G. Szabó, D. Orincsay, S. Malomsoky, and I. Szabó, On the Validation of Traffic Classification Algorithms, pp.8-72, 2008.
DOI : 10.1007/978-3-540-79232-1_8

R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, The 1999 DARPA off-line intrusion detection evaluation, Computer Networks, vol.34, issue.4, pp.579-595, 2000.
DOI : 10.1016/S1389-1286(00)00139-0

K. Cho, K. Mitsuya, and A. Kato, Traffic data repository at the WIDE project, USENIX 2000 Annual Technical Conference: FREENIX Track, pp.263-270, 2000.

M. Canini, W. Li, A. W. Moore, and R. Bolla, GTVS: Boosting the Collection of Application Traffic Ground Truth, p.9, 2009.
DOI : 10.1007/978-3-540-79232-1_8

H. Ringberg, A. S. Rexford, and J. , WebClass, ACM SIGCOMM Computer Communication Review, vol.38, issue.1, pp.35-38, 2008.
DOI : 10.1145/1341431.1341437

R. Fontugne, T. Hirotsu, and K. Fukuda, A Visualization Tool for Exploring Multi-scale Network Traffic Anomalies, Journal of Networks, vol.6, issue.4, pp.9-274, 2009.
DOI : 10.4304/jnw.6.4.577-586

F. Gringoli, L. Salgarelli, N. Cascarano, F. Risso, and K. C. Claffy, GT, ACM SIGCOMM Computer Communication Review, vol.39, issue.5, pp.13-18, 2009.
DOI : 10.1145/1629607.1629610

A. W. Moore and K. Papagiannaki, Toward the Accurate Identification of Network Applications, pp.5-41, 2005.
DOI : 10.1007/978-3-540-31966-5_4

A. Dainotti, W. Donato, and A. Pescapé, TIE: A Community-Oriented Traffic Classification Platform, pp.64-74, 2009.
DOI : 10.1007/978-3-540-31966-5_4

L. Salgarelli, F. Gringoli, and T. Karagiannis, Comparing traffic classifiers, ACM SIGCOMM Computer Communication Review, vol.37, issue.3, pp.65-68, 2007.
DOI : 10.1145/1273445.1273454

G. Dewaele, K. Fukuda, P. Borgnat, P. Abry, and K. Cho, Extracting hidden anomalies using sketch and non Gaussian multiresolution statistical detection procedures, Proceedings of the 2007 workshop on Large scale attack defense , LSAD '07, pp.145-152, 2007.
DOI : 10.1145/1352664.1352675

URL : https://hal.archives-ouvertes.fr/ensl-00177654

X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan et al., Detection and identification of network anomalies using sketch subspaces, Proceedings of the 6th ACM SIGCOMM on Internet measurement , IMC '06, pp.6-147, 2006.
DOI : 10.1145/1177080.1177099

R. Fontugne, Y. Himura, and K. Fukuda, Evaluation of Anomaly Detection Method Based on Pattern Recognition, IEICE Transactions on Communications, vol.93, issue.2, 2010.
DOI : 10.1587/transcom.E93.B.328

R. Sadoddin and A. A. Ghorbani, A Comparative Study of Unsupervised Machine Learning and Data Mining Techniques for Intrusion Detection, pp.7-404, 2007.
DOI : 10.1007/978-3-540-73499-4_31

H. Chul-kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos et al., Internet traffic classification demystified: Myths, caveats, and the best practices, p.8, 2008.

L. Bernaille, R. Teixeira, and K. Salamatian, Early application identification, Proceedings of the 2006 ACM CoNEXT conference on , CoNEXT '06, pp.6-7, 2006.
DOI : 10.1145/1368436.1368445

URL : https://hal.archives-ouvertes.fr/hal-01097554

T. Karagiannis, K. Papagiannaki, and M. Faloutsos, Blinc: multilevel traffic classification in the dark, SIGCOMM '05, 2005.

I. Trestian, S. Ranjan, A. Kuzmanovi, and A. Nucci, Unconstrained endpoint profiling (googling the internet), p.8, 2008.

M. E. Newman and M. Girvan, Finding and evaluating community structure in networks, Physical Review E, vol.69, issue.2, p.26113, 2004.
DOI : 10.1103/PhysRevE.69.026113

V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, vol.2008, issue.10, 2008.
DOI : 10.1088/1742-5468/2008/10/P10008

URL : https://hal.archives-ouvertes.fr/hal-01146070