The self-dual point of the two-dimensional random-cluster model is critical for $q\geq 1$

Abstract : We prove a long-standing conjecture on random-cluster models, namely that the critical point for such models with parameter $q\geq1$ on the square lattice is equal to the self-dual point $p_{sd}(q) = \sqrt q /(1+\sqrt q)$. This gives a proof that the critical temperature of the $q$-state Potts model is equal to $\log (1+\sqrt q)$ for all $q\geq 2$. We further prove that the transition is sharp, meaning that there is exponential decay of correlations in the sub-critical phase. The techniques of this paper are rigorous and valid for all $q\geq 1$, in contrast to earlier methods valid only for certain given $q$. The proof extends to the triangular and the hexagonal lattices as well.
Type de document :
Pré-publication, Document de travail
27 pages, 10 figures. 2010
Liste complète des métadonnées

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00495872
Contributeur : Vincent Beffara <>
Soumis le : mardi 29 juin 2010 - 10:33:12
Dernière modification le : jeudi 11 janvier 2018 - 06:12:31

Identifiants

  • HAL Id : ensl-00495872, version 1
  • ARXIV : 1006.5073

Collections

Citation

Vincent Beffara, Hugo Duminil-Copin. The self-dual point of the two-dimensional random-cluster model is critical for $q\geq 1$. 27 pages, 10 figures. 2010. 〈ensl-00495872〉

Partager

Métriques

Consultations de la notice

30