HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

A hitting set construction, with application to arithmetic circuit lower bounds

Abstract : A polynomial identity testing algorithm must determine whether a given input polynomial is identically equal to 0. We give a deterministic black-box identity testing algorithm for univariate polynomials of the form $\sum_{j=0}^t c_j X^{\alpha_j} (a + b X)^{\beta_j}$. From our algorithm we derive an exponential lower bound for representations of polynomials such as $\prod_{i=1}^{2^n} (X^i-1)$ under this form. It has been conjectured that these polynomials are hard to compute by general arithmetic circuits. Our result shows that the ``hardness from derandomization'' approach to lower bounds is feasible for a restricted class of arithmetic circuits. The proof is based on techniques from algebraic number theory, and more precisely on properties of the height function of algebraic numbers.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Cited literature [23 references]  Display  Hide  Download

Contributor : Pascal Koiran Connect in order to contact the contributor
Submitted on : Monday, December 7, 2009 - 11:01:27 PM
Last modification on : Saturday, September 11, 2021 - 3:17:03 AM
Long-term archiving on: : Thursday, September 23, 2010 - 11:17:26 AM


Files produced by the author(s)


  • HAL Id : ensl-00408713, version 2
  • ARXIV : 0907.5575



Pascal Koiran. A hitting set construction, with application to arithmetic circuit lower bounds. 2009. ⟨ensl-00408713v2⟩



Record views


Files downloads