Theorem(SSFT) holds only in the limit of in�nite time (� ).

lim
� !1

S(x � ) = x � : (12)

In the following we will assume linearity at �nite time� [2, 29] and use the following general expression :

S(x � ) = � x (� ) x � (13)

where for SSFT� x (� ) takes into account the �nite time corrections andlim � !1 � x (� ) = 1 whereas� x (� ) =
1; 8 � for TFT.

However these claims are not universal because they depend on the kind ofx � which is used. Speci�cally we
will see in the next sections that the results are not exactlythe same ifX � is replaced by any one ofW� , Q� and
(T stot;� ), de�ned in sect.3.3. Furthermore the de�nitions given in this section are appropriate for stochastic
systems and in sect.6 we will discuss the differences between stochastic and chaotic systems.
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3.1 Short history of FTs

The �rst numerical evidence of relations of this kind has been given by Evans et al. in ref.[23] whereas the TFT
was proved in ref.[24]. In 1995 Gallavotti and Cohen [25] proved SSFT for dynamical systems although in
such a casex � takes a different meaning that we will discuss in sect.6. The proof of SSFT has been extended to
stochastic dynamics in ref. [2, 26, 27, 28, 29]. Furthermore van Zon and Cohen proved that there is an important
difference between the FTs for the injected power and those for the dissipated power [2, 29]. The SSFT has
been proved also for other quantities such as the dissipation function [30] and the total entropy [31, 32]. Other
theoretical papers studied FT and the reader may �nd a reviewin ref.[33, 34]. Experiments searching for FTs
have been performed in dynamical systems [4, 5, 36], but interpretations are very dif�cult because a quantitative
comparison with theoretical prediction can be doubtful. Other experiments have been performed in stochastic
systems described by a �rst order Langevin equation: a Brownian particle in a moving optical trap [37] and
an out-of-equilibrium electrical circuit [3] in which existing theoretical predictions [2, 29] were veri�ed. Other
experimental tests for FTs have been performed on driven twolevel systems [19] and on colloids [18].

3.2 FTs for Gaussian variables

Let us suppose the the variableX � has a Gaussian distribution of mean< X � > and variance� 2
X �

. It is easy
to show that in order to satisfy FTs, the variableX � must have the following statistical property:

� 2
X �

= 2 kB T < X � > (14)

This is an interesting relation because it imposes that the relative �uctuations ofX � are

� X �

X �
=

r
2 kB T
< X � >

(15)

This means that the probability of having negative events reduces by increasingX � , speci�cally from eq.15
it follows that P(X � < 0) = erfc(

p
< X � > =(2 kBT)) whereerfc is the complementary error function. It

is now possible to estimate the length of the time intervaltobs needed to observe at least one negative event,
which is:

tobs =
�

erfc
� q

< X � >
2 kB T

� (16)

where we used the fact that all the valuesW� computed on different intervals of length� are independent,
which is certainly true if� is larger than the correlation time.

Let us consider the speci�c example of section2.3, i.e. < W � > = 0 :04n(kB T) at ! d=(2 � ) = 67 Hz,
M o = 0 :78 pN.m and� = 2 �n=! d. The pdf ofW� are Gaussian in this case (Fig.6) and, as we will see in the
next section, they satisfy SSFT for large� . Therefore eq.15 holds forX � = W� and we may estimatetobs in
the asymptotic limit� � << � . For example atn = 200, one obtains from the above mentioned experimental
values� ' 3s >> � � and < W � > = 8kB T. Inserting these experimental values in eq.15 one gets roughly
a negative event over an observational timetobs ' 641s, which is already a rather long time for the distance
between two events. For largern and largerM 0 this time becomes exponentially large. This justi�es the fact
that millions of data are necessary in order to have a reliable measure of SSFT.

3.3 FTs for W� and Q� measured in the harmonic oscillator

The questions we ask are whether for �nite time FTs are satis�ed for eitherx � = w� or x � = q� and what are
the �nite time corrections. In a �rst time, we test the correction to the proportionality between the symmetry
functionS(x � ) andx � . In the region where the symmetry function is linear withx � , we de�ne the slope� x (� ),
i.e. S(x � ) = � x (� )x � . In a second time we measure �nite time corrections to the value � x (� ) = 1 which is
the asymptotic value expected from FTs.
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Figure 8: Sinusoidal forcing. Symmetry functions for SSFT.a) Symmetry functionsS(w� ) plotted as a function
of w� for variousn: n = 7 (� ), n = 15 (� ), n = 25 (� ) andn = 50 (� ). For all n the dependence ofS(w� )
on w� is linear, with slope� w(� ). b) Symmetry functionsS(q� ) plotted as a function ofq� for variousn. The
dependence ofS(q� ) on q� is linear only forq� < 1. Continuous lines are is theoretical predictions.

Figure 9: Finite time corrections for SSFT. a) Sinusoidal forcing. � w(� ) as a function of n obtained from
the slopes of the straight lines of Fig.8a) (� ). The circles correspond to another measurement performedat a
different frequency. The �nite time corrections depend on the driving frequency. The slope� q(� ) measured for
q� < 1 (Fig.8b) have exactly the same values ofSw(� ) as a function ofn. b) Linear forcing.� w(� ) measured
as a function of� with the driving torqueM has a linear dependence on time. The �nite time corrections
depend on form of the driving.

In this review article we will focus on the SSFT applied to theexperimental results of sect.2.3and to other
examples. The TFT will be not discussed here and the interested readers may look at ref.[17].

From the pdfs ofw� andq� plotted in Figs.7, we compute the symmetry functions de�ned in eq.10. The
symmetry functionS(wn ) are plotted in Fig.8a) as a function ofwn . They are linear inwn . The slope� w(n)
is not equal to1 for all n but there is a correction at �nite time (Fig.9a). Nevertheless,� w(n) tends to1 for
largen. Thus SSFT is satis�ed forW� and for a sinusoidal forcing. The convergence is very slow and we have
to wait a large number of periods of forcing for the slope to be1 (after30 periods, the slope is still0:9). This
behavior is independent of the amplitude of the forcingM o and consequently of the mean value of the work
hWn i , which, as explained in sec.3.2, changes only the time needed to observe a negative event. The system
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satis�es the SSFT for all forcing frequencies! d but �nite time corrections depend on! d, as can be seen in
Fig. 9a).

We now analyze the pdf ofq� (Fig.7b)) and we compute the symmetry functionsS(qn ) of qn plotted in
Fig. 8b) for different values ofn. They are clearly very different from those ofwn plotted in Fig.8a). For
S(qn ) three different regions appear:

(I) For large �uctuationsqn , S(qn ) equals2. When� tends to in�nity, this region spans fromqn = 3 to
in�nity.

(II) For small �uctuationsqn , S(qn ) is a linear function ofqn . We then de�ne� q(n) as the slope of the
functionS(qn ), i.e. S(qn ) = � q(n) qn . We have measured [17] that � q(n) = � w(n) for all the values ofn, i.e.
�nite time corrections are the same for heat and work. Thus� q(n) tends to1 when� is increased and SSFT
holds in this region II which spans fromqn = 0 up toqn = 1 for large� . This effect has been discussed for the
�rst time in refs.[29, 2].

(III) A smooth connection between the two behaviors.
These regions de�ne the Fluctuation Relation from the heat dissipated by the oscillator. The limit for large

� of the symmetry functionS(q� ) is rather delicate and it has been discussed in ref.[17].
The conclusions of this experimental analysis is that SSFT holds for work for any value ofw� whereas for

heat it holds only forq� < 1. The �nite time correction to FTs, described by1 � � are not universal. They
are the same both forw� andq� but they depend on the driving frequency as shown in Fig.9a). Furthermore
they depend on the kind of driving force. In Fig.9b) we plot� w(� ) measured when the harmonic oscillator is
driven out of equilibrium by a linear ramp1. The difference with respect Fig.9a) is quite evident.

3.4 Comparison with theory

This experimental analysis allows a very precise comparison with theoretical predictions using the Langevin
equation (eq.5) and using two experimental observations: a) the properties of heat bath are not modi�ed by
the driving and b) the �uctuations of theW� are Gaussian (see also [38], where it is shown that in Langevin
dynamicsW� has a Gaussian distribution for any kind of deterministic driving force if the properties of the
bath are not modi�ed by the driving and the potential is harmonic). The observation in point a) is extremely
important because it is always assumed to be true in all the theoretical analysis. In ref.[17] this point has been
precisely checked. Using these experimental observationsone can compute the pdf ofq� and the �nite time
corrections�( � ) to SSFT (see ref.[17]). The continuous lines in Fig.9, Fig.8 and Fig.6 are not �t but analytical
predictions, with no adjustable parameters, derived from the Langevin dynamics of eq.5 (see ref.[17] for more
details).

3.5 The trajectory dependent entropy

In previous sections we have studied the energyW� injected into the system in the time� and the energy
dissipated towards the heat bathQ� . These two quantities and the internal energy are related bythe �rst law of
thermodynamics (eq.9). Following notations of ref [31], we de�ne the entropy variation in the system during a
time � as :

� sm;� =
1
T

Q� : (17)

For thermostated systems, entropy change in medium behaveslike the dissipated heat. The non-equilibrium
Gibbs entropy is :

hs(t)i = � kB

Z
d~xp(~x(t); t; � t ) ln p(~x(t); t; � t ) (18)

where� t denotes the set of control parameters at timet andp(~x(t); t; � t ) is the probability density function
to �nd the particle at a position~x(t) at timet, for the state corresponding to� t . This expression allows the

1The stationarity in the case of a ramp is discussed in ref.[29, 17]
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Figure 10: a) Schematic diagram illustrating the method to compute the trajectory dependent entropy, b) Pdf of
� (t) around the mean trajectory< � (t) > . The continuous line is the equilibrium distribution

de�nition of a ”trajectory-dependent” entropy :

s(t) � � kB ln p(~x(t); t; � t ) (19)

The variation� stot ;� of the total entropystot during a time� is the sum of the entropy change in the system
during� and the variation of the ”trajectory-dependent” entropy ina time� , � s� � s(t + � ) � s(t) :

� stot ;� � stot (t + � ) � stot (t) = � sm;� + � s� (20)

In this section, we study �uctuations of� stot ;� computed using (17) and (19). We will show that� stot ;�

satis�es a SSFT for all� . In ref. [32], the relevance of boundary terms like� s� has been pointed out for
Markovian processes.

We investigate the data of the harmonic oscillator described in sect.2.3.The probability to compute is the
joint probability p(� (t i + � n ); _� (t i + � n); ' ), where' is the starting phase' = t i ! d. The system is linear, so
� (t i + � n ); _� (t i + � n) are independent; thus the joint probability can be factorized into a product. The expression
of the trajectory dependent entropy is :

� s� n = � kB ln

 
p(� (t i + � n); ' ) p( _� (t i + � n ; ' ))

p(� (t i + � n ); ' ) p( _� (t i + � n ; ' )

!

(21)

For computing correctly the trajectory dependent entropy,we have to calculate thep(� (t i ); ' ) andp( _� (t i ); ' )
for each initial phase' (see Fig.10a). These distributions turn out to be independent of' and they correspond to
the equilibrium �uctuations of� and _� around the mean trajectory de�ned byh� (t)i andh_� (t)i . The distribution
of � (t i ) is plotted in Fig.10b), where the continuous line corresponds to the equilibrium distribution. Once the
p(� (t i ; ' ) andp( _� (t i ); ' ) are determined we compute the ”trajectory-dependent” entropy. As �uctuations of�
and _� are independent of' we can average� s� n over' which improves a lot the statistical accuracy. We stress
that it is not equivalent to calculate �rst the pdfs over all values of' — which would correspond here to the
convolution of the pdf of the �uctuations with the pdf of a periodic signal — and then compute the trajectory
dependent entropy. The results are shown in Fig.11.

In Fig. 11a), we recall the main results for the dissipated heatQ� = T� sm;� n . Its average valuehT:� sm;� n i
is linear in � n and equal to the injected work. The pdfs ofT:� sm;� n are not Gaussian and extreme events
have an exponential distribution. The pdf of the ”trajectory-dependent” entropy is plotted in �g.11b); it is
exponential and independent ofn. We superpose to it the pdf of the variation of internal energy divided byT at
equilibrium: the two curves match perfectly within experimental errors, so the ”trajectory-dependent” entropy
can be considered as the entropy exchanged with the thermostat if the system is at equilibrium. The average
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Figure 11: Torsion pendulum. a) pdfs of the normalized entropy variation� sm;� n =h� sm;� n i integrated over
n periods of forcing, withn = 7 (� ), n = 15 (� ), n = 25 (� ) and n = 50 (� ). b) pdfs of � s� n , the
distribution is independent ofn and heren = 7 . Continuous line is the theoretical prediction for equilibrium
entropy exchanged with thermal bath� sm;� n ;eq. c) pdfs of the normalized total entropy� stot ;� n =h� stot ;� n i ,
with n = 7 (� ), n = 15 (� ), n = 25 (� ) andn = 50 (� ). d) Symmetry functions for the normalized entropy
variation in the system (small symbols in light colors andX � stands forT � sm;� n = Q� ) and for the normalized
total entropy (large symbols in dark colors andX � stands forT � stot ;� n ) for the same values ofn.

value of� s� n is zero, so the average value of the total entropy is equal to the average of injected power divided
by T. In Fig. 11c), we plot the pdfs of the normalized total entropy for four typical values of integration time.
We �nd that the pdfs are Gaussian for any time.

The symmetry functions (eq.10) of the dissipated heatS(T� sm;� n = Q� ) and the total entropyS(T� stot ;� n )
are plotted in Fig.11d). As we have already seen in Fig.8, S(Q� ) is a non linear function ofQ� = T � sm;� .
The linear behavior, with a slope that tends to1 for large time, is observed only for for� sm;� n < h� sm;� n i < 1.
For the normalized total entropy, the symmetry functions are linear with� stot ;� n for all values of� stot ;� n and
the slope is equal to1 for all values of� n . Note that it is not exactly the case for the �rst values of� n because
these are the times over which the statistical errors are thelargest and the error in the slope is large.

For the harmonic oscillator we have obtained that the ”trajectory-dependent” entropy can be considered as
the entropy variation in the system in a time� that one would have if the system was at equilibrium. Therefore
the total entropy is the additional entropy due to the presence of the external forcing :this is the part of entropy
which is created by the non-equilibrium stationary process. The total entropy (or excess entropy) satis�es the
Fluctuation Theorem for all times and for all kinds of stationary external torque[31, 32]. More details on this
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problem can be found in ref.[39].

4 The non-linear case: stochastic resonance

Figure 12: a) Drawing of the polystyrene particle trapped bytwo laser beams whose axis distance is about the
radius of the bead. b) Potential felt by the bead trapped by the two laser beams. The barrier height between the
two wells is about2kB T.

The harmonic oscillator cannot be driven to a non linear regime without forcing it to such a high level where
thermal �uctuations become negligible. Thus in order to study the non linear effects we change experiment
and we measure the �uctuations of a Brownian particle trapped in a non-linear potential produced by two
laser beams, as shown in Fig.12. It is very well known that a particle of small radiusR ' 2 � m is trapped
in the focus of a strongly focused laser beam, which producesa harmonic potential for the particle, whose
Brownian motion is con�ned inside this potential well. Whentwo laser beams are focused at a distanceD ' R,
as shown in Fig.12a) the particle has two equilibrium positions, i.e. the fociof the two beams. Thermal
�uctuations may force the particle to move from one to the other. The particle feels an equilibrium potential
U0(x) = ax4 � bx2 � dx, shown in Fig.12b), wherea, b and d are determined by the laser intensity and
by the distance of the two focal points. This potential has been computed from the measured equilibrium
distribution of the particleP(x) / exp(U0(x)) . The right left asymmetry of the potential (Fig.12b) is induced
by small unavoidable asymmetries, induced by the optics focusing the two laser beams. In our experiment the
distance between the two spots is1:45 � m, which produces a trap whose minima are atxmin = � 0:45 � m.
The total intensity of the laser is29 mW on the focal plane which corresponds to an inter-well barrier energy
�U o = 1 :8 kB T, ax4

min = 1 :8 kB T, bx2
min = 3 :6 kB T and djxmin j = 0 :44 kB T (see ref.[40] for more

experimental details). The rate at which the particle jumpsfrom one potentials well to the other is determined
by the Kramer's rater k = 1

� o
exp( � �U o

kB T ) where� o is a characteristic time. In our experimentr k ' 0:3 Hz at
300K.

To drive the system out of equilibrium we periodically modulate the intensity of the two beams at low
frequency. Thus the potential felt by the bead is the following pro�le:

U(x; t ) = U0(x) + Up(x; t ) = U0 + c x sin(2�f t ); (22)

with cjxmin j = 0 :81 kB T. The amplitude of the time dependent perturbation is synchronously acquired with
the bead trajectory.2

2The parameters given here are average parameters since the coef�cients a, b andc, obtained from �tted steady distributions at
given phases, vary with the phase (�a=a � 10%, �b=b � �c=c � 5%).
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Figure 13: a) The perturbed potential att = 1
4f andt = 3

4f . b) Example of trajectory of the glass bead and
the corresponding perturbation atf = 0 :1 Hz. c) Mean injected energy in the system over a single period
as a function of the driving frequency.< W s > � and< W cl > � coincide as their mean values are equal
within experimental errors. The error bars are computed from the standard deviation of the mean over different
runs. Inset: Standard deviations of work distributions over a single period normalized by the average work as a
function of the frequency (same symbols).

An example of the measured potential fort = 1
4f and 3

4f is shown on the Fig.13a). This �gure is obtained
by measuring the probability distribution functionP(x; t ) of x for �xed values ofcsin(2�f t ), it follows that
U(x; t ) = � ln(P(x; t )) .

Thex position of the particle can be described by a Langevin equation:


 _x = �
@U(x; t )

@x
+ �; (23)

with 
 = 1 :61 10� 8 N s m� 1 the friction coef�cient and� the thermal noise delta correlated in in time. When
c 6= 0 the particle can experience a stochastic resonance [41], when the forcing frequency is close to the
Kramer's rate. An example of the sinusoidal force with the corresponding position are shown on the �gure
13b). Since the synchronization is not perfect, sometimes theparticle receives energy from the perturbation,
sometimes the bead moves against the perturbation leading to a negative work on the system. Two kinds of
work can be de�ned in this experiments [40]

Ws;n (t) =
Z t+ t f

t
dt

@U(x; t )
@t

(24)

Wcl;n (t) = �
Z t+ t f

t
dt _x

@Up(x; t )
@x

(25)

(26)

where in this caset f = n
f is a multiple of the forcing period. The workWs;n is the stochastic work (used in

Jarzynsky and Crooks relations [47, 49, 13]) andWcl;n is the classical work that will be discussed in this article.
The results onWs;n are quite similar but there are subtle differences discussed in ref.[40].

We �rst measure the average work received over one period fordifferent frequencies (t f = 1
f in eq. 25).

Each trajectory is here recorded during 3200 s in different consecutive runs, which corresponds to 160 up to
6400 forcing periods, for the range of frequencies explored. In order to increase the statistics we consider
105 different to. The �gure 13c) shows the evolution of the mean work per period for both de�nitions of the
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Figure 14: a) Distribution of classical workWcl for different numbers of periodn = 1 , 2, 4, 8 and12 (f =
0:25 Hz). Inset: Same data in lin-log. b) Normalized symmetry function as function of the normalized work
for n = 1 (+ ), 2 (� ), 4 (� ), 8 (4 ), 12 (� ).

work. First, the input average work decreases to zero when the frequency tends to zero. Indeed, the bead hops
randomly several times between the two wells during the period. Second, in the limit of high frequencies, the
particle has not the time to jump on the other side of the trap but rather stays in the same well during the period,
thus the input energy is again decreasing when increasing frequency. In the intermediate regime, the particle
can almost synchronize with the periodical force and follows the evolution of the potential. The maximum of
injected work is found around the frequencyf � 0:1 Hz, which is comparable with half of the Kramers' rate
of the �xed potentialrK = 0 :3 Hz. This maximum of transferred energy shows that the stochastic resonance
for a Brownian particle is a bona �de resonance, as it was previously shown in experiments using resident time
distributions [42, 43] or directly in simulations [44, 45]. In the inset of Fig.13, we plot the normalized standard
deviation of work distributions (�= hW i ) as a function of the forcing frequency. The curves present aminimum
at the same frequency of 0.1 Hz, in agreement again with the resonance phenomena.

In order to study FT for stochastic resonance we choose for the external driving a frequencyf = 0 :25 Hz,
which ensures a good statistic, by allowing the observationof the system over a suf�cient number of periods.
We compute the works and the dissipation using1:5 106 different t on time series which spans about 7500
period of the driving.

We consider the pdfP(Wcl) which is plotted in (Fig.14a). Notice that for smalln the distributions are
double peaked and very complex. They tend to a gaussian for large n (inset of Fig. 14a). On Fig.14b), we
plot the normalized symmetry function ofWcl;n . We can see that the curves are close to the line of slope one.
For high values of work, the dispersion of the data increasesdue to the lack of events. The slope tends toward
1 as expected by the SSFT. It is remarkable that straight lines are obtained even forn close to 1, where the
distribution presents a very complex and unusual shape (Fig. 14a). We do not discuss here the case ofWs;n as
the behavior is quite similar to that ofWcl;n [40]. The very fast convergency to the asymptotic value of the the
SSFT is quite striking in this example. The measurement are in fully agreement with a realistic model based on
the Fokker Planck equations where the measured values ofU(x; t ) has been inserted [46]. This example shows
the application of FT in a non-linear case where the distributions are strongly non-Gaussian.

5 Applications of Fluctuation Theorems

The Fluctuations Theorems have several important consequences such as the Jarzinsky and Crooks equalities[47,
48, 49], which are useful to compute the free energy difference between two equilibrium states using any kind
of transformation[13, 15, 51, 50]. The Hatano-Sasa[22] relations and the recently derived Fluctaution Dissipa-
tion Theorems[52] are related to FTs and are useful to compute the response of aNESS using the steady state
�uctuations of the NESS. As we have seen the FT allows the calculation of tiny amount heat, which can be
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useful in many applications in aging systems [53, 54] and biological systems.
The FTs for Langevin systems can be used to measure an unknownaveraged power. This idea has been

discussed �rst in the context of electrical circuits [3] and in ref.[57] it has been applied for the �rst time to the
measure of the the torque of a molecular motor. We discuss themethod in some details in the next subsection.

Figure 15: Molecular motor. a) Schematic diagram of aF1-ATPase molecular motor composed by a rotor

(radius� 1 nm) which rotates inside stator of radius� 5 nm formed by three� � subcomplexes. Sequential
chemical reactions between the stator and the rotor producethe motion. The�� subcomplexes are attached to
a suitably coated glass plate. Streptavidin is used to attach to
 either actin �laments [58] or streptavidin-coated
beads [57]. b) In order to follow the rotation of the rotor with a standard microscope a streptavidin-coated bead
of radius� 0:5 � m is glued to
 subunit (drawing not to scale). The �gures c),d) and e) (taken from ref.[57]))
illustrate the results of a measure. c) Pdfs for several� of � � � . d) Symmetry function extracted from the Pdfs
of c). e) SlopesN �( � ) of the symmetry function as a function of� . The different colors pertain to different
experimental conditions. Notice the convergency to an unique value ofN for large� . Strictly speaking in this
�gure the function�( � ) keeps into account also the fact that eq.27 is not necessarily valid for short times (see
text)

5.1 Measuring the power of a molecular motor

A molecular rotary motor, as any kind of motor, is constituted by a stator and a rotor. The movement of the
rotor is provoked by chemical reactions occurring sequentially between the rotor and stator. A typical example
of bio-motor is the bacterial �agellum. However it has been shown [58] that a single molecule ofF1-ATPase
may act as a motor composed by a
 subunit ( radius� 1 nm) which rotates inside a barrel of radius� 5 nm
formed by three� � subcomplexes (see �g.15a) for a schematic diagram and ref.[57, 58] for more details). In
experiments, the�� subunit is stuck on a suitably activated glass plate as shownin �g. 15a). The measure of
the torque of this motor is important in order to know its ef�ciency as a function of the concentration of the
chemicals contained in the liquid surrounding it. The typical size of this molecular motor is several nanometers
and the moving unit is too small to be observed with an opticalmicroscope. Therefore to measure the torque of
F1-ATPase motor a streptavidin-coated bead of radius0:5 � m is glued on the subunit
 , and the motion of this
bead is followed by a standard microscope as sketched in Fig.15b). The motion of the bead occurs on a torus
and� is the coordinate of the motion along the torus. The time evolution of � can be described by a Langevin
equation:
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� _� = N + �; (27)

whereN is the torque of the motor,� the viscous dissipation of the �uid surrounding the bead and� the
thermal noise. In order to estimateN , it is in principle enough to measure the mean angular velocity < _� > of
the bead and obviously from eq.27 one gets:

N = � < _� > (28)

However the procedure is not so simple because in order to estimateN one has to know the exact value of� ,
which is a function of the viscosity of the �uid, the radiusL of the bead path, the radiusR of the bead, the
shape of the bead and the distanceZo of the bead from the surface of the glass plate where the experiment
is performed (see Fig.15b). The variableZo is certainly the most dif�cult to be determined experimentally.
Therefore using eq.28 the error onN can be really very large. There is instead another method proposed in
ref.[3] for electric circuits and �rst used for measurements in bio-motors in ref.[57]. This method is based
on work �uctuations and is much more precise. To apply it, we suppose thatN is constant. This is a quite
reasonable hypothesis for certain regimes ofF1-ATPase motors. We compute the workW� performed by the
motor in a time� :

W� (t) =
Z t+ �

t
N _� (t)dt = N � � � (29)

where� � � = � (t + � ) � � (t) and we have used the fact thatN is constant. In previous section we have seen
that Langevin systems satisfy the SSFT, which we now apply toW� . Using eq.29and the constancy ofN SSFT
for the molecular motor reads:

ln
�

P(� � � )
P(� � � � )

�
= �( � ) N

� � �

kB T
with �( � ) ! 1 for � ! 1 (30)

This equation is quite interesting because the value ofN can be determined only by the measure of the
�uctuations of � � � . Indeed plottingln(P(� � � )=P(� � � � )) as a function of� � � =(kB T) we notice that the
slope of the straight lines is�( � ) N . Therefore studying the asymptotic value of this slope for large� one can
determineN . It is interesting to note that in this case the knowledge of� is not needed. This technique has
been recently applied to molecular motor in ref.[57] and their main results are plotted in Figs.15 c),d),e). The
relevant parameter�( � ) N , extracted from the pdf of� � � (Fig. 15 c) and the symmetry function (Fig.15 d),
is plotted in Fig.15e) 3. We see a clear convergence to a unique value and one gets a very precise estimation
of the torque of the molecular motor independently of the size and shape of the bead glued to
 unit of the
F1-ATPase motor. This is a very speci�c and interesting example of the possible applications of FT.

6 The chaotic systems

In previous sections we have studied the probability of the instantaneous negative entropy production rates
within the context of the FTs for stochastic systems, where the �uctuations are produced by the coupling with
a thermal bath. In sec.3.2 we have seen that when the energy injected into the system is larger than100kB T
the probability of these negative events is very small and the time needed to observe them becomes extremely
long. In other words the role of thermal �uctuations becomesnegligible.

However in the introduction we have shown that instantaneous negative entropy production rates can be
observed in chaotic systems such as, for example, turbulence and granular media, where the �uctuations are
produced by the non linear interactions of many degrees of freedom. We have also pointed out that for chaotic
systems the amount of injected energy is order of magnitudeslarger thankB T and of course thermal �uctuations

3It has to be stressed that in this speci�c case�( � ) keeps into account the fact that for short time eq.27 is not a good approximation
for the dynamics of the motor and eqs.29,30apply only for long time
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do not play any role in the �uctuating dynamics. The questionthat we want to analyze in this section is whether
we can apply in these systems the FTs de�ned in sec.3 for stochastic systems, eqs.10-13. For a dissipative
chaotic system one could imagine to replacekB T, in eqs.10-13, with a characteristic energyEc which keeps
into account the relevant energy scales of the system �uctuations. However the de�nition of this relevant energy
scale can be in general dif�cult and even impossible, because it may depend on the observable and on the kind
of forcing. Thus the approach of introducing anEc is not very useful to compare the experimental results with
the proof given for dynamical systems [25]. Indeed in this case the theorem considers a quantity :

y� =
� �

< � � >
=

Rt+ �
t � (t) dt
< � � >

(31)

where� (t) is the instantaneous phase space contraction rate,� � the integral of� on a time� and< � � > the
mean of� � . Three hypothesis has been done on the dynamical system which must be : a) dissipative, b) time
reversible c) Anosov4

1
�

ln
P(y� )

P(� y� )
= < � > y � + O(1=� ) for � ! 1 (32)

where< � > is the mean phase space contraction rate, which has the dimension of 1=t. In this equation
the relevant variable is the phase space contraction rate which has been identi�ed as the entropy production
rate[25]. The phase space contraction rate is a global variable of the system but an extension of the theorem for
local variables has been done in refs.[55, 56]. One reason for developing local FT is that global �uctuations are
usually not observable in macroscopic systems, as a consequence it is important to understand whether a local
measurement is representative of the dynamics. Eq.32has been tested in several numerical simulations (see for
example ref.[33, 34] for a review), here we want to focus on experiments.

6.1 Experimental test

The test of eq.32 in experiments is extremely useful to analyze several important questions. The �rst one is
whether eq.32 may have a more general validity independently of the restrictive hypothesis done to prove it.
Indeed the hypothesis b) is never satis�ed in real systems and the hypothesis c) does not necessarily apply to all
of them. Thus in general we do not even know whether eq.32 can be applied in the experimental system under
study. The second question concerns the choice of the observable. Indeed the direct measure of the phase space
contraction rate is not possible and one has to rely upon the measure of another observable usually the energy
W� injected into the system by the external forces in a time� . In other words one is making the important
hypothesis thaty� , de�ned in eq.31 in terms of� (t) is equivalent tox � = W� = < W � > . This hypothesis, that
is not necessarily valid, is the second question that one would like to address in experiments. The third question
is related to the estimation of the prefactor< � > in the right hand side of eq.32. This prefactor, which is a
function of the Lyapunov exponents, is very dif�cult to estimate in an experimental system. Finally the last
question concerns the relevance of a local observable to characterize the dynamics of the system.

There are not many experiments where these questions have been analyzed in some details. In several
experiments [4, 36] only the linearity inx � of the symmetry function� (x � ) = (1 =� ) ln ( P(x � )=P(� x � )) has
been checked, which, for the reasons discussed in the previous paragraph, is only a partial test. For example
three experiments have tried to give an answer to the question of the prefactor. Two of these experiments are
performed in granular media [5, 6] and the third on mechanical wave turbulence in a metallic plate[63]. We
will not describe in details the experiments here but we willcomment the main results.

6.1.1 Granular media

The two experiments of refs.[5, 6] consist of diluted granular media strongly shaken by a vibrator, but the
measured quantities are not the same. In ref.[5] the authors measure the �uctuations of the energy �ux in a

4For a precise de�nition see refs.[35, 34]. Roughly speaking this property ensures that the system ischaotic and that on the attractor
there are no regions of �nite volume that do not contain points.
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subvolume of the system. Instead ref.[6] the work done by an external force on a ratchet inside the granular
media is measured. They both �nd that although the system is not thermal the stochastic version of SSFT
(eq.10) holds, provided thatkB T is replaced by a characteristic energyEc:

ln
P(x � )

P(� x � )
=

< X � >
Ec

x � + O(1=� ): (33)

with x � = X � = < X � > , X � is the integral of energy �ux in ref.[5] and the workW� performed by an
external force on a ratchet in ref.[6]. It must be pointed out that in both experiments of refs.[5, 6] the energy
Ec has been measured independently. In ref.[5] is found thatEc is about 5 times larger than the kinetic energy
K E of the shaken granular medium for all the values of the control parameters used in the experiment. The
fact thatK E andEc have the same dependence on the control parameter have been interpreted considering
that the vibrator injects into the system the amount of energy lost in the collisions but once excited in a NESS
the granular medium behaves like a thermal bath for the measured observable. However this interpretation is
not necessarily correct. Indeed for the experiment of ref.[5] it as been shown in a numerical simulation [59]
that for the quantity measured in this experiment FT does notapply for the large deviationsx � because the
symmetry functionS(x � ) becomes non-linear for largex � . This discrepancy between theory and experiment
is obviously coming from the fact that experimentally the very large deviation are dif�cult to be measured, thus
the non-linear part ofS(x � ) cannot be observed. However the experiment of ref.[5] is certainly interesting
because is the �rst where the question of the prefactor has been analyzed experimentally. In contrast for the
experiment of ref.[6] is observed thatEc = K E (1 + � )=2 where� is the restitution coef�cient of the grains.
It is interesting to notice thatK E (1 + � )=2 is the temperature of an intruder inside a diluted granular gas as
it has been found in theoretical models [60, 61, 62]. These two examples of comparison between numerical
and experimental results show the dif�culty of interpreting the experimental results on FT and the importance
of verifying them in a precise theoretical framework. Wheredoes the difference between the experiments of
ref.[5] and ref.[6] come from ? The answer can be found on the fact that in the two experiments two different
quantities are measured. Indeed in sect.3 we have seen that, even for stochastic systems, the �uctuations of
W� , Q� and� stot ;� n behave differently within the context of FT. This can be morecomplex for granular media
and it will be useful to give more insight on this point. Furthermore even in cases where a description in terms
of Ec applies, comparing eq.33 with eq.32 a question that arises naturally is whether< W � > =E c is a good
estimation of< � > � . This is an important question which will be interesting to analyze in the future.

6.1.2 Mechanical waves

In the experiment on mechanical waves[63], a metallic plate is set into a chaotic state of wave turbulence by a
periodic local forcing at75Hz. (see Fig.16a). The chaotic dynamics is produced by the non-linear interaction
of the oscillatory modes of the plate. The authors measure the local force and displacement (see Fig.16a) and
compute the workW� done on a time� by the external force which excites the vibrations of the plate. They
�nd that the pdfs ofx � = W� = < W � > are strongly non-gaussian (see Fig.16b). From these pdfs they
compute the symmetry function� (x � ) which is plotted (see Fig.16c) as a function ofx � . We see that in spite
of the fact that the pdf are not Gaussian the function� (x � ) (Fig. 16c) converges to a unique straight line for
large� as predicted by FT. From eq.32 the slope of this straight line is< � > , which the authors can estimate
independently by measuring the relaxation time of the vibrational modes. They �nd that the values estimated
with the two methods (FT and the relaxation time) are very close and within experimental errors. This result is
quite interesting and it is probably the only experiment where a direct test of eq.32 has been done. Certainly
the errors of this comparison are very large but this kind of tests are useful to understand in some details the
applications of FTs to chaotic systems.
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Figure 16: Mechanical waves in a metallic plate (from ref.[63]). a) Schematic diagram of the experiment.
A steel plate is suspended to the frame. Dimensions are in cm.The electromagnetic exciter produce et lo-
cal forcing of the plate vibrations. A laser vibrometer measures the normal velocity at the excitation point.
b)and c) Results on the periodic forcing. (b) Pdfs of the injected power on the time durations of� for
� = 3 :5ms; 6:5; 13:5; 20; 26:5; 33:5; 40; 47:5; 52ms ) (c) Functions� (x � ) = (1 =� ) ln ( P(x � )=P(� x � ))
obtained from the Pdfs of (b). Inset: compensated value� (x � )=x� in a semi log plot. In (c) the dashed line
corresponds to a linear law of slope< � > = 700Hz.

7 Summary and concluding remarks

In this paper we have reviewed several experimental resultson the �uctuations of injected and dissipated power
in out of equilibrium systems. We considered the two cases when the �uctuations are produced by the coupling
with the heat bath (stochastic systems) and when they are produced by the non linear interactions of many
degrees of freedom (chaotic systems). We have seen that in both cases we observe that the external forces may
produce a negative work because of �uctuations. The probability of these negative events has been analyzed in
the framework of �uctuation theorem.

We have mainly discussed the stochastic systems described by Langevin equations, both with harmonic and
unharmonic potential. We have seen that injected and dissipated power present different behaviors. FTs are
valid for any value ofW� whereas can be applied only forQ� << Q � > in the case of the heat. We have
also seen the the �nite time corrections to SSFT depend on thedriving and on the properties of the system.
We have introduced the total entropy, which takes into account only the entropy produced by the external
forces neglecting the the equilibrium �uctuations. For thetotal entropy FTs are valid for all the times. We
discussed the applications of FTs to extract important physical properties of a stochastic system. Thus one may
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conclude that for Markovian systems driven by a deterministic force the applications of FT does not present any
major problems and can be safely applied. The case of random driving has been recently discussed and several
problems may arise when the variance of the driving become larger than the �uctuations induced by the thermal
bath. We have not discussed this problem but an analysis of this speci�c case can be found in refs.[8, 64, 65].

Finally we discussed the applications of FT to chaotic systems. The experimental test is in this case very im-
portant and useful because many questions can be asked on thesystem under study which does not necessarily
verify all the theoretical hypothesis. One has to say that inthe case of non-Gaussian statistics even the linearity
of the symmetry function can be an interesting result. However we pointed out that, for a real comparison with
theory, the dif�culty is to estimate of the prefactor of eq.32by an independent measurement. Only a few exper-
iments have addressed this point in some details, but many problems remain open and it seems to be dif�cult to
�nd a general behavior for chaotic systems as for the case of stochastic ones.
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