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Abstract

I review recent progress in the construction and classification
of maximally supersymmetric theories with non-abelian gauge
groups. The algebraic framework is based on the underlying ex-
ceptional symmetry groups. This has applications for supergrav-
ity theories describing flux compactifications as well as for the
recently constructed three-dimensional superconformal theories
describing the dynamics of multiple M2-branes.

1 Introduction

Supersymmetric theories in four dimensions are invariant under symmetries
that close into the superextension of the Poincaré algebra

{Qi
α, Q̄j β} = δi

j γµ
αβ Pµ , (1)

where the indices µ and α, β refer to space-time vectors and spinors, respec-
tively. The indices i, j = 1, . . . , N label the number of supercharges. As
a result, the field content of these theories falls into representations of the
superalgebra (1). Algebraic consistency restricts the maximal number of
supercharges to N = 4 and N = 8 for global and local supersymmetry, re-
spectively. The resulting supermultiplets are collected in table 1, the states
being organized by the helicity group SO(2).

1To appear in the proceedings of the 16th International Congress on Mathematical
Physics, Prague, August 3-8, 2009.
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helicity −2 −3
2 −1 −1

2 0 +1
2 +1 +3

2 +2

N = 4: 1 4 6 4 1

N = 8: 1 8 28 56 70 56 28 8 1

Table 1: Maximal supermultiplets.

The N = 4 supermultiplet combines 6 scalar fields with their fermionic
superpartners and the two helicity states of a massless vector field. The most
general theory with global N = 4 supersymmetry combines an arbitrary
number n of these multiplets, whose gauge fields realize a gauge group G of
dimension n. These are the super Yang-Mills theories [1]. Their classification
thus reduces to the classification of Lie algebras g of a given dimension, i.e.
to the solution of the Jacobi identities

f[ab
cfd]c

e = 0 . (2)

The situation is quite different for maximal local supersymmetry, i.e. for
theories realizing the N = 8 supermultiplet of table 1. As this multiplet
includes the spin-2 states of the space-time metric, only a single copy can be
described by an interacting theory. It then becomes a non-trivial question
which gauge groups can be realized by the 28 gauge fields while preserving
maximal local supersymmetry. Indeed, after the original construction of
N = 8 supergravity [2] with abelian gauge group U(1)28 and the first non-
abelian version [3] with gauge group SO(8), a variety of other viable non-
compact and non-semisimple gauge groups were discovered [4, 5, 6]. A
convenient framework to achieve a general classification uses the so-called
embedding tensor [7, 8, 9]. In the following I will review this formalism which
— generalizing (2) — reduces the classification of maximal supergravities to
a set of algebraic equations for the embedding tensor. I sketch the emerging
structure of non-abelian tensor fields in these theories and finish with an
example of a non-trivial application of the formalism also in theories with
global supersymmetry.

2 Gauged supergravity

A distinguished property of the abelian N = 8 supergravity is the underly-
ing global symmetry group G0 = E7(7) [2]. Its 70 scalar fields parametrize
the coset space manifold E7(7)/SU(8) while its 28 vector fields combine with
their magnetic duals into the fundamental 56-dimensional representation of
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E7(7), which we denote by AM
µ , (M = 1, . . . , 56) . On the physical fields of

table 1, this symmetry thus acts in a non-linear and non-local way; infinites-
imally, we parametrize this action as

δΛΦ = Λαtα · Φ , (3)

for an arbitrary physical field Φ, parameter Λ and with tα denoting the
generators of e7(7) = Lie E7(7) (i.e. α = 1, . . . , 133 parametrizing the adjoint
representation), closing into

[tα, tβ] = fαβ
γ tγ . (4)

In this version of the theory, none of the matter fields is charged under the
U(1)28 gauge group. Non-abelian deformations of the theory are obtained
by selecting a subset of generators tα and promoting their action (3) into a
local symmetry. The choice of generators is conveniently parametrized as

XM ≡ ΘM
α tα , (5)

by a constant embedding tensor ΘM
α, which encodes the embedding of the

gauge group into the global E7(7) of the ungauged theory. The action of
the generators XM can be promoted to a local symmetry by introducing
standard covariant derivatives2

Dµ ≡ ∂µ + AM
µ XM . (6)

Not every choice of generators (5) leads to a consistent theory. In particular,
the generators XM must close into a subalgebra. Moreover, it is only for
very particular subalgebras that the deformation is compatible with maxi-
mal supersymmetry. Fortunately, all consistency conditions translate into a
simple set of algebraic equations for the embedding tensor ΘM

α. Closure of
the gauge algebra requires

ΘP
βΘN

α(tβ)M
N + ΘP

βΘM
γfβγ

α = 0 , (7)

which can be interpreted as generalization of the Jacobi identities (2). Su-
persymmetry imposes a linear constraint on the embedding tensor

ΘM
α = (P912 Θ)M

α , (8)

2To be as general as possible, we allow for connections combining electric and magnetic
gauge fields. It turns out that for consistent choice of ΘM

α (see below) this gives rise to
sensible theories which allow for an off-shell formulation even in the presence of magnetic
charges [10].
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where the projector refers to the tensor product decomposition

56 ⊗ 133 = 56 ⊕ 912 ⊕ 6480 , (9)

of the fundamental and the adjoint representation of E7(7), corresponding to
the two indices of the embedding tensor. This leaves 912 free parameters in
ΘM

α, subject to the 8778 quadratic equations (7). It can be shown [9] that
every solution to the system of algebraic equations (7), (8) defines a consis-
tent theory with maximal local supersymmetry and gauge group spanned
by the generators (5). In particular, the scalar potential that appears in the
gauged theory, takes the form

V = ΘM
αΘN

β V MN
αβ(φ) ,

V MN
αβ(φ) ≡

(

(tα)P
R(tβ)Q

S MPQMRS + 7 (tα)P
Q(tβ)Q

P
)

MMN , (10)

bilinear in the embedding tensor ΘM
α. The scalar dependence arises through

the symmetric positive definite matrices M = VVT , with V denoting the
E7(7)/SU(8) coset representative, see [9] for details.

The universal form of the Lagrangian of the gauged theory and in partic-
ular of its scalar potential (10) is of particular importance for the study of the
low energy effective actions associated to particular flux compactifications
of higher dimensional theories. E.g. in flux compactifications of IIA/IIB
supergravity on (twisted) tori, the flux parameters show up as deforma-
tion parameters among the components of the embedding tensor and can be
uniquely identified by purely group-theoretical means, see [11] and references
therein. The expression (10) then allows to read off the full scalar potential
of the effective theory upon specifying the particular choice of ΘM

α.
The framework sketched here can equally well be applied to the construc-

tion of gauged supergravity theories in other space-time dimensions and with
a lower number of supersymmetries, in which case the constraints (7), (8) are
replaced by equations covariant under the relevant global symmetry group.

3 Non-abelian tensor fields

Apart from the minimal couplings induced by the covariant derivatives (6),
the field strengths of the vector fields acquire the standard non-abelian mod-
ification

FM
µν = ∂µAM

ν − ∂νA
M
µ + X[NP ]

M AN
µ AP

ν , (11)

with XMN
P ≡ ΘM

αtα N
P . While in standard Yang-Mills theory this defines

covariant objects, here the object (11) in general does not transform covari-
antly under local gauge transformations. Again, the reason is, that vector
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fields a priori transform in a given fundamental representation of the global
symmetry group; as a consequence, the “structure constants” XMN

P do not
satisfy the standard Jacobi identities. The natural covariant object turns
out to be the following combination [9]

HM
µν = FM

µν + ZMαBµν α , (12)

with ZMα ≡ −1
2ΩMNΘN

α, upon the introduction of two-form tensor fields
Bµν α, transforming in the adjoint representation of E7(7). The new field

strength HM
µν transforms covariantly under the combined set of gauge trans-

formations

δAM
µ = DµΛM − ZMα Ξµ α ,

δBµν α = 2 D[µΞν] α + 2(tα)M
KΩKN

(

ΛMHN
µν − AM

[µ δAN
ν]

)

, (13)

which exhibit Stückelberg-type couplings between vector fields and antisym-
metric two-forms, as is familiar from massive deformations of supergravities,
e.g. [12].

Similarly, the construction of a covariant field strength for the two-forms
requires the introduction of three-form tensor fields, etc. The final result is
a full hierarchy of non-abelian tensor fields which (schematically) extends
(13) to

δBµν = 2D[µΞν] + . . . − Y Φµν ,

δCµνρ = 3D[µΦνρ] + . . . − W Σµνρ ,

δDµνρσ = 4D[µΣνρσ] + . . . , (14)

where we have omitted all E7(7)-indices, see [13, 14] for details. The in-
tertwining tensors Z, Y and W are functions of the embedding tensor and
determine the precise E7(7) representation content in which the higher rank
p-forms must appear. For the N = 8 theory, the required forms B, C and
D transform in the 133, the 912, and the 133 + 8645, respectively. This
gives agreement with the predictions obtained from analyzing the branchings
of the infinite-dimensional representations of the underlying very extended
Kac-Moody algebra [15, 16]. Moreover, this representation assignment indi-
cates that the higher rank forms do not represent new propagating degrees
of freedom but magnetic duals to the physical field content: the two-forms
are dual to the 133 E7(7) Noether currents, while the 912 three-forms are
related to the deformation parameters combined in the embedding tensor as

D[µCνρσ]
M

α + . . . = V MN
αβ(φ) ΘN

β , (15)
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with the scalar dependent matrix V MN
αβ(φ) from (10). The 8778 four-

forms D in turn can be interpreted as Lagrange multipliers for the quadratic
constraints (7) [13].

4 Global supersymmetry in three dimensions

In certain cases, the embedding tensor formalism also provides a valuable
framework for theories with global supersymmetry [17, 18]. In three di-
mensions, maximally supersymmetric Yang-Mills theory is obtained by di-
mensional reduction from ten dimensions [1]. However, another N = 8
theory can be constructed by gauging the free theory of n scalar multiplets
{ΦIk,ΨȦk}, labeled by k, with I and Ȧ labeling SO(8) vectors and spinors,
respectively. The SO(n) Noether currents

Jkl
µ = ΦI[k∂µΦl]I + Ψ̄Ȧ[kγµΨl]Ȧ , (16)

allow for the introduction of dual vector fields which can be used to gauge (a
subgroup of) the global SO(n) group. In three dimensions, the embedding
tensor thus is of the form ΘM

α → Θkl,mn. The constraints (7), (8) in this
case take the form

Θkl,mn = Θ[kl,mn] ,

0 = Θkl,prΘmn,rq − Θmn,prΘkl,rq − Θkl,mrΘnr,pq + Θkl,nrΘmr,pq ,(17)

which reproduces the equations underlying the three-algebra structure of
Bagger and Lambert [19], to which SO(4) is the only solution with Θkl,mn =
ǫklmn . For N < 8, in contrast the corresponding equations admit a variety
of possible solutions.
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