Computing specified generators of structured matrix inverses

Claude-Pierre Jeannerod 1, 2 Christophe Mouilleron 1, 2
1 ARENAIRE - Computer arithmetic
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme
Abstract : The asymptotically fastest known divide-and-conquer methods for inverting dense structured matrices are essentially variations or extensions of the Morf/Bitmead-Anderson algorithm. Most of them must deal with the growth in length of intermediate generators, and this is done by incorporating various generator compression techniques into the algorithms. One exception is an algorithm by Cardinal, which in the particular case of Cauchy-like matrices avoids such growth by focusing on well-specied, already compressed generators of the inverse. In this paper, we extend Cardinal's method to a broader class of structured matrices including those of Vandermonde, Hankel, and Toeplitz types. Besides, some rst experimental results illustrate the practical interest of the approach.
Type de document :
Communication dans un congrès
35th International Symposium on Symbolic and Algebraic Computation (ISSAC 2010), Jul 2010, Münich, Germany. ACM, 2010, 〈10.1145/1837934.1837988〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00450272
Contributeur : Claude-Pierre Jeannerod <>
Soumis le : mardi 26 janvier 2010 - 08:33:39
Dernière modification le : samedi 21 avril 2018 - 01:27:07
Document(s) archivé(s) le : jeudi 18 octobre 2012 - 13:15:37

Fichier

JeannerodMouilleron2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Claude-Pierre Jeannerod, Christophe Mouilleron. Computing specified generators of structured matrix inverses. 35th International Symposium on Symbolic and Algebraic Computation (ISSAC 2010), Jul 2010, Münich, Germany. ACM, 2010, 〈10.1145/1837934.1837988〉. 〈ensl-00450272〉

Partager

Métriques

Consultations de la notice

514

Téléchargements de fichiers

181