
HAL Id: ensl-00475780
https://ens-lyon.hal.science/ensl-00475780v2

Submitted on 1 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pipelined FPGA Adders
Florent de Dinechin, Hong Diep Nguyen, Bogdan Pasca

To cite this version:
Florent de Dinechin, Hong Diep Nguyen, Bogdan Pasca. Pipelined FPGA Adders. International
Conference on Field Programmable Logic and Applications, Aug 2010, Milano, Italy. pp.422-427,
�10.1109/FPL.2010.87�. �ensl-00475780v2�

https://ens-lyon.hal.science/ensl-00475780v2
https://hal.archives-ouvertes.fr


Pipelined FPGA Adders
LIP Research Report RR2010-16

Florent de Dinechin, Hong Diep Nguyen, Bogdan Pasca
LIP, projet Arénaire

ENS de Lyon
46 allée d’Italie, 69364 Lyon Cedex 07, France

Email: {Florent.de.Dinechin,Hong.Diep.Nguyen,Bogdan.Pasca}@ens-lyon.fr

Abstract—Integer addition is a universal building block, and
applications such as quad-precision floating-point or elliptic curve
cryptography now demand precisions well beyond 64 bits. This
study explores the trade-offs between size, latency and frequency
for pipelined large-precision adders on FPGA. It compares three
pipelined adder architectures: the classical pipelined ripple-carry
adder, a variation that reduces register count, and an FPGA-
specific implementation of the carry-select adder capable of
providing lower latency additions at a comparable price. For each
of these architectures, resource estimation models are defined,
and used in an adder generator that selects the best architecture
considering the target FPGA, the target operating frequency, and
the addition bit width.

Keywords-addition; pipeline; low-latency; FPGA

I. INTRODUCTION

Integer addition is used as a building block in many coarser
operators. Examples which require large adders include integer
multipliers, most floating-point operators, and modular adders
used in some cryptographic applications. In floating-point, the
demand in precision is now moving from double (64-bit) to
the recently standardized quadruple precision (128-bit format,
including 112 bits for the significand) [1]. In elliptic-curve
cryptography, the size of modular additions is currently above
150 bits for acceptable security.

This study presents an operator generator for binary integer
addition that is based on resource estimation models of possi-
ble implementations. Given a specification including a target
frequency, the generator queries the implementation models in
order to select the one matching this frequency at minimal cost.
Once found, the VHDL code of the selected implementation
is generated.

Adders differ in the way they propagate carries. Modern FP-
GAs include special hardware dedicated to carry propagation
[2], [3], [4], [5], [6]. Sending a carry to a neighbouring cell
through the dedicated carry line is much faster than sending a
bit to the same cell through the general reconfigurable routing
fabric. Therefore, proven solutions for VLSI designs [7] bring
little speed improvement on FPGAs over the ripple carry
adder (RCA) except for addition size exceeding 64 bits [8].
These speed improvements are small, and they come at a cost
penalty exceeding a factor 2 over the RCA. Therefore, a binary
addition is expressed in VHDL as a + and is implemented by
default as an RCA.

This article re-evaluates this situation when a pipelined
adder is needed. Pipelining is used for cutting the critical path

in order to increase operator frequency. To the best of our
knowledge, there is no IP core generator nor VHDL/Verilog li-
brary which provide high-performance pipelined binary adders
for FPGAs. This work introduces the adder generator used
in the FloPoCo project1 as a building block of most other
operators.

The main contributions of this work are:
• an alternative pipelining of ripple-carry adder;
• a novel short-latency pipelined adder;
• resource estimation models including slice, register and

LUT count for three adder architectures;
• integration of these models into an addition operator

generator that takes as input a list of user specifications,
and returns the VHDL code of the best operator.

A. Related Work

The simplest pipelining of binary addition [9], [10], [7]
consists in buffering the carry-out of each full-adder (FA)
along the carry propagation path, and inserting synchronization
registers for I/O. The previous technique is wasteful when
the objective period is larger than the delay of a 1-bit carry
propagation. For these cases, a better version [11], [7], [12]
consists in registering carries only every α FA cell. This
technique will be detailed in section II-A, and is referred to
as the classical RCA pipelining technique.

Faster techniques than the previous classical architecture
have been developed for VLSI. A first idea is to speed up the
logic on the carry propagation path [13], [10]. Other, more
algorithmic approaches include carry-select, carry-skip, and
the family of prefix adders [7]. These designs map poorly
on FPGAs, however they have served as an initial source of
inspiration for the proposed pipelining techniques from section
II-C.

A complete study on unpipelined binary FPGA addition is
presented in [8]. The authors present FPGA-specific optimiza-
tion opportunities for carry-skip and carry-select adders and
show that optimized versions of these adders can be faster than
the RCA for large addition sizes. However, these faster ver-
sions come at at a significant size penalty, which recommends
them only for delay-critical applications. Moreover, pipelining
is not covered. The present article extends this previous study
to pipelined addition.

1http://www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/



B. FPGA addition in the FloPoCo context

FloPoCo is a generator of arithmetic cores (Floating-Point
Cores, but not only) for FPGAs. FloPoCo also provides a
framework for arithmetic operator development that is, to our
knowledge, the easiest way to design complex operators with
flexible pipelines [14]. The operators presented in this paper
have been developed using the FloPoCo framework and are
essential building blocks of most complex FloPoCo operators.

FloPoCo generates arithmetic operators in human-readable
synthesizable VHDL starting from a list of user specifications
(see Figure 1). These specifications include: operator param-
eters (operand width for binary addition), deployment FPGA
target, target frequency and others. One of the original features
of FloPoCo is that operator generation is frequency-driven.
Instead of generating the fastest possible operator, the FloPoCo
philosophy is to provide the smallest operator meeting a
frequency constraint. This approach has the advantage of being
compositional: a larger operator working at frequency f may
be assembled out of sub-components working at frequency f .
This study formalizes frequency-driven addition pipelining.

C. Design-space exploration by resource estimation

Modern FPGA resources are heterogeneous, including LUT-
based logic, embedded memories, embedded DSP blocks, and
others. For addition, we only need to estimate logic and
registers. This study gives resource estimation formulae for
these resources for several Xilinx FPGAs. Altera targets are
currently only partially supported. This doesn’t mean that
FloPoCo operators do not work on Altera, just that they are
not optimized accurately.

The formulae allow for a fast and exhaustive design-
space exploration, where only the selected architecture will
be generated and synthesized. For this method to be valid,
we will check in III-A that these formulae effectively predict
the performance and resource consumption of the operator
after synthesis and technology mapping. Addition and register
mapping is simple enough for these formulae to be accurate
to about one percent in all cases.

D. FPGA targets

In the FloPoCo framework, each FPGA is abstracted to a
list of essential attributes: LUT features, routing delays, DSP
configurations, on-chip memory, etc..

The Xlinx VirtexII-Pro[2] , Spartan3 [3] and Virtex-4 [4]
FPGAs have very similar slice structure (Figure 2): two 4-input
LUTs with corresponding flip-flops and arithmetic logic for

VHDL

output delays

width
input delays

deployment FPGA
target frequency

Adder

Generator

Fig. 1. FloPoCo adder generator

carry-bit computation and propagation. Carry-bit propagation
is accomplished by means of dedicated carry-chains running
vertically through the FPGA layout.

This is the default slice type and is denoted by sliceL.
In addition, a secondary slice type featuring a superset of
functionalities is available. The sliceM cell allows the LUT
to be configured as a variable-length shift-register (SRL16).
When this configuration is used, shift registers of up-to 16 bits
can be absorbed in one half-slice. This feature, when available,
allows minimizing input/output synchronization cost.

The Virtex-5 and Virtex-6 slices [5] are similar with respect
to addition. However, they allow independent use of the LUTs
and registers, which means that estimation formulae have to
count them separately.

II. PIPELINED ADDITION ON FPGA

Let X,Y be two integers on w bits (in the range {0, ..., 2w−
1}) and cin a carry-in bit. The sum of X,Y and cin is noted
R = X+Y +cin. It is in [0, 2w+1−1] and is representable on
w + 1 bits. Note that all the following also applies to signed
integers in 2’s complement notation.

The RCA delay is proportional to the addition size. It
has three components. First, the LUT delay, δLUT, used to
precompute the carry multiplexer select signal. Then there is a
worst-case delay of (w−1)δcarry for carry propagation. Finally,
δxor, the delay of the xor gate used to compute the MSB sum
bit.

δw = δLUT + (w − 1)δcarry + δxor (1)

As w increases the addition frequency decreases as illus-
trated in Figure 3 for three FPGAs.

In the context of frequency-driven pipelining, a pair (w, f)
which is under the corresponding curve in Figure 3 meets the
frequency constraint. There are two solutions for additions not
meeting this constraint. We can choose a different addition
architecture that is able to reach the frequency without too
much of a cost penalty [8]. This solution is unable to cover the
entire (w, f) space. Another solution is to pipeline the adder
design such that the critical path of the circuit is less than
the target period T = 1/f . This study focuses on the second
solution, because it is more scalable and often consumes less
resources.

LUT4

LUT4

FF

FF

RAM16

RAM16

SRL16

SRL16

Fig. 2. sliceM (VirtexII-Pro, Spartan3 and Virtex-4)



A. Classical RCA Pipelining

A tight frequency-driven pipelining is obtained by first
determining the maximal addition size α in equation 1 for
which the critical path delay is less than the target period T :

α = 1 +

⌊
T − δLUT − δxor

δcarry

⌋
.

Next, the addition is split into k chunks of α bits (except the
last chunk denoted by β, β ≤ α) such that w = (k− 1)α+β.

An instantiation of this architecture highlighting the pre-
viously discussed parameters is presented in Figure 4 for
k = 4. As k decreases, the number of registers used for
synchronization decreases. When the critical path of the w-
bit addition is ≤ T , no pipelining is required (k = 1) and the
addition may be expressed as a simple + in VHDL.

The column labelled Classical in Table II presents the re-
source estimation formulae function of α, β, w, k, respectively
with and without allowing shift-register packing in LUTs
(SRL). Let us now explain how such formulae were built.

B. Resource estimation techniques

Let us take as a running example the previous classical
architecture, annotated on Figure 5.

The LUTs of the Xilinx FPGAs can be be used either as
a function generator or as a variable length shift-register, as
previously presented in Section I-D.

For classical architecture, the addition diagonal uses w
LUTs configured as function generators (Figure 5, σ). The
LUT SRL configuration is used wherever two or more flip-
flops are cascaded to form a shift register. This is the case
of the (k − 2)α SRLs under the addition diagonal (Figure
5, ξ), together with the 2β SRLs corresponding to the last
column of width β (Figure 5, µ) and of the 2(k − 3)α
SRLs above the diagonal (Figure 5, θ). These sum up to
w + (3k − 8)α + 2β = (4k − 9)α + 3β, which is the value
reported in Table II.

There is one consideration to be made before counting
registers: each time an SRL is used, the corresponding slice
flip-flop is also used. In other words, for a p-level shift-register,
p − 1 levels are pushed into the SRL and one into the flip-
flop. Hence, we count (3k − 8)α+ 2β registers for the same
number of SRL, and, in addition, α registers (Figure 5, φ)

100

200

500

8 64 128 256 512 1024

F
re

q
u

e
n

c
y
(M

H
z
)

Width (bits)

 

300

400

VirtexIV
Virtex5
Spartan3

Fig. 3. Ripple-Carry Addition Frequency for VirtexIV, Virtex5 and Spartan3E

under, 2α registers (Figure 5, ρ) above the diagonal plus
the k − 1 registers for the carry-bit propagation. These total
(3k − 5)α+ 2β + k − 1, the value reported in Table II.

The next task is to count slices. We choose to count half-
slices and divide this number by 2 rounding upwards. This
corresponds to a dense placement of the pipelined adder, which
the tools are expected to favor. Experimental results given in
section III-A will validate this assumption.

The number of half-slices used by the classical implemen-
tation is: w for the diagonal addition, (3k − 8)α + 2β for
the SRL and corresponding flip-flops, and 3α+ k − 1 for the
independent registers. However, we subtract α as the left-most
addition of α bits includes the registers in the same slice as
the LUT. The number totals (4k − 7)α + 3β + k − 1, which
is reported in Table II.

All the formulae presented in this paper were deduced using
these techniques. Relative errors of these estimation formulae
are given in Table III. The worst case relative error is of the
order of 10−2 (one percent) which makes them sufficiently
accurate for estimation formulae.

C. Alternative RCA Pipelining

The classical pipelining technique requires a significant
amount of registers for input synchronization. This number
may be lowered by performing the chunk additions at the first
pipeline level and then propagating these sums instead. When
no SRL are allowed, the number of registers propagated above
the diagonal will be approximatively halved, and may still be
packed in shift registers. An instantiation of this architecture
for k = 4 is presented in Figure 6.

Each adder on the addition diagonal takes as input an
operand on α+1 bits and a 1-bit carry in and returns a α+1-bit
wide result. This addition does not overflow, as the α+ 1-bit
input was the result of an addition of two α-bit numbers with
a carry-in of 0.

The resource estimation formulae for this architecture are
presented in Table II.

D. Short-Latency Addition Architecture

Given a target frequency f , the pipeline depth of the previ-
ously presented architectures increases linearly with addition
size. In this section we propose a scalable low-latency addition
architecture based on the textbook carry-select architecture,
whose novel feature is to make efficient use of the fast-carry
chains for the carry-bit computations.

The algorithm first determines the chunk size α as per
section II-A. Next, two sums are computed for each pair of
chunks: Xi + Yi and Xi + Yi + 1. The final result R is a
combination of the corresponding sub-sums and is found in a
space of 2k combinations. Selecting the appropriate sub-sum is
done by using a carry-in bit. The novel idea in this algorithm
is the use of the dedicated fast-carry chains to compute the
carry-bits for the result selection.

Actually, for each chunk, a pair (sum, carry-out) is com-
puted for both possible values of the carry-in. We use the



R0R2 R1R3

Y3 Y2 Y1 Y0

+

+

+

+

X3 X2 X1 CinX0

β

1 + α

1 + α

β β α α α α α α

1 + α

Fig. 4. Classical addition architecture [7]

σ

ξ

θµ

ρ

φ

R0R2 R1R3

Y3 Y2 Y1 Y0

+

+

+

+

X3 X2 X1 CinX0

β

1 + α

1 + α

β β α α α α α α

1 + α

Fig. 5. Annotated classical architecture

R0R2 R1R3

Y3 Y2 Y1 Y0

+

+

+

+

+++

X3 X2 X1 CinX0

1 + α

β

β β α α α α α α

Fig. 6. Proposed FPGA architecture

following notations to denote the concatenation of the sub-
sums and their corresponding carry-out bits.

ci
0Si

0 = Xi + Yi

ci
1Si

1 = Xi + Yi + 1

We denote by Ri the ith sub-result such that R =
Rk−1 . . . R1R0. The value of Ri can be expressed in the
following way knowing Si0, Si1 and ci−1.

if (ci−1 = 0) then Ri ← Si
0

else Ri ← Si
1

The carry-out bit for a chunk ci is computed from its
carry-in ci−1 and the two precomputed carries ci0 and ci

1.
The circuit used to compute them is particularly designed
to take advantage of the fast carry chains of the FPGA by
expressing the carry-out computation under the form of an
addition (Figure 7):

ci¬cis′i = ci−1 + ci
0 + ci

1 + 2

One can verify the correctness of the carry generation by
checking the truth table presented in Table I. Note that the
greyed-out rows of the table will never be needed, as ci0 = 1
implies ci1 = 1 (it is not possible that Xi + Yi overflows and
Xi + Yi + 1 doesn’t). The value of s′i is not used further but
is necessary for correct inference and mapping of the addition
on the fast-carry chains of the FPGA.

It should be noted that a strong point of this approach
is that this carry propagation is expressed as an addition,
and therefore portable (no need for vendor-specific low-level
LUT-filling primitives). For instance, porting it to Altera chips
should simply involve choosing the appropriate values for the
delay-related parameters influencing the chunk size.

The formulae presented in Table II are deduced for k ≥ 3.
To use them we thus have to ensure w ≥ 2α+1, possibly by
reducing α with respect to the optimal α deduced from the
target frequency.

The short-latency architecture depicted in Figure 8 has a
constant latency of two cycles. In addition, for lower frequency
operators, the second register levels can be discarded. How-
ever, choosing the correct splitting for the inputs is not trivial

CACFA FA ci−1

ci
11 ci

00

ci

¬ci

ci

ci
1 ci

0

¬ci

ci−1

s′i

Fig. 7. Carry-Add-Cell (CAC) implementation and representation

TABLE I
CAC TRUTH TABLE. GREYED-OUT ROWS ARE NOT NEEDED

ci−1 ci
0 ci

1 ci ¬ci s′i
0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 1 0 1

as we have to ensure that the critical path length is smaller
than the target period T . Considering that the first sums are
registered, we have to find the correct sizes for splitting the
inputs, such that the critical path length that includes the carry
generation circuit and the final additions is less than T .

Intuitively, as the index of the chunks added is higher, the
length of the corresponding carry bit propagation is longer
and thus the length of the final addition has to be smaller.
We use a greedy algorithm that, at index i finds the maximum
addition size such that the carry propagation for index i and the
final addition for this index is smaller than T . However, it is

Y1 Y0Y2Y3Yk−1

+
+

X1 1 X0 cin

+ + +
. . .

R0R1R2R3Rk−1

. . .
+

X2 1

+

X3 1

+

+

Xk−1

+++

CACCACCAC

Fig. 8. Short-Latency Addition architecture



possible that for a given input size w and a target frequency f ,
such a solution does not exist. In this case the second register
level is inserted, and the chunk size becomes α.

In addition to latency reduction, this optimization brings
the following gains: the number of registers is reduced by the
carry propagation size (which now needs no registering), the
LUT count is reduced by approximatively w, and the number
of slices by approximatively w/2.

Finally, the scalability of this architecture may be ensured
by pipelining the carry propagation circuit. Once k > α/2 the
length of the carry propagation becomes greater than the target
period and violates the constraints. In this case we pipeline this
addition with the best pipelining algorithm function on its size.
The increase in resources of the obtained architecture only
equals the increase in size of the carry-propagation operator,
as the possible delay introduced by this operator will be
transparently absorbed by the shift registers.

E. No packing of shift registers in LUTs (SRL)

The addition architectures presented so far make extensive
use of the shift-registers available in the sliceM. However,
this resource is getting rarer over the years. All the slices in a
VirtexII-Pro device were similar to sliceM, but they were
reduced to half the total number of slices for Virtex4 and
Spartan3, and about a quarter in Virtex5 and Virtex6 devices
(with higher density at the input of the DSP48E blocks). There
is an ISE option that prevents using this resource. It may
therefore be relevant to be able to generate adders with this
in view.

Out of the presented architectures, the low-latency one will
behave better when no shift registers are allowed. This is due
to the fact that it requires fewer registers for synchronization.
When k = 2, the alternative implementation behaves better
than the classical one, as it propagates approximatively half
as many signals on the upper part of the addition diagonal.
Resource estimations for the three architectures when not
allowing SRLs are presented in Table II.

F. Managing partial cycle delays

By assembling two pipelined components A and B working
at frequency f with registers between them, one obtains an
operator A|B that also works at frequency f , whose latency
is the sum of those of A and B, plus one. However, one may
sometimes save the registers between A and B if this doesn’t
introduce a critical path longer than the target period. The
FloPoCo framework includes experimental support for this
possibility. In general, a component may input a vector of
input delays, and will report the delays on each of its outputs
(see Figure 1). It could also work from output to input, this
is an arbitrary choice.

Back to adders, for the classical architecture, in the presence
of an input delay, the upper-rightmost addition now needs to
use a γ chunk size, γ < alpha so that the period of the γ
addition is less than T minus the input delay. The rest of the
chunks are split as before, as they are registered anyway. We
now have w = β + (k − 2)α + γ. The cost impact on the

architecture is dictated by βold > γ and the use of SRLs.
The βold > γ leads to an increment in pipeline depth. This is
absorbed by the shift-registers if available at no extra cost, or
costs as much as w/2 slices.

For both alternative and low-latency architectures, there are
two options: either perform all additions in using chunk size
γ, or buffer the inputs and perform computations using chunk
size α. For the alternative architecture, lower values for γ will
increase the latency of the operator. When SRLs are available,
the cost is maintained under control, otherwise the synchro-
nization cost greatly increases. For the low-latency operator, a
smaller γ may require pipelining the carry generation circuit.
However, the size of this circuit remains small with respect to
the total size.

All this shows that the best adder really depends on the
context. Work is under way to exploit these new possibilities
in FloPoCo.

III. REALITY CHECK

A. Estimation formulae

We have checked our estimation formulae against synthesis
results using Xilinx ISE 11.1. Results presenting the resource
usage estimations, obtained results and relative errors for both
with and without SRLs are presented in Table III for a 128-
bit addition synthesised on a Virtex4 (speedgrade -12) with a
required frequency of 400MHz.

First, it should be mentioned that all the synthesized adders
met the frequency target. In addition, one may observe that
the resource estimations are accurate for all criteria. The best
estimations are obtained as expected for LUTs and registers.
The slice estimations represent the lowest bound obtainable
leading to underestimation of the result. Nevertheless, the
relative error of the estimation remains small, of the order
10−2, or one percent.

B. Synthesis results

Synthesis results for some combinations of the input spec-
ifications are presented in Table IV. We choose different
target FPGA and different operating frequencies. For each
architecture and set of specifications we present the costs
reported by Xilinx ISE 11.1 and its pipeline depth. The
last column shows the gain of using the generated addition
operator against using the classical implementation.

The grey cells in Table IV highlight the lowest costs for the
given specifications. We can observe that for different addition
sizes the lowest cost is obtained by different architectures.
The accurate estimation formulae help choosing the best
architecture given the specifications and obtain the reported
gain.

IV. CONCLUSIONS

This article addresses the construction of pipelined adders
for large operands working at high frequencies, from speci-
fications including operand size, deployment target, running
frequency, and optimization directives.



TABLE II
RESOURCE ESTIMATION FORMULAE FOR THE TREE PIPELINED ADDER ARCHITECTURES WITH AND WITHOUT SHIFT-REGISTER EXTRACTION (SRL)

Classical Alternative Short-Latency

SRL
REG (3k − 5)α+ 2β + k − 1 (2k − 3)α+ β + 2k − 3 (k − 1)α+ β + 4k − 7

LUT
{

α+ β : k = 2
(4k − 9)α+ 3β : k ≥ 3

{
α+ 2β : k = 2
(4k − 8)α+ 3β + k − 3 : k ≥ 3

(4k − 6)α+ 3β + 2k − 4

SLICE d((4k − 7)α+ 3β + k − 1)/2e
{
d(α+ 2β + 1)/2e : k = 2
d((4k − 8)α+ 3β + 2k − 5)/2e : k ≥ 3

d((4k − 6)α+ 3β + 2k − 4)/2e

No SRL
REG 3k2−7k+4

2 α+ 2(k − 1)β + k − 1 (k − 1)w + k2 − 2k + 1 2w + 3k − 5

LUT w 2w − α 3w − 2α− β + 2(k − 2)

SLICE
⌈(

w +
3(k2−3k+2)

2 α+ 2(k − 1)β

)
/2

⌉ ⌈
((k − 1)w + β + k2 − 2k + 1)/2

⌉
d(4w − 2α− β + 2k − 4)/2e

TABLE III
RELATIVE ERROR FOR THE ESTIMATION FORMULAE ON A 128-BIT ADDER VIRTEX4 (4VLX15SF363-12) FOR A REQUESTED FREQUENCY OF 400MHZ.

Architecture SRL Results Estimations Relative Error
LUTs regs slices LUTs regs slices LUTs regs slices

Classical N 128 573 309 128 573 300 0 0 2 · 10−2

128bit Y 318 292 198 318 292 194 0 0 2 · 10−2

Virtex4(-12) Alternative N 222 392 216 223 393 207 4 · 10−3 2 · 10−3 4 · 10−2

400MHz Y 352 199 183 352 199 177 0 0 3 · 10−2

Short-Latency N 288 264 216 293 263 214 10−2 3 · 10−3 9 · 10−3

Y 416 136 216 421 137 211 10−2 7 · 10−3 2 · 10−2

TABLE IV
SYNTHESIS RESULTS ON XILINX FPGAS (OBTAINED USING ISE 11.1)

Size Freq Target Optimisation Classical Alternative Short-Latency Gain w/r classicalCost Depth Cost Depth Cost Depth

32bit 200 Spartan3 SLICE/SRL 62 4 62 4 76 2 0%
3s200pq208-5 SLICE/- 110 84 64 41%

64bit 450 Virtex4 SLICE/SRL 96 2 81 2 109 2 15%
4vlx15sf363-12 SLICE/- 113 82 110 27%

128bit 450 Virtex4 SLICE/SRL 247 5 230 5 258 2 6%
4vlx15sf363-12 SLICE/- 516 369 258 50%

128bit 450 Virtex5 REG/SRL 322 4 232 4 143 2 56%
5vlx30ff324-3 REG/- 718 525 267 63%

When the FloPoCo project was initiated, it was not expected
that we would need to dedicate so much work to something as
seemingly simple as integer addition on FPGAs. The reason
why it became important is that addition is so pervasive. The
presented adder generator provides subcomponents for integer
multipliers and constant multipliers, and for most floating-
point cores, including addition, multiplication, division and
square root, and elementary functions. If we want these cores
to work at a high frequency for double precision and beyond,
we need high-performance adders, but we also need them to
consume as little resources as possible. Therefore, the adder
generation described here is frequency-driven (possibly inher-
iting the frequency from the wider context) and minimizes
resource consumption, based on accurate resource estimation
formulae for three alternative pipelined adder architectures.

Work is under way to integrate the proposed adders in
all the coarser cores of the FloPoCo project, and to support
more FPGA targets. Future work also includes extending the
optimization options to include operator latency, and possibly
combinations such as “LUTs and latency”.

This work was partly supported by the ANR EVA-Flo
project and Stone Ridge Technology.

REFERENCES

[1] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp.
1 –58, 29 2008.

[2] Virtex-II Platform FPGA Handbook, Xilinx, 2000.
[3] Spartan-3 Generation FPGA User Guide, Xilinx, 2009.
[4] Virtex-4 FPGA User Guide, Xilinx, 2008.
[5] Virtex-5 FPGA User Guide, Xilinx, 2009.
[6] Stratix-II Device Handbook, Altera, 2007.
[7] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann

Publishers, 2004.
[8] S. Xing and W. W. Yu, “FPGA Adders: Performance Evaluation and

Optimal Design,” IEEE Design and Test of Computers, vol. 15, pp. 24–
29, 1998.

[9] I. Unwala and E. Swartzlander, “Superpipelined Adder Designs,” in
Circuits and Systems, 1993., ISCAS ’93, 1993 IEEE International
Symposium on, May 1993, pp. 1841–1844.

[10] L. Dadda and V. Piuri, “Pipelined Adders,” Computers, IEEE Transac-
tions on, vol. 45, no. 3, pp. 348–356, Mar 1996.

[11] P. M. Martinez, V. Javier, and B. Eduardo, “On the design of FPGA-
based Multioperand Pipeline Adders,” in XII Design of Circuits and
Integrated System Conference, 1997.

[12] R. Beguenane, J.-L. Beuchat, J.-M. Muller, and S. Simard, “Modular
multiplication of large integers on FPGA,” in in Proceedings of the
Thirty Ninth Asilomar Conference on Signals, Circuits and Systems,
2005, pp. 1361–1365.

[13] J. M. Muller, Arithmétique des Ordinateurs. Masson, Paris, 1989.
[14] F. de Dinechin, C. Klein, and B. Pasca, “Generating high-performance

custom floating-point pipelines,” in Field Programmable Logic and
Applications. IEEE, Aug. 2009.


