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Investigating self-sim
distributions on a large

llarity and heavy-tailed
scale experimental facility

Patrick Loiseau, Paulo Goncalvédember, IEEE Guillaume Dewaele, Pierre Borgndiember, IEEE Patrice
Abry, Senior Member, IEEEand Pascale Vicat-Blanc Primétlember, IEEE

Abstract—After the seminal work by Taqqu et al. relating self-
similarity to heavy-tailed distributions, a number of research
articles verified that aggregated Internet traffic time series show
self-similarity and that Internet attributes, like Web file sizes
and flow lengths, were heavy-tailed. However, the validatio of
the theoretical prediction relating self-similarity and heavy tails
remains unsatisfactorily addressed, being investigatediteer us-
ing numerical or network simulations, or from uncontrolled Web
traffic data. Notably, this prediction has never been conclsively
verified on real networks using controlled and stationary senarii,
prescribing specific heavy-tailed distributions, and esthating
confidence intervals. With this goal in mind, we use the potetal
and facilities offered by the large-scale, deeply reconfigable
and fully controllable experimental Grid5000 instrument, to
investigate the prediction observability on real networks To this
end we organize a large number of controlled traffic circulaton
sessions on a nation-wide real network involving two hundre

series and random variables, which collected at the core of
networks, are valuable fingerprints of the system state &nd o
its evolution. With this in mind, the pioneering work by [1]
and [2] evidenced that the Poisson hypothesis, a relevaht an
broadly used model for phone networks, failed at describing
computer network traffic. Instead, self-similarity was \sho

a much more appropriate paradigm, and since then, many
authors have reported its existence in a wide variety ofi¢saf
[3], [4], [5], [6]. Following up this prominent discovery,
the theoretical work by Tagqu and collaborators constitute
another major breakthrough in computer network traffic mod-
eling, identifying a plausible origin of self-similarityitraffic
time series [2], [7], [8]. It posits that the heavy-tail negu

of some probability distributions, mainly that of flow size

independent hosts. We use a FPGA-based measurement systemdistributions, suffice to generate traffic exhibiting lorange

to collect the corresponding traffic at packet level. We then
estimate both the self-similarity exponent of the aggregad
time series and the heavy-tail index of flow size distributias,
independently. On the one hand, our results complement and
validate with a striking accuracy some conclusions drawn fom
a series of pioneer studies. On the other hand, they bring inew
insights on the controversial role of certain components ofeal
networks.

I. MOTIVATIONS

Comprehension and prediction of network traffic is a co
stant and central preoccupation for Internet Service Eergi

Challenging questions, such as the optimization of netwo(r;lg

resource utilization that respect the application coirgsa

the detection (and ideally the anticipation) of anomalird a
congestion, contribute to guarantee a better quality of s

vice (QoS) to users. From a statistical viewpoint, this is

challenging and arduous problem that encompasses sever:
components: network design, control mechanims, transp8
protocols and the nature of traffic itself. In the last de(:,adﬁe

great attention has been devoted to the statistical stutlynef

Patrick Loiseau is with Universite de LyorEcoIe Normale Supérieure
de Lyon (LIP), 46 allee d'ltalie, 69364 Lyon cedex 07, Frande-mail:
Patrick.Loiseau@ens-lyon.fr)

Paulo Gongalves and Pascale Vicat-Blanc Primet are witRIAN Uni-

versité de Lyon, Ecole Normale Supérieure de Lyon (LIP), 46 allée

d’ltalie, 69364 Lyon cedex 07, France. (e-mails: Paulo¢bres@ens-
lyon.fr, Pascale.Primet@ens-lyon.fr)

Guillaume Dewaele is with Université de LyoBcole Normale Supérieure
de Lyon, Laboratoire de Physique, 46 allée d'ltalie, 698§dn cedex 07,
France. (e-mail: Guillaume.Dewaele@ens-lyon.fr)

dependence, a particular manifestation of self-simjlaji%].
To support their claim, they established a close form retati
connecting the heavy-tail thickness (as measured by a tail
index) and the self-similarity exponent.

Notwithstanding its mathematical soundness, pragmatic va
lidity of this model has been corroborated with real world
traffic data only partially, so far. The first pitfall lies in
the definition of long range dependence itself, which, as
we will see, is a scale invariance property that holds only
asymptotically for long observation durations. Its cotesis
neasurement requires that experimental conditions niainta
nstant, and that no external activity perturbs the traffic
characteristics. In those conditions, finding a scale rahge
limits itself to stationary data, and that is sufficientlydeito
endorse reliable self-similarity measurements, is ariciate
Eiecondly, even though real traffic traces had led to check
ficordance between tail index and self-similarity expone
It . . . . .
nly was it perceived for a given network configuration that
cessarily corresponded to a single particular value ef th
parameters set. An extensive test, to verify that selfianity
exponent obeys the same rule when the tail index is forced to
range over some interval of interest, was never performed on
a large scale real network platform.
Finally, the exact role of the exchange protocol, viewed
as a subsidiary factor from this particular model, is still
controversial [10], [11], [12]. Due to the lack of flexible,
versatile, while realistic experimental environmentsit pat
this metrology questioning has been addressed by resesrche
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production platforms. However, these tools have limitagio
on their own, which turn difficult the studies, and yield only



incomplete results. is conducted in [11], that uses a network simulator, and wher

In the present work, we use the potential and the facilitie®me departure from the theoretical prediction is repd(feg
offered by the very large-scale, deeply reconfigurable aldin this article). This deviation is probably caused by the
fully controlable experimental Grid5000 instrument [18] t limited length of the simulation and also by the bias introel
empirically investigate the scope of applicability of Them by the used scaling estimator (R/S and Variance-Time) on
proposed by Taqqu et al. [2], [7], [8]. short traces. Actually, the main restriction of simulatbes

Under controlled experimental conditions, we first prdseri in their scalability limitation, and in the difficulty of the
the flow size distribution to different tail indices and coang validation. Indeed, the network is an abstraction, prawco
the measured traffic self-similar exponents with their eorrare not production code, and the number of traffic sources
sponding theoretical predictions. Then, we elucidatetheaf or bitrates you can simulate depends on the computing power
the protocol and of the rate control mechanism on traffic-scalf the machine.
ing properties. In the course, we resort to efficient estmsadf Large-scale experimental facilities are alternatives thay
the heavy-tail index and of the self-similarity exponentieed overcome both Internet and simulators limitations as they
from recent advances in wavelet based statistics and tip@rmit to control network parameters and traffic generation
series analysis. In our opinion, this revisited investmatis including statistics and stationarity issues. Emulab [s6h
the missing prerequisite to a rigorous methodologicaleppn network experimental facility where network protocols and
to assess the actual applicability conditions of this tedcal services are run in a fully controlled and centralized envi-
bond regarding real applications. That is why we deemed imenment. The emulation software runs on a cluster where
portant to start with an advisedblementaryand yetrealistic nodes can be configured to emulate network links. In an
traffic pattern, run on a real platform, under plainly coied Emulab experiment, the user specifies an arbitrary network
network configurations. The sequel is organized as follow®pology, having a controllable, predictable, and repuiole
Section I summarizes related works. Section Ill elabaatenvironment. He has full root access on PC nodes, and he
on theoretical foundations of the present work, including @n run the operating system of his choice. However, the
concise definition of parameters of interest. In Section I9ore network’s equipments and links are emulated. The RON
we develop the specifities of our experimental testbed, arestbed [17] consists of about 40 machines scattered around
we describe our experimental designs. Section V presents dne Internet. These nodes are used for measurement studies
comments the results. Conclusions and perspectives amadrand evaluation of distributed systems. RON does not offer
in Section VI. any reconfiguration capability at the network or at the nbdes
level. The PlanetLab testbed [18] consists of about 800 PCs o
400 sites (every site runs 2 PCs) connected to the Interpet (n
specific or dedicated link). PlanetLab allows researcleerar

Without giving full bibliography on the subject (many carexperiments under real-world conditions, and at a veryelarg
be found in [4], [5], [14]), there have been extensive reporscale. Research groups are able to request a PlanetLab slice
on self-similarity in network traffic. As most of them are(virtual machine) in which they can run their own experiment
based on measurements and on analysis of real-world tracesrid5000 [13], the experimental facility we use in the
from the Internet, they only permit experimental validatiof  present work, proposes a different approach where the geo-
a single point on the prediction curve of Tagqu's Theorergraphically distributed resources (large clusters cotateby
corresponding to one particular configuration. As its wagtra high end optical networks) are running actual piedes o
presented before, the question here is more on the relatgyitware in a real wide area environment. Grid5000 allows
between these two properties. This relation is rooted in theproducing experimental conditions, including netwaekftc
seminal work [2], [7] about the M/G/N queueing modelaind CPU usage. This feature warrants that evaluations and
with heavy-tailed distributions of ON periods. Nonethslescomparisons are conducted according to a strict and sigenti
first experimental works by Crovella and co-authors [3],][11method. Grid5000 proposes a complimentary approach to
hinted that this theoretical relation holds for interneiffic, PlanetLab, both in terms of resources and of experimental
and later on, also for more general types of traffic [10], [12knvironment.
However, due to the impossibility of controlling important
parameters when monitoring the Internet, only compatybili
of the formula could be tested against real data , but thare is
statistically grounded evidences that self-similarityasiered  Taqqu’s Theorem relates two statistical properties that ar
in network traffic is the work of this sole equality. On the @th ubiquitously observed in computer networks: On the one hand
hand, study of self-similarity at large scales is very siresto  self-similarity that is defined at the level of aggregatedeti
inevitable non-stationnarities (day and week periodisitior series of the traffic, and on the other hand, heavy-tailrests t
instance) and to fortuitous anomalies existing on the h&ter involves grouping of packets. Simplistically, network ffia
(see for instance [15]). It seems that the question hasesinis described as a superposition of flows (without notions of
never received a full experimental validation. In order tasers, or sessions,...) that permits us to adopt the fallpwi
obtain such a validation, an important feature is to be aldémple two-level model(i) Packets are emitted and grouped
to make the heavy-tail index vary, now there is only fewn flows whose length (or number of packets) follows a heavy-
attempts to validate the relation under these conditiome Otailed distributed random variable [19], [20], [21])) the sum

II. RELATED WORK

IIl. THEORY



over those flows approximates network traffic on a link or and, providedN > H + 1/2, the sequencédx(j,k), k =
router. This crude description is coherent with currentt (ye..,—1,0,1,...} form a stationary and weakly correlated time
more elaborate) statistical model for Internet traffic [4QJL]. series [6]. These two central properties warrant to use the

After a succinct definition of these two statistical propest empirical meanS(j) = n;lzk |dx (4, k)|2, (n; being the
we present the corresponding parameter estimation proegduumber of available coefficients at scalg) to estimate the
that we use in our simulations, and chosen amongst thasesemble averag&|dx (j,k)|?>. Eq. (4) indicates that self-
reckoned to present excellent estimation performance. similarity transposes to a linear behavior Ibfg, S(j) vs.

log, 2/ = j plots, often referred to as Logscale Diagrams

A. Self-similarity and long range dependence (LD) in the literature [5], [6]. A (weighted) linear regrésa

1) Definition: Tagqu’s Theorem implies that Internet timePf t_he LD within a proper range of octaves, j2 is used to
series are relevantly modeled by fractional Brownian nrotig®Stimates. _
(fBm), the most prominent member of a class of stochastic!n [5], [6], [22], the estimators performance are both theo-
processes, referred to aslf-similar processes with stationaryretically and practically quantified, and are proved to canep
increments(H-sssi, in short). Proces¥ is said to beH-sssi Satisfactorily against the best parametric techniquesebier,

if and only if it satisfies [9]: this estimator is endowed with a practical robustness that
fdd comes from its extra degree of freedawy,. In practice, the
X(@t)-X(0) = X(u+t)—X(u),Vt,ue R, (1) main difficulty lies in the correct choice of the regressiange

j1 < j < jo. This will be discussed in Section V, in the light

X(t) " qix (L) via>0,0<H<1, (2)
of actual measurements.

t
a
where "' means equality for all finite dimensional distri-
buti_ons. Eq. (1) indicate§ thgt the_ incremen_ts Xfform g Heavy Talil
stationary processes (whil& itself is not stationary). Es- - N ) ) )
sentially, self-similarity, Eq. (2), means that no chaesistic ~ 1) Definition: A (positive) random variablew is said to
scale of time can be identified as playing a specific role in thé heavy-tailed, with tail exponent > 0 (and noteda-HT)
analysis or description ak . Corollarily, Eq. (2) implies that when the. tail of its cumulat!ve distribution functiolfr,, is
EX (t)2 = EX(1)22H, underlining both the scale free andcharacterized by an algebraic decrease [24]:
the non-stationary natures of the process. B a
It turns out that the covariance function of the incrementP(W >w) =1-Fy(w) ~ L(w) -w for w — oo, (5)
process,Y (t) = X(t + 1) — X(t), of a H-sssi process\

s where L(w) is a slowly varying function (i.e.Va >
satisfies, forr| — +o0:

0, L(aw)/L(w) —y—co 1). A a-HT random variablex has
EY (t)Y (t +7) ~ EX(1)2H(2H — 1)|7*7-2, (3) finite moments up to ordex. For instance, whei < o < 2,
w has finite mean but infinite variance. A paradigm feHT

When1/2 < H <1, henced < 2 —2H < 1, such a power positive random variable is given by the Pareto distributio
law decay of the covariance function of a stationary process

is referred to as long range dependence [9], [14]. k «

Long range dependence and self-similarity designate two Fro(w) =1~ (w—+k) ’ ©6)
different notions, albeit often confused. The latter isagsted
to non stationary time series, such as fBms, while the form@ith & > 0 anda > 1. Its mean readsiw = k/(a — 1).
is related to stationary time series, such as fBm’s incramen 2) Tail exponent estimatiorEstimation of the tail exponent
In the present work, given that Taqqu’s Theorem predicts tha for a-HT random variables is an intricate issue that received
the cumulated sums of aggregated Internet time series re seonsiderable theoretical attention in the statisticsrditére:
similar, we adopt here the same angle and discuss the restigasuring the tail exponent of a heavy-tailed distribution
in terms of self-similarity of the integrated traces. amounts to evaluate from observations, how fast does the

2) Self-similarity parameter estimationtn [22], it was probability of rare events decrease in Eqg. (5). Once random
shown that wavelet transforms provide a relevant procefiure variables are know to be drawn from an a priori distribution,
the estimation of the self-similarity parameter. This @aare such as the Pareto form (6) for example, parametric estisiato
revealed particularly efficient at analyzing Internet tisegies exist and yield accurate estimates of the tail indexsee
in [5], [6] and has then been massively used in this contexg.g. [25]). However, if the actual distribution of obsereat

Let dx(j,k) = (¢jx, X) denote the (Discrete) Waveletdoes not match the a priori expecteeHT model, parametric
Transform coefficients, where the collectiohy; ,(t) = estimators fail at measuring the tail decay.
279/290(279t — k), k € Z, j € Z} forms a basis ofL%(R) For this reason, the non-parametric empirical estimator
[23]. The reference templaig, is termed mother-wavelet andof « proposed in [26] will be preferred. The principle of
is characterized by its number of vanishing mome¥js> 1, this estimator is simple and relies on the Fourier mapping
an integer such thaf t*y(t)dt = 0,vk = 0,...,N, — 1. between the cumulative distribution functidf, (w) and the
Then, decomposing d7-sssi process, the variance of theharacteristic function (s) of a random variable:
wavelet coefficients verifies [22]:

Eldx (j k)[* = Eldx (0,022 ), () (o) = [ dRuw), (7)



By a duality argument, the tail exponeatthat bounds the  Now, letYx (¢) = Zf;l Z;(t) denote the aggregated traffic
order of finite moments of,, time series and define the cumulative proc&sg(7't):

Tt

t N
o= Slrlp{T‘ >0: /|w|’” dFw(w) < oo}, (8) Xy (IT) = Yoo (w)du = /T <Z Zi(u)> @2
0 0 i=1

transposes to the local Lipschitz regularity of the chamastic

function y at the origin, according to: Tagqu’s Theorem (cf. [7]) states that when taking the limits

N — oo (infinitely many users) and” — oo (infinitely long
a=sup{r>0:1—-Ryw(s) =0O(s")ass — 07}, (9) observation duration), in this order, théfw (¢7") behaves as:

ETON
where ® stands for the real part. It is easy to recognize X~ (t1) ~ NTt+CVNT"By(t). (13)
in this power law behavior ofRxw(s), a scale invariance
property of the same type of that of relation (3), whic

is conveniently identifiable with wavelet analyses. Hencg,

ETON + ETOFF

|J]n this relation,C' is a constant and3y denotes a fractional
rownian motion with Hurst parameter:

computing the discrete wavelet decompositionff,,, and _3-a” .
retaining only the wavelet coefficients that lie at the arigi T2 wherea” = min(aoy, aorr,2).  (14)
k =0, yields the following multiresolution quantity: The order of the limits is compelling to obtain this asymjstot

) behavior; this has been discussed theoretically elsewdmete

is beyond the issues we address here. The main conclusion
where U, (-) denotes the Fourier transform of analyzin@f Taqqu’'s Theorem is that, in the limit of (infinitely) long
wavelety (). Now, let {wp,--- ,w,_1} be a set of i.i.da- observations, fractional Brownian motions superimposed t
HT random variables, and replace the ensemble average in ggferministic linear trend, are relevant asymptotic medel
(10) by its empirical estimator, the estimatesimply results describe the cumulated sum of aggregated traffic time series
from a linear regression of the form Moreover, Eq. (14) shows that only heavy-tailed distribng
with infinite variance (i.e.,l < min(aon,@orr) < 2) can
generate self-similarity associated to long range depwele
(i.e. H > 1/2). Conversely, when both activity and inactivity
periods have finite variance durations! = 2 and conse-
quently H = 1/2, which means no long range dependency.
The estimator was proved to converge for all heavy-tailed
distributions, and also it has a reduced variance of estimat IV. EXPERIMENTAL SETUP

: o : , :
in O(n™"), wheren is the sample size. We refer the interested 1, gy, the practical validity of Tagqu’s result, we use the

reader to [26] where robustness and effective use of tgential and facilities offered by the very large-scaleeply
estimator are thoroughly studied. Yet, let us mention the qnfigurable and fully controllable experimental GriG80
existence of a theoretical scale range where the linear modgsiryment, so as to overcome the limitations previously ex
Eq. (11), holds, and which shows very helpful for practiéo® ,,seq of emulations, simulations or measurements in produc
to adequately adjust their linear fitting over a correct escaﬁon networks. Moreover, we deliberately chose to work with

range. the simplest network configurations that permit a thorough
investigation of the Tagqu's Theorem: Namely, an elemen-

C. Taqqu's Theorem tary network topology encompassing multiples independent

ources whose throughputs aggregate on a single hop, and

A central _re_sult for interpreting statistical modeling of, e generation without congestion. This way, we isolat
network traffic is a celebrated Theorem due to M. Taqqu aggly natyre of the flows’ distributions as the main entry for

collaborators [2], [7], [8], in which heavy-tailness of ﬂOWTaqqu’s relation. After a general overview of Grid5000, the

sessions has been put .fo.rwa.\rd as a possible ,eXplanat'oan%trology platform is then described. Design of a large $et o
the occurrence of self-similarity of Internet traffic.

experiments, aimed at studying the actual dependence detwe

The original result considers a M/G/N queueing modele hanyork traffic self-similarity and the heavy-tailnesss
served by N independent sources, whose activiti€s(t), o size distributions, is finally detailed.

i € {1,..,N}, are described as binary ON/OFF processes.
The durations of the ON periods (corresponding to a packet ) _

train emission by a source) consists of i.i.d. positive and A- Grid5000 instrument overview

variablesroy, distributed according to a heavy-tail lai v, Grid5000, is a 5000 CPUs nation-wide Grid infrastructure
with exponenta = aoy. Intertwined with the ON periods, for research in Grid computing [13], providing a scientific
the OFF periods (a source does not emit traffic), have i.ihol for computer scientists similar to the large-scaldrins
random durationsorr drawn from another possibly heavy-ments used by physicists, astronomers, and biologists It i
tailed distribution Porr with tail index @ = aorpr. Thus, a research tool featured with deep reconfiguration, control
the Z;(t) consist of &/1 reward-renewal processes with i.i.dand monitoring capabilities designed for studying largales
activation periods. distributed systems and for complementing theoretical eteod

dy. (7,0) = E¥q (2/w) < C27*forj — —oo, (10

n—1
log@’g(j,()) = lognflz\IJ(iji)

~ aj+logC, asj — —oo. (12)



and simulators. Up to 17 french laboratories involved and 9
sites are hosting one or more cluster of about 500 cores each.
A dedicated private optical networking infrastructuregyaded

by RENATER, the French National Research and Education
Network is interconnecting the Grid5000 sites. Two inter-
national interconnections are also available: one at 13 Gb/
interconnecting Grid5000 with DAS3 in the Netherlands and
one at 1 Gb/s with Naregi in Japan. In the Grid5000 platform,
the network backbone is composed of private 10 Gb/s Ethernet
links connected to a DWDM core with dedicated 10 Gb/s
lambdas with bottlenecks at 1 Gb/s in Lyon and Bordeaux
(see Figure 1).

Grid5000 offers to every user full control of the requested
experimental resources. It uses dedicated network links be
tween sites, allows users to reserve the same set of resource
across successive experiments, to run their experiments in
dedicated nodes (obtained by reservation) and it perméssus
to install and to run their own experimental condition irfes
and measurement software. Grid5000 exposes two tOOISF@ 1. Grid5000 backbone
implement these features: OAR is a reservation tool, and
Kadeploy an environment deployment system. OAR offers an
accurate reservation capability (CPU/Core/Switch restéra)

RTT=12ms

and integrates the kadeploy system. With Kadeploy, each Switch Switch

user can make his own environment and have a total control 5=+ router router PCT

on the reserved resources. For instance, software andlkerne %\ /

modules for rate limitation, QoS mechanisms, congestian co PC 2 PC 2

trol variants can be deployed automatically within the veti \%’S\ Bottleneck /

operating system of a large number of communicating nodes,, | C=16bis | Rennes
OAR also permits users to reserve equipements for several ‘ ‘

hours. As a consequence, Grid5000 enables researchers to P99 %{ \PC %

run successive experiments reproducing the exact expetémne PC 100/ \PC 100
conditions several times, an almost impossible task witinesh sMee ] -

and uncontrolled networks. This insures also large-domati

observation windows under stationary conditions — somgthi p——" Capture

that is unachievable on the Internet. As a private testbed, 1 server

Grid5000 turns the installation of experimental hardwéike,

for instance the traffic capture instrument at represemtatiFig. 2. Metrology platform overview

traffic aggregation points, quite easy.

B. Metrology platform scenarii, TCP and UDP transfers are realized by ugpegf

Using the facilities offered by Grid5000, a platform fof27] on Sun Fire V20z (bi-opteron) workstations of Grid5000
metrology has been designed, and schematized in Fig.[23], running GNU/Linux 2.6.18.3 kernels with standard TCP
Before describing the monitoring facilities and the depeld and UDP modules. Iperf is a traffic generation tool that alow
data processing softwares, let us present the effectiadgp users to tune the different TCP and UDP parameters and to
used for this experiment. evaluate their impact on network performance.

1) Experimental system descriptiobnless explicitly men-  This single bottleneck topology was intentionally chosen
tioned, all our experiments consist in producing data floas our main goal was not to study the queueing effect of
transfers between many independent client nodes (sowamds) successive routers in a multiple hops network. We believe
many independent server nodes (destinations). It is aicéssthat, without loss of generality, the simplicity of this tes
dumbbell (or butterfly) topology with a single bottleneck ofopology suffices at properly creating the realistic experital
capacity, here of” = 1 Gb/s. We selectedv = 100 nodes conditions for investigating the limits of Tagqu’s Theorem
that are able to send up to &}, = 1 Gb/s on each direction 2) Capture systemTo measure the traffic at packet-level,
(see Fig. 2) we designed a specific system combining packet capture,

For our experiments, we used nodes on the Grid500@ader extraction and dedicated data analysis softwackefa
clusters of Lyon (clients) and Rennes (servers). The agerage first captured by mirroring the traffic of the access link
RTT is then stable and equal to 12 ms, which gives @nnecting the Lyon site to the rest of Grid5000. Only the
bandwidth-delay product of 1.5 MBytes. In our forthcomingutgoing traffic from the Lyon site to Grid5000 is mirrored,



connecting a 1 Gb/s fiber port to a 1 Gh/s copper port directedme set, while considering a significantly large number of
to the monitoring system. flows to guarantee statistical soundness. This constradasf
This system is composed of a GtrcNET-1 device [28the arduous issue of loss free capture, and that of dynamic
developed by AIST GTRC, and based on an FPGA that h&ble updating.
been programmed to extract and aggregate packet headeta our tool, flows are classically defined as a set of packets
and send them to an attached server. This header aggregatiain share the same 5-uplet comprising: source and destinat
reduces the number of interrupts of the computer that receiPs, ports, and protocol. However, because there is a finite
the traffic to analyse, decreasing the local loss probgbilinumber of ports, it is possible for two different flows to shar
In the packet capture system, the GtrcNET-1 is configuréitle same 5-uplet, and thus to get grouped in a single flow. To
to extract a 52-Bytes headers (composed of 14, 20 and did this, we set &i neout threshold: a flow is considered
Bytes of Ethernet, IP and TCP headers respectively) from the finished, if its packet train undergoes an interruptistirg
packets arriving at the one gigabit port. Headers are addedre thatt i neout . Any subsequent packet with the same 5-
a time-stamp each, encapsulated by groups of 25 into a UDplet will tag the beginning of a new flow. Naturally, a proper
packet and then sent to another gigabit port. Time-stampes hghoice oft i neout is delicate, but that is the only solution
a 60 ns 272* s) resolution. that works for any kind of flows. For TCP flows, though, things
The concatenated headers are stored in a computer vtk easier, as we can use the SYN or SYN/ACK flags to initiate
a quad core processor running at 2.66 GHz, 4 GB memogyflow (closing any currently open flow with the same 5-uplet),
2 ethernet gigabit ports, 300 GB SAS disk for the systerand the FIN or RCT flag to close the flow, dispensing with
1 RAID controller with 5 x 300 GB SAS disk in a RAID t i neout . Note thatt i meout remains necessary when the
0 array offering 1500 GB available for storing capture fileszIN packet is accidently missing.
We developed a driver that reads GtrcNET-1 packets, de-Flow reconstruction (witht i neout) is then performed
encapsulates time-stamped packet headers and writes ¢therm ta table that contains all currently open flows, using hash
a file in the pcap format. functions to speed up the access. The relatively modest trac
3) Data processing and Flow Reconstructioliie use a bitrate allows for keeping the whole table in memory. Since
series of tools over the captured IP traffic traces, to go froMCP sequence numbers and payload size for TCP packets are
the packet-level traces to the aggregated traffic and the fleaptured, it is possible to search for dropped or re-emitted
statistics that are needed in this work. A first step is to l@anchackets during the flow reconstruction and take that into
the captured IP traffic traces; secondly, we reconstruct th€count. Elementary statistics on the flows are then availab
flows from the packets number of packets, number of Bytes, duration of the flow, etc.
IP traffic traces, saved in standard pcap format by theAll together the data processing tools extract the two
capture device, are first processedi fpsundunp, a program elements needed for this study: the aggregated time-saries
developped at UCLA [29], able to read the pcap format arghcket-level, and the experimental flow-size distributiin
to summarizes TCP/IP dump files into a self-describing lyinagny traffic that will be sent through, and monitored in the
format. Thanks to this tool, we retrieve from our traces thgetrology platform of Grid5000.
needed informations: time-stamps, source and destinERign
port numbers, protocol, payload size, TCP flags, and seguenc o .
numbers. The informations are condensed into a binary ffie Rate limitation mechanisms
that is easier to parse, and which doesn’t depend on specifidhe last major aspect of the experimentation is the careful
capture hardware anymore. design of traffic generation. In real networks, flows are het t
Secondly, we have developed a collection of tools workirfguid ON/OFF flows of theM/ /G /N model: packets compos-
on thei psundunp binary format directly, which performs ing the flows are sent entirely, one after the other, at the wir
a variety of useful data operations on the traces. Of relevait-rate. This acts as an ON/OFF sending process. Following
interest here are: computation of the aggregated traffie tiron, a critical feature to consider in network experimenigigs
series (used for self-similarity estimation); extractafrtraffic is the mechanism of traffic generation, especially the rate a
sub-traces for conditioned study, based on flows or packethich the packets are sent. An important parameter is the
random sampling, or on parameters filtering (traffic from/taggregation level of the traffi&’, defined as the ratio between
a list of IPs, traffic on given ports, traffic using a specifithe bottleneck capacity and the access link nominal capacity
protocol, etc); and reconstruction of the flows existinghe t C,. In xDSL context and more generally in the Internet, it is
traces. not rare to have K ranging over 1000, while in the data-center
The question of flow reconstruction is an intricate problengontext, K is around 1 or 10. In our Grid5000 setup the K
that is an important and difficult aspect when one wants factor is close to 1. To obtain a K factor larger than 100 (so
study the impact of their heavy-tailness [14], [30], [3132]. as to mimic the natural rate limit based upon the bandwidth of
It is necessary to recompose each flow from the intertwingeske users’ uplink in the Internet configuration) and to imsur
packets stream measured on an aggregated link. This meamaiggregated throughput average lower thas 1 Gb/s, the
we must identify and group all the packets pertaining to th®urces rate has to be limited at most to 10 Mb/s.
. o End-host based mechanisms can control the individual flows
Using standard flow monitoring tools, such as Netflow or Sflawuld . . . . .
not be sufficient here. Indeed, we need statistical chaizaten at both N & scalable and 3|mple way [33]' When ConS'de”ng fixed
packet-level (forH-sssi) and flow-level (for-HT). size packets, the way to modify data rates over a large period



of time is to vary inter-packets intervals. To calculatesthe | I description |

) . : Client nod Sun Fire V20z (bi-opt
intervals, one <_:on_S|ders the time source that can be_: used to 'f(r;r:gl e UEN'{Je,LmUXZ z(_glgggmn)
enforce the limitation. In end-host systems, four différime TCP variant Bic, with SACK
sources are available: a) userland timers, b) TCP self zigck 'P$ff V‘Iv“rs'on th-to-%l

, ; ; opology utterfly
namely RTT of thg transfer’s path,_c) OS’s kernel timers, d) Bottleneck 1 Gbls
packet-level clocking. In our experiments we used three rat RTT 12 ms
limitation approaches which act at different time scalés t 20”095 ”tb- 51,\28/
. . . ource rate S
first one is based on packet-leyel clocking (packet spattes), Exp. duration S hours
second one on OS’s kernel timers (Token Bucket), the last Flows nb. 5.106
one on TCP self clocking namelRT'T of the transfer’s path Aggregation time - A =100 ps

The first two methods rely on the linux traffic shaping TABLE |

mechanism: with the c utility [34], the qdisc associated FIXED EXPERIMENTAL GLOBAL PARAMETERS.

to a network interface (the queue in which packets are put

before being sent to the network card) is configured. The

PSP (PSPacer) [35] qdisc spaces packets by inserting IEEE

802.3x PAUSE packets. These PAUSE packets are discardedexplained before, flows are reconstructed from the traces
at the input port of the first switches. With this mechanisnand we extract their flow sizes (in packel§) = {w;, i =
packets are regularly spaced and short bursts are avoitled. T, ..., n}, as well as the OFF times series corresponding to the
second method resorts to HTB (Hierarchical Token Buckat)ter-flow times for each source. Grouping and counting the
qdisc [36] that uses a bucket constantly filled by tokens at thackets in each contiguous time interval of width= 100
configured target rate. With this qdisc the average ratet limis, yields the aggregated traffic time seri€§™)(t).

can be overridden during short bursts. In order to clearly define the terms of application of Tagqu's
The third and last method modifies the TCP window sizeéheorem on real traffic traces, as well as to identify possibl
to slow down the throughput. The formutaindow_size = interactions with other factors, we designed four series of

target_throughput x RTT determines the TCP window sizeexperiments whose parameters are summarized in table II.
to use to limit the sending rate tturget_throughput. This

mechanism works well if the window size is not to smaffxperiment A: This is the cornerstone experiment to check
which means also that the target throughput and/orRifg” relation (14). Distribution of the ON periods are prescdibe
should not be too small either. As the TCP limitation ac® Pareto laws with meap®™ = 0.24 s (corresponding to
for each TCP connection, many sources located on the satgean flow size of ) = 100 packets). The experiment is
node can have independent rate limitation which is not tise c€rformed ten times with different prescribed tail indexx,

for qdisk-based limitation mechanisms. To limit the rateaof varying from 1.1 to 4. OFF periods are kept exponentially
1 Gb/s source to 5 Mbps with full size (1500 Bytes) Etherngistributed with mean®"" = 4. For each value ofox,
packet andRT'T of 12 ms one has to fix the window size tc@n experimental poin{don, H) is empirically estimated.

7.5 kBytes (corresponding to 5 full-size Ethernet packet). Moreover, to evaluate the possible influence of the protocol
and of the workload generation mechanism, the same series of

_ o experiments is reproduced with TCP (window size limitafion

D. Experiments description and with UDP (user-level packet pacing) first, and then using

Using the facilities offered by Grid5000, our metrology faPSP, HTB and TCP throughput controls. The exact same trial
cilities and the rate control mechanisms for traffic geriengt 0f random variables defining the flow lengths is used for all
several experiments were performed, and we elaborate hereegperiments that imply the same probability ldy.
their rationale. First, the general experimental conditiare Experiment B: Under similar conditions as in series A, the
presented. mean of the ON periods takes on two different valu€s' =

The primary interest here is the effect of flow size di.24 s andu©N = 2.4 s, corresponding to mean flow sizes
tributions on self-similarity, when each client behavdseli (P) = 100 and (P) = 1000 packets, respectively. The
a ON/OFF source model, where a ON period corresponakjective is here to relat¢P) to the lower scale bound
to a flow emission, and a OFF period to a silent sourcd;, = 2/t A defining a sensible regression range to estimate
The ON (respectively the OFF) lengths are random variablés
drawn independently and identically distributed, follogithe Experiment C: The protocol (TCP), the throughput limitation
specific probability distributiorPoy (respectivelyPorr) we mechanism (TCP window limitation) and the mean flow size
want to impose on the flow duratiomgy (respectively, on the ((P) = 1000) being fixed, we investigate now to role of
silent periods,;/orr). The emission of packets in each flonthe OFF periods distribution on the self-similar exponéht
is controlled by one of the methods described in previoWistribution of the OFF periods are prescribed to Paretslaw
Section, each source rate being limited to 5 Mb/s to avoidith mean " = 2.4 s. The experiment is repeated with
congestion at the 1 Gb/s bottleneck. different prescribed tail indexxorr, varying from 1.1 to

All experiments consist of one trace of 8-hour traffic gene#. ON periods are kept exponentially distributed with mean
ation, representing a total of approximately= 5.10° flows. p°N = ;,OFF. For each value ofiorr, an experimental point



Proto | Band | aon COFF (P) meas i . . . .
lim param 1) Tail index estimatesProceeding with experiment A, for

PSP different values of the tail index of the flow size distrilmrt

A| TCP | HTB | 11 _4 i 100 i Fig. 3 displays the differences between the prescribedevalu
5P TCI? ' a « and the actually estimated valde The two experimental
iper

curves, corresponding to TCP and UDP protocols respegtivel
B| TCP | TCP | 1.1-4 - 118(?0 A;.f ) superimpose almost perfectly. Beyond coherence with the
| fact that the exact same trial of random variables defining

Lc] ;gg | ;gg [ - 11-4] 1000 AH the flow lengths is used in both cases, such a concordance
D —uop perr | 114 - 100 | Fuoc demonstrates that the flow reconstruction procedure, fdr bo
TCP or UDP packets grouping, is fully operative, notably
TABLE Il including a relevant i neout adjustmentt(i mreout = 100
EXPERIMENTAL CONDITIONS SUMMARY. ms).

Fig. 3 also shows an increasing differenée{ «) with a.
In our understanding, this is not caused by an increasing bia

o.s S of the HT estimator_, which is known to perform equal_ly_ well
S ool posge el for all a values. It is rather caused by the natural difficulty
L oal ‘ el to prescribe large values ef over fixed duration. Indeed, as
€ 06l T+ « increases, large flows become more rare, and the number
os ‘ ‘ ‘ ‘ ‘ ‘ of observed elephants during the constant duration (8 hours
! 15 2 25 3 85 4 of the experiments naturally decreases, then deviating fo
Prescribed tail exponent statistically relevant sample. This observation is fulbnsis-

Fig. 3. Difference between the prescribed HT indexand the actually tent with arguments developed in [37]. Notwithstandings thi

estimated HT indexx for the set of different values af used in experiment Satisfactory agreement in the sequel we will systemayical
series A (see Tab. Il) for two different protocols: TCR)(and UDP 6). ~ ' .
refer toa rather than to the prescribed

2) Gaussianity:Before verifying the presence of long range
= dependence in the aggregated traffic time series, we first nee

Q H) is empirically estimated. . . )

( OFT ) ) P y €S : . . to validate the normal assumption (recall that the incréamen
Experiment D: The last series of experiments aims at inves- . ; .

T o ) process of a fBm is a stationary and Gaussian process). Thus,
tigating self-similarity at finer scales (lower than t#&'T

for each trace described in Tab. I, the Kurtosis irfdef

scale), and whose origin is distinct from long range depep- o : T
dance phenomena. The variable parameter is the tail index{g% aggregated traffic time series distribution was contpate

. . . . . . aeveral different aggregation intervals. As, the Kurtasgex
in experiment A, yet the scaling law index will be estimate . .
was always found to lie between0 and3.1, for aggregation

in the short time-scales limit, in order to characterize the

. ; N intervals Iarger.thgnA = 10 ms, we conclude that the
trafnc_ burstiness f_r(_)m the _proce_sfs - Under the same a\%gregated traffic time series is a reasonably Gaussiae$soc
experimental conditions as in series A, we then evaluate h%eyond this limit

the protocols (TCP versus UDP) entail a significant change in o . .
b ( versy ) I 'gnit ge! 3) LD-description: Fig. 4 shows typical LDs of aggre-

the traffic burstiness. e . . _ "
o ) _ gated traffic time series, obtained under similar condgion
Specifically for series A and C, where ON and OFF perioq3, heriment series A of Tab. II, TCP protocol, TCP window
are statistically forced, it is. crucial for those experirtgeto limitation), for 4 different values ofa. Such plots enable
guarantee a zero loss traffic. Otherwise, flow lengths and/zi)rgeneric phenomenological description of LDstifferent

silence periods may deviate from the prescribed dist@msti 5465 of scales can be visually identified, whose bounds do
due either to packet drop and re-emission, or to exponentigli ‘seem to drastically vary with:

back-offs. . .
Coarse scales In the coarse scale domain, a clear scaling

behavior is systematically observed. As mentioned earlier

V. RESULTS AND DISCUSSION Taqqu's Theorem relates heavy tails and self-similarity in
the asymptotic limit of coarse scales. Therefore, the sgali
A. Verifying Tagqu’s relation exponent at coarse scales, denatEdis a candidate to match

that involved in relation (14).
For every trace, we use the wavelet-based methodolog|gs scales At fine scales, another clear scaling behavior

described in Section Il for heavy tail and self-similaritytg 5150 observed. However, the corresponding scaling index
analyses. The estimated tail indéx(corresponding to either denotedh, is no longer related to Tagqu’s Theorem prediction
QonN Or Qorr, clear from the context of Tab. Il) results l‘rombut rather to a local regularity property of the data.

the linear regression of Eq. (11) applied to the flow sigRdium scales Intermediate scales mostly connect the two

sequencdV’ (or the OFF times series), where a sixth ordecaling behaviors happening for fine and coarse scales, but
derivative of a Gaussian wavelet is systematically use@ TByhibit no noticeable scaling behavior.

self-similarity indexH is estimated from the LD plots of the

. A ) .
aggregate.d time S.e”_eX( ), using a standard Daubechies 2The Kurtosis index of a R.V. is defined as the ratio of its fouorder
wavelet with 3 vanishing moments [23]. moment over its square variance, and takes on the \&inghe normal case.



607 _ 50;

a =11
+ Ton” +: TCP protocol
50F A Ogy=15 40l ©:UDP protocol
ol © o =19
o 9on T 4.0 w0l ‘
30f + ' .
1 1 * , 1 lﬁ'
1 ' A 1 ]
: ey 200 ' 4
200 L +agTo ! s
:¥ +agg° TS '
L Artaoqg + '
10 j/fA,:A ACG 10t ‘*: k3 !
1 1
o000 10 1
of f Yoo °! !
: : of ' '
-10p R'TT 'on RTT oN
H _10 ‘ ‘ ‘ ‘ ‘ ‘
0.1ms 1ms 10ms 100ms 1s 10s 100s

0.1lms 1ms 10ms 100.ms 1s 10§ 100s 1000s 10000s Time scale2’ A
Time scale2? A

) ) ) Fig. 6. Wavelet log-diagramig S(j) versus time scalg of aggregated

Fig. 4. Wavelet log-diagrambog S(j) versus time scalg of aggregated traffic (aggregation interval\ = 100 us). Log-diagrams correspond to two

traffic (aggregation interva = 100 us). Log-diagrams correspond to 4 timetime series obtained under similar experimental conditidor con = 1.5,

series obtained under similar experimental conditiond wie protocol TCP, with two different protocols: TCP+) and UDP 6).

with 4 different values otvon: 1.1 (+), 1.5 (), 1.9 () and 4.0 (). For the

sake of readability, curves were vertically shifted to avoverlapping.

normalized LDs. Each graph clearly exhibits a slope break:
at scale A} = 0.64 s when (P) = 100 and at scale

_ o o y Al000 = 10.28 s when(P) = 1000. Although for (P) = 100,
In Fig. 4, vertical lines materialize the two transition 1882 {he knee effect slightly smoothes out, the linear behavior

between the three depicted domains and can hence be id§dkerved for(P) = 1000 clearly extends with the same
tified as characteristic time scales of the data. Let Us NQyhpe heyondr19%° up to A1%°. Unquestionably, the measured

. - TR J Jo ’

investigate the nature of these characteristic times. knee position undergoes the same variations as the mean flow

duration, both quantities being in the same order of madeitu
ALY ~ 55(0.24 s) and A0 ~ G (2.4 ). This analysis
confirms the intuition that the coarse scale range, whefe sel
similarity is to be measured, lies above tkieeeof the LD,
whose position is in the same order of magnitude as the mean
flow duration. The coarse scales can then be renamedlotiie
scales or thefile scales

5) Protocol, rate limitation and coarse scalesAs we
investigate Taqqu’s relation, we now focus on the coarskesca
domain. To inquire on the impact of the protocol on the coarse
scales, Fig. 6 shows the LDs obtained with two different

1
1
1
:
-6 : .
1
1
1
1

8 o oo protocols : TCP and UDP (forx = 1.5). Fig. 6 evidences
A5 A5 the central feature that both LDs are undistinguishable in
s 100ms  1s 108 100s  1000s the coarse scale domain. We conclude that, when source rate
Time scale2’ A limitation precludes congestion, the protocol has no inhpac

Fig. 5. Averaged normalized log-diagrams for two differeman sizesP) the F:ogrse Scal_e SS‘ . o
of the transmitted flows:x) (P) = 1000 packets —{) (P) = 100 packets. Similarly, to inquire on the impact of the rate limitation

mechanism on the coarse scales, Fig. 7 shows typical LDs

4) Coarse scales domain lower bounidis alluded in [21] (« = 1.5, TCP) obtained with three different rate limitation
that the range of scales where self-similarity can be measumechanisms: PSP, HTB and TCP window limitation. As the
is beyond a characteristic scale, referred to askheeof three LDs cannot be distinguished one from the other in the
the LD, and that it is essentially controlled by the meacoarse scale domain, we conclude that the rate limitation
flow duration. To investigate this argument in the contexhechanism has no influence on the scaling behavior at coarse
of our analyses, we designed two experiments series wibales.
two different values of the mean flow duration (series B of 6) H versusaon: Practically, to perform an empirical val-
Tab. 1l). For each case, all the LDs corresponding to théation of Eq. (14), we need to estimate the scaling paramete
different values ofx are computed. To emphasize the impadt and thus to carefully choose the range of scales where the
of the mean flow duration, we substracted to each LD, thegression is to be performed. Although treeeposition has
asymptotic linear trend, obtained by linear regressiowbeh been related to a measurable experimental parameter (¢re me
a scaled; , clearly above th&neeposition, and the maximum flow duration), a systematic choice of the regression range
available scaleA; Fig. 5 shows, both fofP) = 100 at coarse scales would certainly be hazardous. Instead, we

Jmax *

and (P) = 1000 the mean and standard deviation over atlefined for each trace an adapted regression range, based on a
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Fig. 8. Estimated Self-Similar indek of the aggregated traffic (aggregation intendal= 100 us) versus estimated tail indexon of the corresponding
flow size distribution. Solid plots represent the theoestimodel of relation (14), dashed plots correspond to erpantal results: (a) with TCP protocol; (b)
with UDP protocol.

%01 larger than 2 have been drastically reduced when compared to
+: TCP limitation

o- PSP limitation similar analyses results reported in the literature (cf.,¢11]).

407 A HTB limitation This accuracy results from a number of factors: Firstly, the
statistical tools for estimatingy anda are chosen amongst the

4 most recent and robust (notably the proposed estimatod for
had never been applied before to Internet data); Secormily, t
asymptotic coarse scale nature of Tagqu's Theorem is really
accounted for by performing estimation in the limit of rgall
coarse scales; Thirdly, this is made possible thanks to ske u
of really long duration, stationary and controlled trafficé

201

107 %

o series, wich is enabled by the use of Grid5000 platform.
Additionally, our analyses do confirm that TCP and UDP

ms  1ms  10ms 100'“|S ; 1s 10s  100s protocols do not impact this relation, at least under cotigies
Time scale2’ A avoidance conditions corresponding to our experimentapse

Fig. 7. Wavelet log-diagramiog S(j) versus time scalg of aggregated This is in clear agreement with the findings reported in [12],

traffic (aggregation interval = 100 ). Log-diagrams correspond to 3 time o, 110] showing that TCP is not responsible for the observed

series obtained under similar experimental conditions,ofen = 1.5, with S . .

three different rate limitation mechanisms: TCR)( PSP ¢) and HTB (1).  Self-similarity. However, despite these earlier resudtspon

negligible number of contributions debated, investigaded

argued in favor of an impact of protocols on self-similarity

linearity criterion, and found that all regression rangefrobd Our analy_ses clearly Sh(.)w that the range of sca_leg V\(here
like this, encompass a scale intervalax, A;, = 20.5 s and protocols impact the LD is far below the characteristic time
L 1 .

Aj,... = 1310 s), significantly extended to warrant statisticall;fCales involved in self-similar p_henomena.
reliable SS exponent estimates. As long as we actually consider coarse scales (larger than

Fig. 8 plots the estimates of coarse scale SS expone,trlﬂg mean durat.ioln ofaflow),.the oqu cause for self-simtyari
against those of the HT indices. Confidence intervals &t the heavy tail in the flow sizes distribution.
H displayed on the graphs are supplied by the estimation?) OFF periods: To complement the experimental study
procedure detailed in Section 1II-A2 [6], [22] (recall thaof Taqqu's Theorem, the experiments of series C (see Tab.
normal hypothesis underlying the estimation of these confl) were designed to assess the influence of heavy-tailed
dence intervals was successfully verified on our data). Suéistributed OFF periods on the coarse scale SS exponent
estimations are conducted independently for TCP and UDP- Under experimental conditions detailed in Tab. II, Fig. 9
protocols. For both protocols, estimations show a venssatHisplays the estimated coarse scale SS exponents agaisst th
factory agreement with Taqqu’s Theorem prediction_ To thf the OFF periods HT indices. Since we previously validated
best of our knowledge, this theoretical relation betwedf: sethat the protocol has no influence on the scaling behavior in
similarity and heavy tail had never been observed with suctt@arse scales, these experiments were only performed with
satisfactory accuracy, (over a large and significant rarige o TCP protocol.
values). For instance, and although no definitive integti@n In contrast to similar results reported in the literaturé (c
has been proposed yet, the offset below the theoreticdiaela e.g., Fig. 5 (right) of [11], where the estimated valuefbfis
for a close to 1, and the offset above the horizontal linedor less thar).7, even foraq = 1.05), our results show a perfect
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Lir ‘ than RT'T. Accordingly, the rate limitation does not impact
the traffic atRT1T" scales.
iz
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Fig. 9. Estimated Self-Similar indei of the aggregated traffic (aggregation 03 11 15 2 3 4
interval A = 100 us, TCP) versus estimated tail indeXors Of the Tail index aon
corresponding OFF periods distribution. Solid plots repré the theoretical i ) ) o
model of relation (14), dashed plots correspond to experiateesults. Fig. 10. Fine scale scaling expondntestimates on aggregated traffic time

series A = 100us). For different values of the tail indexon governing the
flow size distributionsh is estimated by linear regression of Log-diagrams
(see Fig. 6) over the scale ranffe2 — 5]ms. Notched box-plots correspond

agreement with the theoretical relation of Eq. (14). Reagon to UDP protocol, regular box-plots to TCP protocol.
this theoretical accord certainly lies in the same originshee
ones evoked in the previous Paragraph (i.e. robust estigjato 2) Fine scales: TCP and UDP impact on fine scales
long-duration stationary traces and controlled configans)), scaling.Figure 6 shows a good scaling behavior at fine scales,
but possibly also, in the fact that we scrupulously avoidegiith a scaling index which seems to be different for UDP and
congestion, hence statistical alteration of the OFF peridd TCP.
the best of our knowledge, this other part of Tagqu's TheoremTo analyze in more details the fine scales scaling exponent,
had never been satisfactorily addressed. each 8-hour trace corresponding to a particular value of
Finally, let us notice that confidence intervals displayed isee experimental conditions of Experiment A in Table 1B ar
Fig. 9 are significantly larger than the ones of Fig. 8. This shopped into 66 short-length of duratih= 100 s each. The
due to the difficulty of imposing short OFF intervals that ledesulting time series are then analyzed independently and a
us here to increase the mean duratjiefvr = pon = 2.4 s fine scaling exponent estimated. Hence, based on these 66
(instead of0.24 s). In accordance with the interpretation of/alues ofh, box-plots are displayed on Figure 10 for each
Fig. 5, the coarse scale regression range is then conséquethieoretical value ofx. The values for TCP remain roughly
reduced. constant around ~ 0.63. Likewise for UDP,h does not seem
to depend or, but stands around.4, a significantly smaller
value than that for TCP.
Smaller thanRT'T, these fine scales correspond to the
In previous Section, we focused on the coarse scales of LPacket-scalesClearly then, the scaling index at these scales
Let us now turn to the medium and fine scales and study tiesensitive to the packet sending mechanism. When using
influence of protocols and rate limitation mechanisms. UDP, packets are emitted individually, separated by amr-inte
1) Medium scales:Firstly, let us notice that, while the packet interval £.4 ms) imposed by iperf to maintain the
mean flow duration gives an upper bound for the mediurate limitation 6 Mb/s). Therefore, UDP traffic is constantly
scale domainR7T'T (12 ms) seems to correspond to its loweand erratically varying. When using TCP, packets are sent
bound. Therefore, this medium scale range will be referoed by bursts containing up to 5 packets. Then TCP traffic is
as theRT'T-scales Although no scaling behavior is visible inbursty, but also sparse, with “long” periods of no packets.
this medium scale range, Fig. 6 shows a significant diffexen@/e believe that this packet sending scheme difference, in
between the LDs obtained from TCP and UDP traffic. This idose relationship with our experimental condition (seurate
an expected result a87'T is the characteristic time of actionlimitation used to avoid congestion) is sole responsible fo
of TCP protocol. the observed difference between TCP and UDP on the local
Fig. 7 shows that there is no significant difference in thisgularity.
domain between the LDs corresponding to the three differdBandwidth limitation impact on fine scales scalind=zigure
rate limitation mechanisms. The characteristic time ofoact 7 shows that the scaling index at fine scales is approximately
of the rate limitation is the mean inter-packet time. Due tthe same with TCP and HTB limitation, but it is very different
the source rate limitation & Mb/s achieved with 1500-Bytes with PSP limitation. This difference can again be explaibgd
packets, the mean inter-packet time for one sourcedians. the packet sending mechanism. When using HTB limitation,
As the mean number of sources emitting simultaneously packets are sent by bursts, in the same way as with TCP
50, the mean inter-packet time is 48, which is much lower limitation. This explains why the local regularity obsedve

B. Further analyses of the LD
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with HTB is the same as the one observed with TCP windopacket and flow-level controls do not impact the observed lon
limitation. On the contrary, when using PSP, packets aré seange dependence. Our analyses show that this is so, because
individually, in the same way as with UDP. Then, at fine scaléhe ranges of scales (segmented according toRfid" and
the scaling index observed with PSP is lower than the ot® the mean flow duration) related to self-similarity are far
observed with TCP limitation, as was the one observed witlvarser than those (fine and medium scale) associated to such
UDP. mechanisms. As a natural sequel of the present work, we now
plan to confront these results to more actual situationshimed
in real network applications. In particular, we will gentera
long-term stationary traces under various congestion gad a
In this paper, we experimentally demonstrated that thgegation levels, with heterogeneous source rates, iimglv
traffic generated on a real network platform conforms to thd#fferent source protocols, mixing variab®T'T's, including
theoretical bond between the file sizes distribution and tiseveral bottleneck and buffer capacities and ran with with
self-similar nature of instantaneous throughput measatréfte  variants of the high speed transport protocols. A preciseyst
link level. This work is based on three important innovativef the self-similarity impact on buffer utilization, queng
factors: the use of accurate estimation tools, a deepeysisal delays and dynamics, would certainly be worth investigatin
of Tagqu’s Theorem applicability conditions and the use ofas well. In our opinion though, the present study builds the
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