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Abstract

We introduce from an experimental point of view the main @pts of uctuation theorems for work,
heat and entropy production in out of equilibrium systeme.Will discuss the important difference between
the applications of these concepts to stochastic systethtoamsecond class of systems (chaotic systems)
where the uctuations are induced either by chaotic ows gr bctuating driving forces. We will mainly
analyze the stochastic systems using the measurementsmed in two experiments : a) a harmonic
oscillator driven out of equilibrium by an external forceatolloidal particle trapped in a time dependent
double well potential. We will rapidly describe some consergces of uctuation theorems and some useful
applications to the analysis of experimental data. As amgia the case of a molecular motor will be
analyzed in some details. Finally we will discuss the protdeelated to the applications of uctuation
theorems to chaotic systems.
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1 Introduction

This article is a review of the main experimental applicagi@f Fluctuation Theorems (FTs) and summarizes
the plenary talk given at STATPHYS24. In order to de ne theimeontents let us consider several simple
examples. The simplest and most basic out of equilibriuntegyss a thermal conductor whose extremities are
connected to two heat baths at different temperatures,edashe&d in g1. The second law of thermodynamics
imposes that in average the heat ows from the hot to the cedgnvoir (from H to C in gl). However the
second law does not say anything about uctuations and imcjpie one can observe for a short time a heat
current in the opposite direction. What is the probabilifyobserving these rare events ? As a general rule
when the size of the system decreases the role of uctuafimreases. Thus from an experimental point of
view it is reasonable to think that such rare events can bereéd in systems that are small. A good candidate
could be for example the thermal conduction in a nanotubese/featremities are connected to two heat baths
[1], exactly in the spirit of gl. In reality in this kind of experiments the measure of the mgaantities 1]

is already dif cult and of course the analysis of uctuat®is even more complicated. However there is an
electrical analogy, shown in db), of the thermal model of dla). Let us consider an electrical conductor
connected to a potential differense = Vo Vg and kept at temperature by a heat bath . If the mean
currentl = V=R(R being the electrical resistance of the conductor) is of tdeoof10 13 A and the injected
power is aboutlOCkg T ' 10 19 J (kg is the Boltzmann constant) then the instantaneous cumsitd the
resistance has uctuations whose amplitude is comparabthe mean, as shown in #c). The variance of
these uctuations isl 2' kg T=(R () where g is the characteristic time constant of the electrical dircu
In the speci ¢ case of Figlc) the current reverses with respect to the mean value. Tdtmpility of having
those negative currents have been studied both theohgticad experimentally in ref.Z, 3] within the context

of uctuation theorems, that we will present in s&c.

We discuss a second example where the source of uctuatioatithe coupling with a thermal bath, as in
the case of the electrical conductor, but it is either a gbaoivs or a chaotic force produced by the non-linear
interaction of many degrees of freedom of a dissipativeesgstustained by an external driving. We will refer
to them as chaotic systems. Let us consider a turbulent wemdng around an object as sketched in2g),b).
The wind exerts a mean fordey on the object but the instantaneous force, plotted irRcy,. is a strongly
uctuating quantity which presents negative valudg [.e. the object moves against the wind 2p). In such a
case the mean work done by the wind on the object is alialit 10?%kg T and obviously thermal uctuations
do not play any role but so does the chaotic ow, which produitee uctuations. Other similar examples can
be found for example in shaken granular me@igg], discussed in se6.

These examples stress that in the two experiments theiet¢atonductor and the turbulent wind we may
observe the counterintuitive effect that the instantaseesponse of the system is opposite to the mean value,
in other words the system has an instantaneous negativepgntroduction rate. This effect is induced by
the thermal uctuations in the rst case and by the chaotiav an the second case. The question that we
want analyze in this article is whether the Fluctuationsoram (de ned in section 3) is able to predict the
probability of these rare events in both cases, i.e. for thehsistic and the chaotic systems. We will take an
experimentalist approach and we will use experimentallieguorder to introduce the main concepts.
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Figure 1. a) Schematic representation of a conductor whasengities are in contact with two heat baths at
temperaturdy andTc with Ty > T . b) Electrical analogy. A conductor of electrical resis@R and kept

at a temperatur@ is submitted to a potential differende= V, V. €) Instantaneous curreht owing into

the resistance usiig =10 M , T =300 Kand ¢ =2 ms.
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Figure 2: a)and b) Schematic representation of an objegesaled by an elastic beam and submitted to the
pressure of a turbulent wind a) average behavior b) rareteggiime evolution of the measured instantaneous
force exerted by the turbulent wind on the object. The detikhis experiment can be found] [

The largest part of the article concerns stochastic systissribed by a Langevin dynamics. For chaotic
systems we will mainly discuss the dif culty of comparingetiexperimental results with the theoretical pre-
dictions. The article is organized as follows. In section € pvesent the experimental results on the energy
uctuations measured in a harmonic oscillator driven outegfiilibrium by an external force. In section 3
the experimental results on the harmonic oscillator are ts@ntroduce the property of Fluctuation Theorems
(FTs). In section 4 the non linear case of a Brownian partolened in a time dependent double well potential
is presented. In section 5 we introduce the applicatione®HT, and as a more speci ¢ example we describe
the measure of the torque of a molecular motor. Finally inise® we discuss the chaotic systems and we
conclude in section 7.

2 Work and heat uctuations in the harmonic oscillator

The choice of discussing the dynamics of the harmonic aesaillis dictated by the fact that it is relevant for
many practical applications such as the measure of thectastf nanotubes]], the dynamics of the tip of an
AFM [8], the MEMS and the thermal rheometer that we developed akyears ago to study the rheology of
complex uids [9, 10Q].
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Figure 3: a) The torsion pendulum. b) The magnetostatidrigrcc) Picture of the pendulum. d) Cell where
the pendulum is installed.

2.1 The experimental set-up

This device is a very sensitive torsion pendulum as sketahagl 3a). It is composed by a brass wire (length
10 mm, width0:5 mm, thicknes$0 m) and a glass mirror with a golden surface,3g). The mirror (length

2 mm, width8 mm, thicknessl mm) is glued in the middle of the brass wire. The elastic tmal stiffness
of the wire isC = 4:65 10 % N.m.rad ®. It is enclosed in a cell, ¢8d), which is lled by a uid. We used
either air or a vb’;\ter-glycerol mixture 80% concentration. The system is a harmonic oscillator witlomest
frequencyf, = C=lg =(2 )= !0=(2 ) and arelaxationtime =2l = =1= .1, isthe total moment
of inertia of the displaced masses( the mirror and the mass of displaced uid)l]. The damping has two
contributions : the viscous dampingof the surrounding uid and the viscoelasticity of the bragse.

The angular displacement of the penduluris measured by a differential interferomet&®[13, 14, 15]
which uses the two laser beams re ected by the mirroBa). The measurement noise is two orders of mag-
nitude smaller than thermal uctuations of the pendulun{t) is acquired with a resolution dt4 bits at a
sampling rate 0B192Hz, which is about 40 timek,. We drive the system out-of-equilibrium by forcing it
with an external torqudl by means of a small electric currefit owing in a coil glued behind the mirror
(Fig. 3b). The coil is inside a static magnetic eld. The displacemseof the coil and therefore the angular
displacements of the mirror are much smaller than the Spzatzde of inhomogeneity of the magnetic eld. So
the torque is proportional to the injected currer?l: = A:J ; the slopeA depends on the geometry of the
system. The practical realization of the montage is showgsn 3c), 3d). Inrsequilibrium the variance ?
of the thermal uctuations of can be obtained from equipartition, i.e. = kg T=C ' 2 nrad for our
pendulum, wherd is the temperature of the surrounding uid.

2.2 The equation of motion

The dynamics of the torsion pendulum can be assimilated abdha harmonic oscillator damped by the
viscoelasticity of the torsion wire and the viscosity of wgrounding uid, whose equation of motion reads in
the temporal domain 7

le *+ t Gt t9 (t9dt°+C =M + ; 1)
1

whereG is the memory kernel andthe thermal noise. In Fourier space (in the frequency rafgeardnterest)
this equation takes the simple form

[[1e 12+ 81" =M+ ; ()

where® denotes the Fourier transform a@d= C + i[C)% IC 97 is the complex frequency-dependent elastic
stiffness of the systenC{%andC are the viscoelastic and viscous components of the dameing t
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Figure 4: Equilibrium: The pendulum inside a glycerol-wateixture withM = 0. a) Square root of the
power spectral density of  directly measured spectrum, black dotted line is the spacestimated from the
measure of and using e@ The red dashed and dotted lines show the viscous and visticetamponent of
the damping respectively. b) Probability density functadn . The continuous line is a Gaussian t

2.2.1 Equilibrium

At equilibriumj.e. M = 0, the Fluctuation Dissipation Theorem (FDT) gives a relatietween the amplitude
of the thermal angular uctuations of the oscillator andriésponse function. The response function of the
system® = =M = " can be measured by applying a torque with a white spectrumerlvh = 0, the am-
plitude of the thermal vibrations of the oscillator is reldto its response function via the uctuation-dissipation
theorem (FDT). Therefore, the thermal uctuation powerdpa density (psd) of the torsion pendulum reads
for positive frequencies

A 2. _ 4kB T

004 | ¢ 00
hjji=— |m’\:4kBT Cit1Cs

L[ le 12+ CP+[C% IC P

3)

The brackets are ensemble averages. As an example, theuapmatt measured in the glycerol-water mixture

is shown in g.da). In this case the resonance frequencljiss C=lg =(2 ) = ! ¢=(2 ) = 217 Hz and

the relaxation time = 2l = = 1= = 9:5ms The measured spectrum is compared with that obtained
from eq3 using the measured. The viscoelastic component at low frequencies corresporal constant

C%6 0. Indeed if! ! 0 then from e hj’\jzi / 1=! as seen in gda). Instead ifC°= 0 then for

I 1 0from eq3 the spectrum is constant as a function oflt is important to stress that in the viscoelastic
case the noise is correlated and the process is not Markovian, whereaservigtous case the process is
Markovian. Thus by changing the quality of the uid surroimgi the pendulum one can tune the Markovian
nature of the process. In the following we will consider otig experiment in the glycerol-water mixture

where the viscoelastic contribution is visible only at véow frequencies and is therefore negligible. This
allows a more precise comparison with theoretical preahstioften obtained for Markovian processes. The
probability density function (pdf) of, plotted in g.4b), is a Gaussian.

2.3 Non-equilibrium Steady State (NESS): Sinusoidal foreig

We now consider a periodic forcing of amplituie, and frequency g, i.e. M (t) = Mgsin(! gqt) [14]-[17].
This is a very common kind of forcing which has been alreaddist in the case of the rst order Langevin
equation 18] and of the two level systenip] and in a different context for the second order Langevire¢iqun
[20]. Furthermore this is a very general case because usingefatansform, any periodical forcing can be
decomposed in a sum of sinusoidal forcing. We explain hexd#havior of a single mode. Experiments have
been performed at varioud , and! 4. We present here the results for a particular amplitude seguéncy:

5
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Mo, = 0:78 pN.m and! 4=(2 ) = 64 Hz. This torque is plotted in Figba. The mean of the response to
this torque is sinusoidal, with the same frequency, as caseba in Fighb. The system is clearly in a non-
equilibrium steady state (NESS).
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Figure 5: a) Sinusoidal driving torque applied to the oatilt. b) Response of the oscillator to this periodic
forcing (gray line) ; the dark line represents the mean nesplo (t)i.

The work done by the torqud (t) onatime , =2 n=! 4is
Z,, q
Whn=W_ = M (t) —dt 4)
" dt
As uctuates alsdV, is a uctuating quantity whose probability density functi¢pdf) is plotted in g.6a)
for variousn. This plot has interesting features. Speci cally, work tuations are Gaussian for all values of
n andW takes negative values as long asis not too large. The probability of having negative valués o
W decreases when, is increased. There is a nite probability of having negatialues of the work, in
other words the system may have an instantaneous negatiopeproduction rate although the average of
the work< W, > is of course positiveq : > stands for ensemble average). In this specic example is
<W, >=0:04n(kg T). We now consider the energy balance for the system.

Figure 6: Sinusoidal forcing. a) Pdf&¥ ;n=7 ( ),n=15( ),n=25( )andn =50 ( ). b) Pdfof U

2.4 Energy balance

As the uid is rather viscous we will take into account onlyetstandard viscosity that 89°= 0 andC9%=
In such a case efjsimpli es
d2
le —5+ -+ ; 5
© dtz - dt 2
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where is the thermal noise, which in this case is delta-correlaigime: < (t) (t9>=2ksg T (t 9.
When the system is driven out of equilibrium using a deteistim torque, it receives some work and a

fraction of this energy is dissipated into the heat bath.tilying Eq. 6) by —and integrating between and

t; + , one obtains a formulation of the rst law of thermodynamiietween the two states at timeandt; +

(Eg. 6)). This formulation has been rst proposed in refl] and used in other theoretical and experimental

works [22, 18]. The change in internal energyU of the oscillator over a time, starting at a timé;, is written

as:

U=uUti+ ) Ut)=W Q (6)
whereW is the work done on the system over a time
Z,, q
W = M (19 = (t9dt° (7)
" dt
andQ is the heat dissipated by the system. The internal enerdeisim of the potential energy and the
kinetic energy : ( )
_ d % 1e 2
U= 3le H® +3C O : ®)

The heat transfe® is deduced from equatio®); it has two contributions :
Q =W U
Z .

d 2
= (9 dt°

Z.. g
(t‘ba(t‘bdtq 9)

£

The rst term corresponds to the viscous dissipation andviggs positive, whereas the second term can be
interpreted as the work of the thermal noise which has a afitig sign. The second law of thermodynamics
imposedQ i to be positive.

i b)

I (N o -

Figure 7: Sinusoidal forcing. a) Pdf ¥¥ b) Pdf ofQ for variousn:n=7 ( ),n=15( ),n=25( ) and
n = 50 ( ). The continuous lines in this gures are not ts but are asighl predictions obtained from the
Lnagevin dynamics as discussed in s&dt.

2.5 Heat uctuations

The dissipated he@ can not be directly measured because we have seen tRata@tains the work of the
noise (the heat bath) that experimentally is impossible ¢éasare, becauseis unknown. Howevef) can



be obtained indirectly from the measureWf and U , whose pdf measured during the periodic forcing are
exponential for any , as shown in géb. We rst do some comments on the average values. The avefage

U is obviously vanishing because the timés a multiple of the period of the forcing. Therefdiéd/,,i and
hQni are equal.

We rescale the workV (the heatQ ) by the average workW i (the average hediQ i) and de ne:

w = % (q = %). In the present articles , respectivelyX , stands for eithew or q , respectivelyw
orQ .

We compare now the pdf of andqg in Fig. 7. The pdfs of heat uctuations, have exponential tails
(Fig. 7b). It is interesting to stress that although the two vagabV andQ have the same mean values
they have a very different pdf. The pdf of are gaussian whereas thosegofare exponential. On a rst
approximation the pdf off are the convolution of a Gaussian (the pdfWif) and exponential (the pdf of

U ). In Figs.7 the continuous lines are analytical predictions obtaimethfthe Langevin dynamics with no
adjustable parameter (see s8@).

3 Fluctuation theorem

In the previous section we have seen that bath andQ present negative valuese. the second law is
veri ed only on average but the entropy production can hagtantaneously negative values. The probabilities
of getting positive and negative entropy production arentjtetively related in non-equilibrium systems by the
Fluctuation Theorem (FTs).

There are two classes of FTs. TAmtionary State Fluctuation Theord®SFT) considers a non-equilibrium
steady state. ThEransient Fluctuation TheorefTFT) describes transient non-equilibrium states wharea-
sures the time since the system left the equilibrium statBluituation Relation (FR) examines the symmetry
aroundo of the probability density function (pdf)(x ) of a quantityx , as de ned in the previous section. It
compares the probability to have a positive event £ + x) versus the probability to have a negative event
(x = Xx). We quantify the FT using a functio® (symmetry function) :

_keT = px =+Xx)
S(x)—hXiIn X = X

(10)

TheTransient Fluctuation Theore(TFT) states that the symmetry function is linear withfor any values
of the time integration and the proportionality coef cient is equal fiofor any value of .

S(x )=x; 8x; 8: (12)
Contrary to TFT, théStationary State Fluctuation Theorg/®SFT) holds only in the limit of in nite time ().
I!ilm S(x )= x: (12)

In the following we will assume linearity at nite time [2, 29] and use the following general expression :
S(x )= «x()x (13)

where for SSFT 4( ) takes into account the nite time corrections dimd 11 x( ) =1 whereas x( )=
1, 8 forTFT.

However these claims are not universal because they depaihé &ind ofx which is used. Speci cally we
will see in the next sections that the results are not ex#otysame iX is replaced by any one &% ,Q and
(T stor: ), de ned in sect3.3. Furthermore the de nitions given in this section are ajpiate for stochastic
systems and in se6twe will discuss the differences between stochastic andtichsgstems.



3.1 Short history of FTs

The rst numerical evidence of relations of this kind hasithgé/en by Evans et al. in reRB] whereas the TFT
was proved in ref4]. In 1995 Gallavotti and CoherRf] proved SSFT for dynamical systems although in
such acasg takes a different meaning that we will discuss in €c¢the proof of SSFT has been extended to
stochastic dynamics in ref2[26, 27, 28, 29]. Furthermore van Zon and Cohen proved that there is an itaupor
difference between the FTs for the injected power and thos¢he dissipated poweR]29]. The SSFT has
been proved also for other quantities such as the dissipatitction B0] and the total entropydd, 32]. Other
theoretical papers studied FT and the reader may nd a reinawf.[33, 34]. Experiments searching for FTs
have been performed in dynamical syste$][ 36], but interpretations are very dif cult because a quatitita
comparison with theoretical prediction can be doubtfulhétexperiments have been performed in stochastic
systems described by a rst order Langevin equation: a Bramparticle in a moving optical tra@¥] and

an out-of-equilibrium electrical circuid] in which existing theoretical prediction®,[29] were veri ed. Other
experimental tests for FTs have been performed on driveravead systems]9] and on colloids 18].

3.2 FTs for Gaussian variables

Let us suppose the the variable has a Gaussian distribution of mearX > and variance % . Itis easy
to show that in order to satisfy FTs, the varialle must have the following statistical property:

X =2ks T <X > (14)
This is an interesting relation because it imposes thatdlagive uctuations ofX are

r
X ZkBT
X <X >

(15)

This means that the probabilitypof having negative everdsces by increasing , speci cally from eql5
it follows thatP (X < 0) = erfc( < X >=(2kgT)) whereerfc is the complementary error function. It
is now possible to estimate the length of the time intetygl needed to observe at least one negative event,
which is:

(16)

tobs = g
erfc

where we used the fact that all the valuds computed on different intervals of lengthare independent,
which is certainly true if is larger than the correlation time.

Let us consider the speci c example of secti2r8, i.e. <W >=0:04n(kgT) at! 4=(2 ) = 67 Hz,
Mo =0:78pN.mand =2 n=! 4. The pdf ofW are Gaussian in this case (Fpgand, as we will see in the
next section, they satisfy SSFT for large Therefore ed.5 holds forX = W and we may estimatigps in
the asymptotic limit << . For example ah = 200, one obtains from the above mentioned experimental
values ' 3s >> and <W >=8kgT. Inserting these experimental values inl&gne gets roughly
a negative event over an observational tirge '  641s, which is already a rather long time for the distance
between two events. For largerand largeMM ¢ this time becomes exponentially large. This justi es thetfa
that millions of data are necessary in order to have a reliatdasure of SSFT.

3.3 FTsforW andQ measured in the harmonic oscillator

The questions we ask are whether for nite time FTs are satidor eitherx = w orx = g and what are
the nite time corrections. In a rst time, we test the cortien to the proportionality between the symmetry
functionS(x ) andx . In the region where the symmetry function is linear with we de ne the slope x( ),
i.,e. S(x )= «( )x . Inasecond time we measure nite time corrections to theeal,( ) = 1 which is
the asymptotic value expected from FTs.
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Figure 8: Sinusoidal forcing. Symmetry functions for SS&)ISymmetry function§(w ) plotted as a function
of w forvariousn:n=7 (),n=15( ),n=25()andn =50 ( ). For alln the dependence &(w )
onw is linear, with slope ( ). b) Symmetry function§(q ) plotted as a function af for variousn. The
dependence db(q ) onq is linear only forg < 1. Continuous lines are is theoretical predictions.

Figure 9: Finite time corrections for SSFT. a) Sinusoidatifeg. ( ) as a function of n obtained from
the slopes of the straight lines of R8g) ( ). The circles correspond to another measurement perfoanad
different frequency. The nite time corrections depend be tlriving frequency. The slopey( ) measured for

g < 1(Fig.8b) have exactly the same valuesSf( ) as a function of. b) Linear forcing. ( ) measured

as a function of with the driving torqueM has a linear dependence on time. The nite time corrections
depend on form of the driving.

In this review article we will focus on the SSFT applied to thgperimental results of se@.3and to other
examples. The TFT will be not discussed here and the inestestiders may look at ret]].

From the pdfs olv andq plotted in Figs7, we compute the symmetry functions de ned in Hgj. The
symmetry functiorS(wy) are plotted in Fig8a) as a function ofv,. They are linear i, . The slope (n)
is not equal tdl for all n but there is a correction at nite time (Fi§a). Nevertheless, ,,(n) tends tol for
largen. Thus SSFT is satis ed foww and for a sinusoidal forcing. The convergence is very slodae have
to wait a large number of periods of forcing for the slope tdli{after 30 periods, the slope is sti:9). This
behavior is independent of the amplitude of the fordiig and consequently of the mean value of the work
hW,i, which, as explained in s&:2, changes only the time needed to observe a negative eveatsyEtem

10



satis es the SSFT for all forcing frequenciég but nite time corrections depend ong, as can be seen in
Fig. 9a).

We now analyze the pdf af (Fig.7b)) and we compute the symmetry functioBéq,) of g, plotted in
Fig. 8b) for different values ofh. They are clearly very different from those wf, plotted in Fig.8a). For
S(q,) three different regions appear:

() For large uctuationsg,, S(,) equals2. When tends to in nity, this region spans from, = 3 to
in nity.

(I) For small uctuationsa,, S(o,) is a linear function ofy,. We then de ne 4(n) as the slope of the
functionS(ah), i.e. S(th) =  g(n) oh. We have measuredT] that ¢(n) = (n) for all the values of, i.e.
nite time corrections are the same for heat and work. Thyén) tends tol when is increased and SSFT
holds in this region Il which spans frompy = 0 up tog, = 1 for large . This effect has been discussed for the
rst time in refs.[29, 2].

(1) A smooth connection between the two behaviors.

These regions de ne the Fluctuation Relation from the hésgtiplated by the oscillator. The limit for large

of the symmetry functiors(q ) is rather delicate and it has been discussed inlrgf.[

The conclusions of this experimental analysis is that SS#idshfor work for any value olv whereas for
heat it holds only folg < 1. The nite time correction to FTs, described Hy are not universal. They
are the same both fav andq but they depend on the driving frequency as shown indaig. Furthermore
they depend on the kind of driving force. In Fp) we plot ( ) measured when the harmonic oscillator is
driven out of equilibrium by a linear ramipThe difference with respect Fifa) is quite evident.

3.4 Comparison with theory

This experimental analysis allows a very precise compansith theoretical predictions using the Langevin
equation (edp) and using two experimental observations: a) the progedieheat bath are not modi ed by
the driving and b) the uctuations of the&/ are Gaussian (see alsgg], where it is shown that in Langevin
dynamicsW has a Gaussian distribution for any kind of deterministiwidg force if the properties of the
bath are not modi ed by the driving and the potential is hanmp The observation in point a) is extremely
important because it is always assumed to be true in all #@¢tical analysis. In refl[7] this point has been
precisely checked. Using these experimental observatioescan compute the pdf of and the nite time
corrections( ) to SSFT (see refl]7]). The continuous lines in Fi@, Fig.8 and Fig.6 are not t but analytical
predictions, with no adjustable parameters, derived floenLiangevin dynamics of €gj(see ref.17] for more
details).

3.5 The trajectory dependent entropy

In previous sections we have studied the enafgy injected into the system in the timeand the energy
dissipated towards the heat b&h. These two quantities and the internal energy are relatedeoyst law of
thermodynamics (ef)). Following notations of ref31], we de ne the entropy variation in the system during a
time as:

Sm = 2Q a7)

For thermostated systems, entropy change in medium belikgdbe dissipated heat. The non-equilibrium
Gibbs entropy is : b

ks(t)i = ks  dxp(x(1);t; ¢)Inp(x(t);t; +) (18)

where  denotes the set of control parameters at tinamd p(x(t);t; ) is the probability density function
to nd the particle at a position(t) at timet, for the state corresponding tq. This expression allows the

1The stationarity in the case of a ramp is discussed in2@f17]
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Figure 10: a) Schematic diagram illustrating the methodtogute the trajectory dependent entropy, b) Pdf of
(t) around the mean trajectory (t) >. The continuous line is the equilibrium distribution

de nition of a "trajectory-dependent” entropy :
s(t) ke Inp(x(t);t; ) (19)

The variation sio: Of the total entropysi: during atime is the sum of the entropy change in the system
during and the variation of the "trajectory-dependent” entropgitime , s  s(t+ ) s(t):

Stot ; Stot (t+ ) Sot(t)= Sm: + S (20)

In this section, we study uctuations of Syt computed usingl(7) and @9). We will show that S
satis es a SSFT for all . In ref. [32], the relevance of boundary terms likes has been pointed out for
Markovian processes.
We investigate the data of the harmonic oscillator desdribesect2.3.The probability to compute is the
joint probabilityp( (ti + n); (ti + n);' ), where' is the starting phase = t;! 4. The system is linear, so
(ti+ n); (tj+ n) are independent; thus the joint probability can be factutimto a product. The expression
of the trajectory dependent entropy is :
|
P (ti+ n);" ) P(Lti+ n;"))

s = kgln
p( (ti+ n)" ) p(Lti+ ny')

n

(21)

For computing correctly the trajectory dependent entreghave to calculate th# (t;);" ) andp( (ti);" )
for each initial phask (see FiglOa). These distributions turn out to be independent ahd they correspond to
the equilibrium uctuations of and —around the mean trajectory de ned hy(t)i andht)i. The distribution
of (t;) is plotted in FiglOb), where the continuous line corresponds to the equilibrlistribution. Once the
p( (ti;' ) andp((tj);" ) are determined we compute the "trajectory-dependentbpptrAs uctuations of
and —are independent of we can average s , over' which improves a lot the statistical accuracy. We stress
that it is not equivalent to calculate rst the pdfs over allves of — which would correspond here to the
convolution of the pdf of the uctuations with the pdf of a jic signal — and then compute the trajectory
dependent entropy. The results are shown in Elg.

In Fig. 11a), we recall the main results for the dissipated Iigat T sy ,. Its average valubl: sy i
is linear in , and equal to the injected work. The pdfsDf sy. , are not Gaussian and extreme events
have an exponential distribution. The pdf of the "trajegtdependent” entropy is plotted in dl1b); it is
exponential and independentrof We superpose to it the pdf of the variation of internal epeligided by T at
equilibrium: the two curves match perfectly within expeeintal errors, so the "trajectory-dependent” entropy
can be considered as the entropy exchanged with the thexhibte system is at equilibrium. The average
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Figure 11: Torsion pendulum. a) pdfs of the normalized guytreariation sy ,=h sy. i integrated over

n periods of forcing, withn =7 (), n =15 ( ),n =25 ()andn = 50 ( ). b) pdfs of s, the
distribution is independent af and heren = 7. Continuous line is the theoretical prediction for equiliin
entropy exchanged with thermal battsy,; .eq. C) pdfs of the normalized total entropysiot; ,=h Stot; ,i,
withn=7(),n=15( ),n=25()andn =50 ( ). d) Symmetry functions for the normalized entropy
variation in the system (small symbols in light colors ahdstands folT  sp. , = Q ) and for the normalized
total entropy (large symbols in dark colors axd stands fofT S ,) for the same values of.

value of s is zero, so the average value of the total entropy is equaktaverage of injected power divided
by T. In Fig. 11c), we plot the pdfs of the normalized total entropy for fogpital values of integration time.
We nd that the pdfs are Gaussian for any time.

The symmetry functions (etQ) of the dissipated he&(T spy. , = Q ) and the total entrop$(T  Stot: ,)
are plotted in Figl1d). As we have already seen in BgS(Q ) is a non linear function o = T sy .
The linear behavior, with a slope that tend4 for large time, is observed only for forsy: , < h sy. i < 1
For the normalized total entropy, the symmetry functioreslexear with sy . , for all values of Sy . , and
the slope is equal td for all values of . Note that it is not exactly the case for the rst values pfbecause
these are the times over which the statistical errors arkatgest and the error in the slope is large.

For the harmonic oscillator we have obtained that the "ttajg-dependent” entropy can be considered as
the entropy variation in the system in a timéhat one would have if the system was at equilibrium. Thegefo
the total entropy is the additional entropy due to the presefithe external forcingthis is the part of entropy
which is created by the non-equilibrium stationary proceBlse total entropy (or excess entropy) satis es the
Fluctuation Theorem for all times and for all kinds of statoy external torquéfl, 32]. More details on this
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problem can be found in re89].

4 The non-linear case: stochastic resonance

> D ==

Figure 12: a) Drawing of the polystyrene particle trappedvioy laser beams whose axis distance is about the
radius of the bead. b) Potential felt by the bead trapped &yt laser beams. The barrier height between the
two wells is abouPkg T.

The harmonic oscillator cannot be driven to a non lineamnegivithout forcing it to such a high level where
thermal uctuations become negligible. Thus in order todstihe non linear effects we change experiment
and we measure the uctuations of a Brownian particle trapjea non-linear potential produced by two
laser beams, as shown in Fig. It is very well known that a particle of small radi& ' 2 m is trapped
in the focus of a strongly focused laser beam, which prodackarmonic potential for the particle, whose
Brownian motion is con ned inside this potential well. Whievo laser beams are focused at a distddce R,
as shown in Fig.2a) the particle has two equilibrium positions, i.e. the fo€ithe two beams. Thermal
uctuations may force the particle to move from one to theenthThe particle feels an equilibrium potential
Ug(x) = ax* bx? dx, shown in Figl2b), wherea, b andd are determined by the laser intensity and
by the distance of the two focal points. This potential hasnbeomputed from the measured equilibrium
distribution of the particld®(x) / exp(Uo(x)). The right left asymmetry of the potential (Fig¢b) is induced
by small unavoidable asymmetries, induced by the opticssing the two laser beams. In our experiment the
distance between the two spotslid5 m, which produces a trap whose minima arxg@h, = 0:45 m.
The total intensity of the laser B9 mW on the focal plane which corresponds to an inter-wellieeignergy
Uo = 18kgT, axf;qin =18kgT, bxﬁqin = 3:6 kg T anddjXminj = 0:44 kg T (see reffd0] for more
experimental details). The rate at which the particle jufinps: one potentials well to the other is determined
by the Kramer's rate, = io exp(kBUT‘J) where 4 is a characteristic time. In our experimant' 0:3 Hz at
300K.

To drive the system out of equilibrium we periodically maatel the intensity of the two beams at low
frequency. Thus the potential felt by the bead is the follaympro le:

U(x;t) = Ug(x) + Up(x;t) = Up + cx sin(2 ft ), (22)

with ¢jXmin ] = 0:81 kg T. The amplitude of the time dependent perturbation is syorauisly acquired with
the bead trajectors.

>The parameters given here are average parameters sinceetheients a, b andc, obtained from tted steady distributions at
given phases, vary with the phasafa 10%, b=b c=c 5%).
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Figure 13: a) The perturbed potentialtat % andt = %. b) Example of trajectory of the glass bead and

the corresponding perturbation fat= 0:1 Hz. c) Mean injected energy in the system over a single period
as a function of the driving frequensyWs > and< W > coincide as their mean values are equal

within experimental errors. The error bars are computeah fitte standard deviation of the mean over different

runs. Inset: Standard deviations of work distributionsr@single period normalized by the average work as a
function of the frequency (same symbols).

An example of the measured potential for % and% is shown on the Figl3a). This gure is obtained
by measuring the probability distribution functié(x;t) of x for xed values ofcsin(2 ft ), it follows that
u(x;t)= In(P(x;t)).

Thex position of the particle can be described by a Langevin egpiat

@ux;t) .
W + (23)

with = 1:61 10 8 N s m ! the friction coef cient and the thermal noise delta correlated in in time. When
c 6 0 the particle can experience a stochastic resonatle Wwhen the forcing frequency is close to the
Kramer's rate. An example of the sinusoidal force with theresponding position are shown on the gure
13b). Since the synchronization is not perfect, sometimegp#rdcle receives energy from the perturbation,
sometimes the bead moves against the perturbation leadliaghégative work on the system. Two kinds of
work can be de ned in this experiment4(]

X_:

Z t+ ts

Wsin (1) = t dt% (24)
Z iy, .
Wepn (t) = tt t dt)&% (25)

(26)

where in this casér = { is a multiple of the forcing period. The wol¥/s;, is the stochastic work (used in
Jarzynsky and Crooks relation&7] 49, 13]) andW(¢., is the classical work that will be discussed in this article.
The results 0Ws., are quite similar but there are subtle differences disclisseef.[40].

We rst measure the average work received over one periodlifterent frequenciest{ = fl in eq.25).
Each trajectory is here recorded during 3200 s in differemisecutive runs, which corresponds to 160 up to
6400 forcing periods, for the range of frequencies explorkdorder to increase the statistics we consider
10° differentt,. The gure 13c) shows the evolution of the mean work per period for bothnitéons of the
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Figure 14: a) Distribution of classical woll/, for different numbers of period = 1, 2, 4, 8and12 (f =
0:25 Hz). Inset: Same data in lin-log. b) Normalized symmetryction as function of the normalized work
forn=1(+),2(),4(),8(4),12( ).

work. First, the input average work decreases to zero whefrélguency tends to zero. Indeed, the bead hops
randomly several times between the two wells during theopgerSecond, in the limit of high frequencies, the
particle has not the time to jump on the other side of the ttapdiher stays in the same well during the period,
thus the input energy is again decreasing when increasaqgéncy. In the intermediate regime, the particle
can almost synchronize with the periodical force and fo#ldhe evolution of the potential. The maximum of
injected work is found around the frequenicy 0:1 Hz, which is comparable with half of the Kramers' rate
of the xed potentialrx = 0:3 Hz. This maximum of transferred energy shows that the s&itheesonance
for a Brownian particle is a bona de resonance, as it wasiptsly shown in experiments using resident time
distributions f2, 43] or directly in simulations44, 45]. In the inset of Figl13, we plot the normalized standard
deviation of work distributions € hW i) as a function of the forcing frequency. The curves presemn@amum

at the same frequency of 0.1 Hz, in agreement again with g@nemce phenomena.

In order to study FT for stochastic resonance we choose #external driving a frequendy = 0:25 Hz,
which ensures a good statistic, by allowing the observatfathe system over a suf cient number of periods.
We compute the works and the dissipation uslng 1¢° differentt on time series which spans about 7500
period of the driving.

We consider the pdP (W) which is plotted in (Fig.14a). Notice that for smalh the distributions are
double peaked and very complex. They tend to a gaussianrfye ma(inset of Fig. 14a). On Fig.14b), we
plot the normalized symmetry function @.,. We can see that the curves are close to the line of slope one.
For high values of work, the dispersion of the data incredsesto the lack of events. The slope tends toward
1 as expected by the SSFT. It is remarkable that straighs me obtained even for close to 1, where the
distribution presents a very complex and unusual shape 1B#&). We do not discuss here the cas&\if,, as
the behavior is quite similar to that W, [40]. The very fast convergency to the asymptotic value of tlee th
SSFT is quite striking in this example. The measurementreidly agreement with a realistic model based on
the Fokker Planck equations where the measured valugéxpt) has been inserted§]. This example shows
the application of FT in a non-linear case where the didtidiog are strongly non-Gaussian.

5 Applications of Fluctuation Theorems

The Fluctuations Theorems have several important consegaeuch as the Jarzinsky and Crooks equalifes|
48, 49|, which are useful to compute the free energy differencevben two equilibrium states using any kind
of transformation]3, 15, 51, 50]. The Hatano-Sasap] relations and the recently derived Fluctaution Dissipa-
tion Theoremd}2] are related to FTs and are useful to compute the respons®lBSS using the steady state
uctuations of the NESS. As we have seen the FT allows theutation of tiny amount heat, which can be
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useful in many applications in aging systerb8,[54] and biological systems.

The FTs for Langevin systems can be used to measure an unkan@vaged power. This idea has been
discussed rst in the context of electrical circui® pnd in ref.pb7] it has been applied for the rst time to the
measure of the the torque of a molecular motor. We discussiétieod in some details in the next subsection.

c) d)

- X
~ coated glass pla\te\r

Figure 15: Molecular motor. a) Schematic diagram ¢f,2ATPase molecular motor composed by a rotor
(radius 1 nm) which rotates inside stator of radius5 nm formed by three  subcomplexes. Sequential
chemical reactions between the stator and the rotor prohgcaotion. The subcomplexes are attached to
a suitably coated glass plate. Streptavidin is used totattac either actin laments$8] or streptavidin-coated
beads$7]. b) In order to follow the rotation of the rotor with a stamdanicroscope a streptavidin-coated bead
of radius 0:5 mis glued to subunit (drawing not to scale). The gures c),d) and e) (teftem ref.[57]))
illustrate the results of a measure. c) Pdfs for sevel . d) Symmetry function extracted from the Pdfs
of ¢). e) Slopes\N () of the symmetry function as a function of The different colors pertain to different
experimental conditions. Notice the convergency to anumigplue ofN for large . Strictly speaking in this
gure the function () keeps into account also the fact that23js not necessarily valid for short times (see
text)

5.1 Measuring the power of a molecular motor

A molecular rotary motor, as any kind of motor, is constitut®/ a stator and a rotor. The movement of the
rotor is provoked by chemical reactions occurring seqa#intbetween the rotor and stator. A typical example
of bio-motor is the bacterial agellum. However it has bedmwn [58] that a single molecule df1-ATPase
may act as a motor composed by aubunit ( radius 1 nm) which rotates inside a barrel of radius5 nm
formed by three  subcomplexes (see @5a) for a schematic diagram and r&f/[ 58] for more details). In
experiments, the subunit is stuck on a suitably activated glass plate as showg 15a). The measure of
the torque of this motor is important in order to know its ééncy as a function of the concentration of the
chemicals contained in the liquid surrounding it. The tgbsize of this molecular motor is several nanometers
and the moving unit is too small to be observed with an optitiatoscope. Therefore to measure the torque of
F1-ATPase motor a streptavidin-coated bead of ra@iGs m is glued on the subunit, and the motion of this
bead is followed by a standard microscope as sketched irlBlij. The motion of the bead occurs on a torus
and is the coordinate of the motion along the torus. The timewiah of can be described by a Langevin
equation:
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—= N+ ; (27)

whereN is the torque of the motor, the viscous dissipation of the uid surrounding the bead aribe
thermal noise. In order to estimaltk, it is in principle enough to measure the mean angular vigleci > of
the bead and obviously from &f.one gets:

N= < > (28)

However the procedure is not so simple because in orderitoa@stiN one has to know the exact value of
which is a function of the viscosity of the uid, the radilis of the bead path, the radid® of the bead, the
shape of the bead and the distazgof the bead from the surface of the glass plate where the iexpet
is performed (see Fidlb). The variableZ, is certainly the most dif cult to be determined experimdiyta
Therefore using e@8 the error onN can be really very large. There is instead another methoplogeal in
ref.[3] for electric circuits and rst used for measurements in-biotors in ref.p7]. This method is based
on work uctuations and is much more precise. To apply it, wemose thalN is constant. This is a quite
reasonable hypothesis for certain regimes ofATPase motors. We compute the wakk performed by the
motor in a time : 7

t+

W (t) = N (t)dt=N (29)

t
where = (t+ ) (t) and we have used the fact thditis constant. In previous section we have seen
that Langevin systems satisfy the SSFT, which we now apply toUsing eq29 and the constancy & SSFT
for the molecular motor reads:

PC )
P( )

This equation is quite interesting because the valudl afan be determined only by the measure of the
uctuations of . Indeed plottingn(P ( )=P( )) as a function of  =(kg T) we notice that the
slope of the straight lines i¢ ) N. Therefore studying the asymptotic value of this slopedogé one can
determineN . It is interesting to note that in this case the knowledge @ not needed. This technique has
been recently applied to molecular motor in rgT][and their main results are plotted in Fids c),d),e). The
relevant paramete( ) N, extracted from the pdf of  (Fig. 15 ¢) and the symmetry function (Fid5 d),
is plotted in Fig.15e) 2. We see a clear convergence to a unique value and one getg preeise estimation
of the torque of the molecular motor independently of the simd shape of the bead glued tainit of the
F1-ATPase motor. This is a very speci ¢ and interesting exangilthe possible applications of FT.

In =( )N — with ( )! 1 for !1 (30)

ke T

6 The chaotic systems

In previous sections we have studied the probability of tietaintaneous negative entropy production rates
within the context of the FTs for stochastic systems, whieee wictuations are produced by the coupling with

a thermal bath. In se8.2we have seen that when the energy injected into the systeargisritharl00 kg T

the probability of these negative events is very small aedithe needed to observe them becomes extremely
long. In other words the role of thermal uctuations becomesgligible.

However in the introduction we have shown that instantasemgative entropy production rates can be
observed in chaotic systems such as, for example, turlkeiland granular media, where the uctuations are
produced by the non linear interactions of many degreeseefiivm. We have also pointed out that for chaotic
systems the amount of injected energy is order of magnitiadgsr tharkg T and of course thermal uctuations

3It has to be stressed that in this speci ¢ cgse ) keeps into account the fact that for short time2&gs not a good approximation
for the dynamics of the motor and €28,30 apply only for long time
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do not play any role in the uctuating dynamics. The questizat we want to analyze in this section is whether
we can apply in these systems the FTs de ned inZ¥ém. stochastic systems, ef6:13. For a dissipative
chaotic system one could imagine to repl&eg€l , in eqs10-13, with a characteristic enerdy. which keeps
into account the relevant energy scales of the system tictos. However the de nition of this relevant energy
scale can be in general dif cult and even impossible, beediusnay depend on the observable and on the kind
of forcing. Thus the approach of introducing Bg is not very useful to compare the experimental results with
the proof given for dynamical system2g. Indeed in this case the theorem considers a quantity :

Rt (t) dt

_ _ ot
Y == < > (31)

where (t) is the instantaneous phase space contraction ratie integral of on atime and< > the
mean of . Three hypothesis has been done on the dynamical systerh whist be : a) dissipative, b) time
reversible c) Anosot¢

=< >y +0(1=) for I1 (32)

where< > is the mean phase space contraction rate, which has the sloneof 1=t. In this equation

the relevant variable is the phase space contraction raighvilas been identi ed as the entropy production
rateR5]. The phase space contraction rate is a global variableeagybtem but an extension of the theorem for
local variables has been done in reg§,[56]. One reason for developing local FT is that global uctoat are
usually not observable in macroscopic systems, as a coaseg|t is important to understand whether a local
measurement is representative of the dynamics3Hups been tested in several numerical simulations (see for
example ref33, 34] for a review), here we want to focus on experiments.

6.1 Experimental test

The test of e@®2 in experiments is extremely useful to analyze several it@mbrquestions. The rst one is
whether ed32 may have a more general validity independently of the etite hypothesis done to prove it.
Indeed the hypothesis b) is never satis ed in real systerdgfamhypothesis ¢) does not necessarily apply to all
of them. Thus in general we do not even know whetheB2gan be applied in the experimental system under
study. The second question concerns the choice of the @iderdndeed the direct measure of the phase space
contraction rate is not possible and one has to rely upon tresare of another observable usually the energy
W injected into the system by the external forces in a timdn other words one is making the important
hypothesis thay , de ned in eg3lin terms of (t) is equivalenttx = W =<W >. This hypothesis, that

is not necessarily valid, is the second question that onddiite to address in experiments. The third question
is related to the estimation of the prefactor > in the right hand side of e82. This prefactor, which is a
function of the Lyapunov exponents, is very dif cult to estite in an experimental system. Finally the last
guestion concerns the relevance of a local observable ractesize the dynamics of the system.

There are not many experiments where these questions havednalyzed in some details. In several
experiments4, 36] only the linearity inx of the symmetry function(x )= (1= )In(P(x )=P( x )) has
been checked, which, for the reasons discussed in the peepimragraph, is only a partial test. For example
three experiments have tried to give an answer to the questithe prefactor. Two of these experiments are
performed in granular medi&,[6] and the third on mechanical wave turbulence in a metallidg3]. We
will not describe in details the experiments here but we galihment the main results.

6.1.1 Granular media

The two experiments of ref&] 6] consist of diluted granular media strongly shaken by aatim; but the
measured quantities are not the same. In5ftje authors measure the uctuations of the energy ux in a

“For a precise de nition see ref8%, 34]. Roughly speaking this property ensures that the systeimgistic and that on the attractor
there are no regions of nite volume that do not contain p&int
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subvolume of the system. Instead réf.{he work done by an external force on a ratchet inside thaujaa
media is measured. They both nd that although the systenoighermal the stochastic version of SSFT
(eql0) holds, provided thakg T is replaced by a characteristic enefgy.

P(x) <X >
= + = ):
In Pl X ) E. X + 0(1=) (33)
withx = X =< X >, X isthe integral of energy ux in refd] and the workW performed by an

external force on a ratchet in red][ It must be pointed out that in both experiments of ré&fsg] the energy

E. has been measured independently. In5gfd found thatE . is about 5 times larger than the kinetic energy
K e of the shaken granular medium for all the values of the comaoameters used in the experiment. The
fact thatK g andE; have the same dependence on the control parameter havenbegmdted considering
that the vibrator injects into the system the amount of gntasgt in the collisions but once excited in a NESS
the granular medium behaves like a thermal bath for the medsabservable. However this interpretation is
not necessarily correct. Indeed for the experiment of5kit[as been shown in a numerical simulatidsg]
that for the quantity measured in this experiment FT doesappty for the large deviations because the
symmetry functiorS(x ) becomes non-linear for large . This discrepancy between theory and experiment
is obviously coming from the fact that experimentally theyMarge deviation are dif cult to be measured, thus
the non-linear part o5(x ) cannot be observed. However the experiment of 5efd certainly interesting
because is the rst where the question of the prefactor has la@alyzed experimentally. In contrast for the
experiment of ref§] is observed thaE; = Kg (1 + )=2 where is the restitution coef cient of the grains.

It is interesting to notice thaK g (1 + )=2 is the temperature of an intruder inside a diluted granudesr ap

it has been found in theoretical mode&0] 61, 62]. These two examples of comparison between numerical
and experimental results show the dif culty of interpretithe experimental results on FT and the importance
of verifying them in a precise theoretical framework. Whdoes the difference between the experiments of
ref.[5] and ref.p] come from ? The answer can be found on the fact that in the kperenents two different
guantities are measured. Indeed in sewte have seen that, even for stochastic systems, the uonmtf

W ,Q and si: , behave differently within the context of FT. This can be mawenplex for granular media
and it will be useful to give more insight on this point. Fuatinore even in cases where a description in terms
of Ec applies, comparing €83 with eq32 a question that arises naturally is whetkeWW > =E . is a good
estimation ok > . This is an important question which will be interesting tabyze in the future.

6.1.2 Mechanical waves

In the experiment on mechanical wav&3|| a metallic plate is set into a chaotic state of wave tunhcdeby a
periodic local forcing a75Hz. (see Figl6a). The chaotic dynamics is produced by the non-linearactérn

of the oscillatory modes of the plate. The authors measeréottal force and displacement (see Higa) and
compute the worlkV  done on a time by the external force which excites the vibrations of thaéela hey
nd that the pdfs ofx = W = < W > are strongly non-gaussian (see Flgb). From these pdfs they
compute the symmetry functior(x ) which is plotted (see Fidl6c) as a function ok . We see that in spite
of the fact that the pdf are not Gaussian the functi¢x ) (Fig. 16c) converges to a unique straight line for
large as predicted by FT. From &g the slope of this straight line is > , which the authors can estimate
independently by measuring the relaxation time of the vibnal modes. They nd that the values estimated
with the two methods (FT and the relaxation time) are vergeland within experimental errors. This result is
quite interesting and it is probably the only experiment rghe direct test of e§2 has been done. Certainly
the errors of this comparison are very large but this kindesfg are useful to understand in some details the
applications of FTs to chaotic systems.
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P(Xg)

p(x,C)/X,E

T ]anc
Xz X1

Figure 16: Mechanical waves in a metallic plate (from &8]]. a) Schematic diagram of the experiment.
A steel plate is suspended to the frame. Dimensions are inldm. electromagnetic exciter produce et lo-
cal forcing of the plate vibrations. A laser vibrometer meas the normal velocity at the excitation point.
b)and c) Results on the periodic forcing. (b) Pdfs of thedtgd power on the time durations of for

= 3:5ms; 6:5; 135; 20; 26:5; 33.5; 40, 47:5; 52ms ) (c) Functions (x ) = (1=)In(P(x )=P( x))
obtained from the Pdfs of (b). Inset: compensated valxe)=x in a semi log plot. In (c) the dashed line
corresponds to a linear law of sloge > = 700Hz.

7 Summary and concluding remarks

In this paper we have reviewed several experimental resaltee uctuations of injected and dissipated power
in out of equilibrium systems. We considered the two caseswihe uctuations are produced by the coupling
with the heat bath (stochastic systems) and when they ackuged by the non linear interactions of many
degrees of freedom (chaotic systems). We have seen thathicéses we observe that the external forces may
produce a negative work because of uctuations. The prdibabif these negative events has been analyzed in
the framework of uctuation theorem.

We have mainly discussed the stochastic systems descibleahigevin equations, both with harmonic and
unharmonic potential. We have seen that injected and ditegippower present different behaviors. FTs are
valid for any value oW whereas can be applied only f@ << Q > in the case of the heat. We have
also seen the the nite time corrections to SSFT depend ordtiveng and on the properties of the system.
We have introduced the total entropy, which takes into actamly the entropy produced by the external
forces neglecting the the equilibrium uctuations. For tlotal entropy FTs are valid for all the times. We
discussed the applications of FTs to extract importantiphyproperties of a stochastic system. Thus one may
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conclude that for Markovian systems driven by a deternmimfetce the applications of FT does not present any
major problems and can be safely applied. The case of randemglhas been recently discussed and several
problems may arise when the variance of the driving becorgeddhan the uctuations induced by the thermal
bath. We have not discussed this problem but an analysisso$leci c case can be found in ref8, 64, 65].

Finally we discussed the applications of FT to chaotic systeThe experimental test is in this case very im-
portant and useful because many questions can be asked systhen under study which does not necessarily
verify all the theoretical hypothesis. One has to say th#teécase of non-Gaussian statistics even the linearity
of the symmetry function can be an interesting result. He@rae pointed out that, for a real comparison with
theory, the dif culty is to estimate of the prefactor of 88 by an independent measurement. Only a few exper-
iments have addressed this point in some details, but matygms remain open and it seems to be dif cult to
nd a general behavior for chaotic systems as for the caséghsastic ones.
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