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On mono
hromati
 arm exponents for 2D
riti
al per
olationVin
ent Be�ara, Pierre NolinÉ
ole Normale Supérieure de Lyon,Courant Institute of Mathemati
al S
ien
esAbstra
tWe investigate the so-
alled mono
hromati
 arm exponents for 
riti
alper
olation in two dimensions. These exponents, des
ribing the proba-bility of observing j disjoint ma
ros
opi
 paths, are shown to exist andto form a di�erent family from the (now well-understood) poly
hromati
exponents.1 Introdu
tionPer
olation is one of the most-studied dis
rete models in statisti
al physi
s. Theusual setup is that of bond per
olation on the square latti
e Z
2, where ea
h bondis open (resp. 
losed) with probability p ∈ (0, 1) (resp. 1 − p), independently ofthe others. This model exhibits a phase transition at a 
riti
al point pc ∈ (0, 1)(in this parti
ular 
ase, pc = 1/2): For p < pc, almost surely all 
onne
ted
omponents are �nite, while for p > pc there exists a unique in�nite 
omponentwith density θ(p) > 0. Site per
olation is de�ned in a similar fashion, thedi�eren
e being that the verti
es are open or 
losed, instead of the edges; one
an then see it as a random 
oloring of the latti
e, and use the terms bla
k andwhite in pla
e of open and 
losed.The behavior of per
olation away from the 
riti
al point is well understood,however it is only re
ently that pre
ise results have been obtained at and near
riti
ality. For 
riti
al site per
olation on the regular triangular latti
e, the proofof 
onformal invarian
e in the s
aling limit was obtained by Smirnov [15℄, and

SLE pro
esses, as introdu
ed by S
hramm [13℄ and further studied by Lawler,S
hramm and Werner [8, 9℄, provide an expli
it des
ription of the interfa
es (inthe s
aling limit) in terms of SLE(6) (see e.g. [17℄).This des
ription allows for the derivation of the so-
alled poly
hromati
 armexponents [10, 16℄, des
ribing the probability of observing 
onne
tions a
rosslarge modulus annuli by disjoint 
onne
ted paths of di�erent 
olors (with atleast one arm of ea
h 
olor), and also the derivation of the one-arm exponent.Combined with Kesten's s
aling relations [7℄, these exponents then provide theexisten
e and the values of most of the other 
riti
al exponents, like e.g. theexponent β = 5/36 asso
iated with the density of the in�nite 
luster: As p ↓ pc,
θ(p) = (p − pc)

5/36+o(1).1



On the other hand, very little is known 
on
erning the mono
hromati
 armexponents (i.e., with all the 
onne
tions of the same 
olor � see below fora formal de�nition) with more than one arm. Here, the SLE approa
h doesnot seem to work and, 
orrespondingly, there is no 
onje
ture for the values ofthose exponents. One notable ex
eption however is the 2-arm mono
hromati
exponent, for whi
h an interpretation in terms of SLE(6) is proposed at theend of [10℄ � but again no expli
it value has been 
omputed. That parti
ularexponent is a
tually of physi
al interest: Known as the ba
kbone exponent, itdes
ribes the �skeleton� of a per
olation 
luster. Even the existen
e of theseexponents is not 
lear, as there does not seem to be any dire
t sub-additivityargument.In this paper, we prove that the mono
hromati
 exponents do exist, andinvestigate how they are related to the poly
hromati
 exponents. We showthat they have di�erent values than their poly
hromati
 
ounterparts. As anillustration, our result implies that the ba
kbone of a typi
al large per
olation
luster at 
riti
ality is mu
h �thinner� than its boundary.A
knowledgmentsWe are indebted to J. van den Berg for pointing us out inequality (2.5). We arealso very grateful to W. Werner for many stimulating dis
ussions.Part of this resear
h was realized during a semester (resp. year) spent by P.N.(resp. V.B.) at Université de Genève, and both authors would like to thankthe mathemati
s department there for its hospitality, in parti
ular StanislavSmirnov. P.N.'s visit was made possible by the NSF grant OISE-07-30136.2 Ba
kground2.1 The settingWe restri
t ourselves here to site per
olation on the triangular latti
e, at 
riti-
ality (p = pc = 1/2). Re
all that it 
an be obtained by 
oloring randomly thefa
es of the honey
omb latti
e, ea
h 
ell being bla
k or white with probability
1/2, independently of the others. In the following, we denote by P = P 1/2 the
orresponding probability measure on the set of 
on�gurations. Let us mentionhowever that all the results of 
ombinatorial nature based on Russo-Seymour-Welsh type estimates should also hold for bond per
olation on Z

2, due to theself-duality property of this latti
e.Let Sn denote the ball of radius n in the triangular latti
e (i.e. the inter-se
tion of the triangular latti
e with the Eu
lidean dis
 of radius n, though thespe
i�
s of the de�nition are of little relevan
e), seen as a set of verti
es. Wewill denote by ∂Sn its outer boundary, i.e. the set of verti
es in Sn that haveat least one neighbor outside of Sn, and, for n < N , by
Sn,N := SN \ Snthe annulus of radii n and N . To des
ribe 
riti
al and near-
riti
al per
olation,
ertain ex
eptional events play a 
entral role: the arm events, referring to the2



existen
e of a number of 
rossings (�arms�) of Sn,N , the 
olor of ea
h 
rossing(bla
k or white) being pres
ribed.De�nition 1. Let j ≥ 1 be an integer and σ = (σ1, . . . , σj) a sequen
e of 
olors(bla
k or white). For any two positive integers n < N , a (j, σ)-arm 
on�gurationin the annulus Sn,N is the data of j disjoint mono
hromati
 paths (ri)16i6j �the arms � 
onne
ting the inner boundary ∂Sn and the outer boundary ∂SN ,where the 
olor of the arm ri is given by σi. We denote by
Aj,σ(n, N) :=

{

∂Sn 
j,σ

∂SN

} (2.1)the 
orresponding event.Wewill write down 
olor sequen
es by abbreviating 
olors, usingB and W forbla
k and white respe
tively. To avoid the obvious 
ombinatorial obstru
tions,we will also use the notation n0 = n0(j) for the smallest integer su
h that jarms 
an possibly arrive on ∂Sn0
(n0(j) is of the order of j) and only 
onsiderannuli of inner radius larger than n0. This restri
tion will be done impli
itly inwhat follows.The so-
alled 
olor ex
hange tri
k (noti
ed in [1, 16℄) shows that on
e �xedthe number j of arms, pres
ribing the 
olor sequen
e σ 
hanges the probabilityonly by a 
onstant fa
tor, as long as both 
olors are present in σ (an interfa
eis needed to pro
eed). Their asymptoti
 behavior 
an be des
ribed pre
iselyusing SLE(6): It is possible to prove the existen
e of the (poly
hromati
) armexponents, and to derive their values ([16℄) whi
h had been predi
ted in thephysi
s literature (see e.g. [1℄):Theorem 2. Fix j > 2. Then for any 
olor sequen
e σ 
ontaining both 
olors,

P
(

Aj,σ(n0(j), N)
)

= N−αj+o(1) (2.2)as N → ∞, with αj = (j2 − 1)/12.The value of the exponent for j = 1 (
orresponding to the probability ofobserving one arm 
rossing the annulus) has also been established [10℄ and it isknown to be equal to 5/48 (oddly enough formally 
orresponding to j = 3/2 inthe above formula . . . ).For future referen
e, let us mention the following fa
ts about 
riti
al per
o-lation that we will use.1. A-priori bound for one arm: There exist 
onstants C, ε > 0 su
h that forall n < N ,
P

(

A1,B(n, N)
)

= P
(

A1,W (n, N)
)

6 C

(

n

N

)ε

. (2.3)2. Quasi-multipli
ativity property: For any j > 1 and any sequen
e σ, thereexist 
onstants C1, C2 > 0 su
h that for all n1 < n2 < n3,
C1 P

(

Aj,σ(n1, n2)
)

P
(

Aj,σ(n2, n3)
)

6 P
(

Aj,σ(n1, n3)
)

6 C2 P
(

Aj,σ(n1, n2)
)

P
(

Aj,σ(n2, n3)
)

.3



These two properties a
tually rely on the so-
alled Russo-Seymour-Welsh(RSW) lower bounds, that we will use extensively in various situations: Roughlyspeaking, these bounds state that the probability of 
rossing a given shape of�xed aspe
t ratio is bounded below independently of the s
ale. For instan
e,the probability of 
rossing a 3n× n re
tangle in its longer dire
tion is boundedbelow, uniformly as n → ∞. We refer the reader to [6℄ for more details.2.2 A 
orrelation inequalityA key ingredient in our proof will be a not-that-
lassi
 
orrelation inequalitywhi
h is an intermediate step in the proof of the van-den-Berg-Kesten-Reimer(BKR) inequality, 
onje
tured in [2℄ and proved in [12℄.Let us �rst �x some notation. We follow here the lines of the review paper[3℄. Consider an integer n, and Ω = {0, 1}n. For any 
on�guration ω ∈ Ω andany set of indi
es S ⊆ {1, . . . , n}, we introdu
e the 
ylinder
[ω]S := {ω̃ : ∀i ∈ S, ω̃i = ωi},and more generally for any X ⊆ Ω, any S : X → P({1, . . . , n}),

[X ]S :=
⋃

ω∈X

[ω]S(ω).For any two A, B ⊆ Ω, we denote as usual by A ◦ B the disjoint o

urren
eof A and B:
A ◦ B := {ω s.t. for some S(ω) ⊆ {1, . . . , n}, [ω]S ⊆ A and [ω]Sc ⊆ B}.Re
all that the BKR inequality states that

P (A ◦ B) 6 P (A) P (B). (2.4)We also denote by ω̄ = 1 − ω the 
on�guration obtained by ��ipping� everybit of the 
on�guration ω ∈ Ω, so that if X ⊆ Ω, X̄ := {ω̄, ω ∈ X}. We are nowin a position to state the 
orrelation inequality that will be a key ingredient inthe following, referred to as Reimer's main lemma in [3℄:Theorem 3. For any A, B ⊆ Ω, we have
|A ◦ B| 6 |A ∩ B̄| = |Ā ∩ B|. (2.5)For the sake of 
ompleteness, let us just mention that this inequality is notstated expli
itly in [3℄. It 
an be dedu
ed from Lemma 4.1 by taking X = A◦B,and S : X → P({1, . . . , n}) asso
iated with A and B by the de�nition of disjointo

urren
e, i.e. so as to satisfy [ω]S(ω) ⊆ A and [ω]S(ω)c ⊆ B for all ω ∈ A ◦ B(so that [X ]S ⊆ A and [X ]Sc ⊆ B).2.3 Statement of the resultsIn this paper, we will be interested in the asymptoti
 behavior of the probability

P (Aj,σ(n0(j), N)) as N → ∞ for a 
onstant σ, say σ = B . . .B, so that Aj,σsimply refers to the existen
e of j disjoint bla
k arms. Our �rst result showsthat this probability follows a power law, as in the 
ase of a non-
onstant σ:4



Theorem 4. For any j > 2, there exists an exponent α′

j > 0 su
h that
P

(

Aj,B...B(n0(j), N)
)

= N−α′

j+o(1) (2.6)as N → ∞.These exponents α′

j are known as the mono
hromati
 arm exponents, andit is natural to try to relate them to the previously mentioned poly
hromati
exponents αj .Consider any j > 2; we start with a few easy remarks. On the one hand,the FKG inequality implies that
P (Aj+1,B...BW (n0, N)) = P (Aj,B...B(n0, N) ∩ A1,W (n0, N))

6 P (Aj,B...B(n0, N)) P (A1,W (n0, N)),and by using item 1. above, we get that, for some 
onstant C,
P (Aj+1,B...BW (n0, N)) 6 CN−ε

P (Aj,B...B(n0, N)), (2.7)or in other words that α′

j < αj+1. On the other hand, inequality (2.5) dire
tlyimplies that
P (Aj,B...BB(n0, N)) = P (Aj−1,B...B(n0, N) ◦ A1,B(n0, N))

6 P (Aj−1,B...B(n0, N) ∩ A1,W (n0, N))

= P (Aj,B...BW (n0, N)),hen
e α′

j > αj . We will a
tually prove the following, stronger result:Theorem 5. For any j > 2, we have
αj < α′

j < αj+1. (2.8)The mono
hromati
 exponents α′

j thus form a family of exponents di�erentfrom the poly
hromati
 exponents.We would like to stress the fa
t that the 
ase of half-plane exponents (ormore generally, boundary exponents in any planar domain) is 
onsiderably dif-ferent: Indeed, whenever a boundary is present, the 
olor-ex
hange tri
k impliesthat the probability of observing j arms of pres
ribed 
olors is exa
tly the samefor all 
olor pres
riptions, whether mono- or poly-
hromati
. In parti
ular thereis no di�eren
e between the mono
hromati
 and poly
hromati
 boundary expo-nents. (For the reader's pea
e of mind, they 
an noti
e that the presen
e of theboundary provides for a 
anoni
al 
hoi
e of a leftmost arm, the la
k of whi
h ispre
isely the 
ore idea of the proof of our main result in the whole plane.)We will �rst prove the inequality αj < α′

j (whi
h is the main statement inthe above theorem, the other stri
t inequality being the simple 
onsequen
e ofthe FKG inequality we mentioned earlier), sin
e its proof only requires 
ombi-natorial arguments, and postpone the proof of the existen
e of the exponents tothe end of the paper. 5



In order not to refer to the α′

j 's, we adopt the following equivalent formu-lation of the inequality: What we formally prove is that, for any j > 2, thereexists ε > 0 su
h that for any N large enough,
P (Aj,B...BB(n0, N)) 6 N−ε

P (Aj,B...BW (n0, N)).The proof of that inequality only relies on self-duality and RSW-type estimates,and hen
e it 
an be easily adapted to the 
ase of bond per
olation on Z
2 �where the existen
e of the exponents, whi
h strongly relies on the knowledge ofthe s
aling limit, is still unproved.3 The set of winding angles3.1 Stri
t inequalities between the exponentsOur proof is based on an energy vs. entropy 
onsideration. The di�eren
e be-tween the mono
hromati
 and the poly
hromati
 j-arm exponents 
an be writ-ten in terms of the expe
ted number of �really di�erent� 
hoi
es of j arms out ofa per
olation 
on�guration with j arms: For a poly
hromati
 
on�guration, thisnumber is equal to 1, whereas for a mono
hromati
 
on�guration, it grows atleast like a positive power of the modulus, and the ratio between these two num-bers behaves exa
tly like (N/n)αj−α′

j be
ause, for �xed disjoint arms (r1, . . . , rj)with respe
tive lengths (ℓ1, . . . , ℓj), the probability that they are present in the
on�guration with a pres
ribed 
oloring does not depend on that 
oloring (it isequal to 2−(ℓ1+···+ℓj)).More pre
isely, but still roughly speaking, the proof relies on the followingobservation: Given a 
on�guration where j bla
k arms are present, there aremany ways to 
hoose them, sin
e by RSW there is a positive density of 
ir
uitsaround the origin (allowing �surgery� on the arms � see Figure 1), while if we
onsider a 
on�guration with arms of both 
olors, then there is essentially onlyone way to sele
t them. Of 
ourse the geometry of an arm is quite intri
ateand many lo
al modi�
ations � on every s
ale � are always possible: Whatwe mean here is that this 
hoi
e is unique from a ma
ros
opi
 point of view.To formalize this intuition, we thus have to �nd a way of distinguishing twoma
ros
opi
 
hoi
es of arms, and for this we will use the set of winding anglesasso
iated with a 
on�guration.De�nition 6. For any 
on�guration of arms, one 
an 
hoose a 
ontinuousdetermination of the argument along one of the arms; we 
all winding angle ofthe arm (or simply angle for short) the total variation of the argument alongthat arm.Clearly, the winding angles of the arms 
orresponding to a given (j, σ)-arm
on�guration di�er by at most 2π. However, for the same per
olation 
on�g-uration, there might exist many di�erent 
hoi
es of a (j, σ)-arm 
on�guration,
orresponding to di�erent angles: We denote by Ij,σ(n, N) the set of all theangles whi
h 
an be obtained from su
h a 
on�guration; we omit the subs
riptfrom the notation whenever j and σ are 
lear from the 
ontext. For the sake of
ompleteness, we also de
lare Ij,σ(n, N) to be empty if the 
on�guration doesnot 
ontain j arms of the pres
ribed 
olors.6



∂SN

∂Sn

∂SN

∂Sn

Figure 1: To a given mono
hromati
 
on�guration 
orrespond many di�erent�ma
ros
opi
� ways to 
hoose the arms, 
ontrary to the poly
hromati
 
ase.We will a
tually rather use Īj,σ(n, N), the set of angles obtained by �
om-pleting� Ij,σ(n, N):
Īj,σ(n, N) :=

⋃

α∈Ij,σ(n,N)

(

α − π, α + π
]

.It is an easy remark that in the poly
hromati
 
ase (σ non-
onstant), we havefor any α ∈ Ij,σ(n, N)

Ij,σ(n, N) ⊆ (α − 2π, α + 2π),so that Īj,σ(n, N) is an interval of length at most 6π. In the mono
hromati

ase (σ 
onstant), no su
h bound applies (and a
tually it is not obvious that
Īj,σ(n, N) is an interval � this is proved as Proposition 7 below).In the 
ase of a poly
hromati
 arm 
on�guration, 
onsidering su

essiveannuli of a given modulus as independent, one would expe
t a 
entral limittheorem to hold on the angles, or at least �u
tuations of order √

log N . Onthe other hand, for a mono
hromati
 
on�guration, performing surgery using
ir
uits in su

essive annuli should imply that every time one multiplies theouter radius by a 
onstant, the expe
ted largest available angle would in
reaseby a 
onstant, so that one would guess that, by a 
areful 
hoi
e of arms, thetotal angle 
an be made of order ± log N .Fix ε > 0, and let Aε
1,B (resp. Aε

1,W , resp. Aε
j,σ) be the event that thereexists a bla
k arm (resp. a white arm, resp. j arms with 
olors given by σ) withangle larger than ε log N between radii n0 and N . Applying inequality (2.5)with A = Aj−1,B...B and B = Aε

1,B, this would imply:
P (Aj,B...BB) ≍ P (A ◦ B)

6 P (Aj−1,B...B ∩ Aε
1,W )

= P (Aε
j,B...BW ),7



and we 
ould expe
t
P (Aε

j,B...BW ) 6 N−ε′

P (Aj,B...BW )by a large-deviation prin
iple. However, proving this LDP seems to be di�
ult,and we propose here an alternative proof that relies on the same ideas, butbypasses some of the di�
ulties.Proof of Theorem 5. Step 1. First, note that it su�
es to prove that the ratio
P (Aj,B...BB(n, N))

P (Aj,B...BW (n, N))
an be made arbitrarily small as n/N → 0, uniformly in n: Indeed, assumingthat this is the 
ase, then for any δ > 0, there exists η > 0 su
h that thisratio is less than δ as soon as n/N 6 η. Then, as a dire
t 
onsequen
e of thequasi-multipli
ativity property (item 2. above), we have
P (Aj,B...BB(n, η−kn))

6 Ck−1
2 P (Aj,B...BB(n, η−1n)) . . . P (Aj,B...BB(η−(k−1)n, η−kn))

6 Ck−1
2 δk

P (Aj,B...BW (n, η−1n)) . . . P (Aj,B...BW (η−(k−1)n, η−kn))

6 Ck−1
2 δk(C−1

1 )k−1
P (Aj,B...BW (n, η−kn)),and for δ = 1/(2C2C

−1
1 ) this gives

P (Aj,B...BB(n, η−kn)) 6 2−k
P (Aj,B...BW (n, η−kn)), (3.1)whi
h immediately implies that for some ε > 0,

P (Aj,B...BB(n, N)) 6

(

N

n

)−ε

P (Aj,B...BW (n, N)).In parti
ular, applying this for n = n0 (and N large enough) leads to theinequality that we need.Step 2. The key step of the proof is as follows. Given a 
on�guration with
j arms in an annulus of large modulus, we use RSW-type estimates to provethe existen
e of a large number of disjoint sub-annuli of it, in ea
h of whi
hone 
an �nd bla
k paths topologi
ally equivalent to those in Figure 2 (in the
ase j = 2) or its re�e
tion. Every time this 
on�guration appears, one hasthe possibility to repla
e the original arms (in plain lines on the �gure) withmodi�ed � and still disjoint � arms, obtained by using one of the dashedspirals in ea
h of them. The new arms then land at the same points on theouter 
ir
le, but with a winding angle di�ering by 2π. This allows us to showthat, with high probability, the set of angles Ī(n, N) 
ontains an interval oflength at least ε log(N/n), for some ε > 0 (whi
h 
an be written in terms of theRSW estimates). We now pro
eed to make the 
onstru
tion in detail.Let j > 2, and let m be a positive integer. De�ne a j-spiral between radii mand 4m as the 
on�guration pi
tured in Figure 3. More pre
isely, a j-spiral isthe union of 4 families of j bla
k paths in a per
olation 
on�guration, namely:8



Figure 2: When they en
ounter this 
on�guration, the arms 
an make an extraturn (or not).
• j disjoint rays between radii m and 4m;
• j disjoint �spiraling paths� 
ontained in the annulus S2m,3m, ea
h 
onne
t-ing two points of one of the rays and making one additional turn aroundthe origin;
• j disjoint 
ir
uits around the origin, 
ontained in the annulus Sm,2m;
• j disjoint 
ir
uits around the origin, 
ontained in the annulus S3m,4m.RSW-type estimates dire
tly show that, uniformly as m → ∞, the probabilityof observing a j-spiral between radii m and 4m is bounded below by a positive
onstant (depending only on j).The presen
e of j-spirals in disjoint annuli are independent events, ea
hwith positive probability, so that, for some ε > 0, the probability of the event

E
(ε)
j (n, N) of having at least ε log(N/n) disjoint j-spirals between radii n and Ngoes to 1 as N/n goes to in�nity. The presen
e of j-spirals being an in
reasingevent, the FKG inequality ensures the 
onditional probability of E

(ε)
j (n, N),given the existen
e of j bla
k arms between radii n and N , still goes to 1 as

N/n goes to in�nity.We now explain how to use j-spirals to perform surgery on bla
k arms.Assume that there are j arms between radii n and N , and a j-spiral Σ betweenradii m and 4m. For ea
h ray of Σ, we 
all inner (resp. outer) a
tive point thelast (resp. �rst) interse
tion point of the ray with ∂S2m (resp. ∂S3m), whenstarting from inside. Let Σ1 be the 
onne
ted 
omponent of Σ adja
ent to ∂Smwhen one removes the inner a
tive points, and let Γ1 be the union of Σ1 and9



the j arms up to radius 2m. It is easy to 
he
k that, whenever one marks j − 1points on Γ1, there still exists a path 
ompletely 
ontained in Γ1 and avoidingthe marked points, whi
h 
onne
ts the 
ir
le of radii n to one of the inner a
tivepoints of Σ on the 
ir
le of radius 2m. Indeed, at least one of the arms, oneof the 
ir
uits and one of the rays 
ontain no marked point. Menger's theoremthen ensures that Γ1 
ontains j disjoint arms, ea
h 
onne
ting Sn to one of theinner a
tive points of Σ � in other words, we 
an always assume that the jarms land on the 
ir
le of radius 2m on the inner a
tive points.The same 
onstru
tion 
an be made inwards between radii N and 3m. It isthen apparent that there are two ways of 
onne
ting the inner a
tive points of Σto its outer a
tive points pairwise using verti
es from Σ, and that these lead totwo j-arms 
on�gurations between radii n and N with winding angles di�eringby exa
tly 2π (note however that it may be the 
ase that the angles of these two
on�gurations are both di�erent from the angle of the initial 
on�guration).Sin
e the 
onstru
tion above 
an be performed inside ea
h annulus wherethere is a j-spiral, and does not modify the arms outside of Sm,4m, one arrivesto the following fa
t: Whenever there are j arms between radii n and N , andthe event E
(ε)
j (n, N) is realized, the set Ī(n, N) 
ontains an interval of lengthat least 2πε log(N/n) � and this o

urs with 
onditional probability going to

1 as N/n goes to in�nity.Step 3. Using the BK inequality, it is not hard to see that the winding angle ofthe arms 
annot be larger than log(N/n) [log log(N/n)]
2. Indeed, assume thisis not the 
ase and 
onsider 
a. C log(N/n) overlapping �re
tangles� betweenangles −π/10 and π/10, lo
ated between radii n and 4n, 2n and 8n, and so on:One of them has to be 
rossed (in either dire
tion) at least 1

C [log log(N/n)]
2times, whi
h has a probability at most

C log(N/n)(1 − δ)
1

C
[log log(N/n)]2by RSW estimates. Hen
e, the probability that Ī(n, N) is 
ontained in the inter-val [± log(N/n) log log(N/n)] is larger than 1/2 for N/n large enough. Dividingthat interval into sub-intervals of length ε
2 log(N/n), and using the previousstep, we get that for one of them, say iε(n, N),

P (iε(n, N) ⊆ Ī(n, N) | Aj,B...BB(n, N)) >
C′

[log log(N/n)]
2 ,where C′ > 0 is a universal 
onstant.Step 4. We are now in a position to 
on
lude. If we take αmin su
h that

P (Aj,B...BW (n, N) ∩ {αmin ∈ Ī(n, N)})is minimal among αmin ∈ iε(n, N) ∩ (6πZ), then
P (Aj,B...BW (n, N) ∩ {αmin ∈ Ī(n, N)}) 6 6π

ε
2 log(N/n)

P (Aj,B...BW (n, N))sin
e, as we noted earlier, whenever there are arms of di�erent 
olors, 6πZ
annot 
ontain more than one element of Ī(n, N). On the other hand, we know10



Figure 3: Generalization of Figure 2 in the 
ase of j > 3 arms. The additional
ir
uits are needed to apply Menger's theorem; the 
ir
les of radii m and 4m(resp. 2m and 3m) are drawn in strong (resp. dotted) lines, the spiraling pathsin dashed lines and the a
tive points are marked with a bla
k square.from the previous step that
P (Aj,B...BB(n, N) ∩ {αmin ∈ Ī(n, N)})

> P (Aj,B...BB(n, N) ∩ {iε(n, N) ⊆ Ī(n, N)})

>
C′

[log log(N/n)]
2 P (Aj,B...BB(n, N)).If we apply inequality (2.5) to A = Aj−1,B...B(n, N)∩{αmin ∈ Īj−1,B...B(n, N)}
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and B = A1,B(n, N), we obtain that
C′

[log log(N/n)]
2 P (Aj,B...BB(n, N))

6 P (Aj,B...BB(n, N) ∩ {αmin ∈ Īj−1,B...B(n, N)})
= P (A ◦ B)

6 P (A ∩ B̄)

= P (Aj,B...BW (n, N) ∩ {αmin ∈ Īj−1,B...B(n, N)})
6 P (Aj,B...BW (n, N) ∩ {αmin ∈ Īj,B...BW (n, N)})

6
6π

ε
2 log(N/n)

P (Aj,B...BW (n, N)),whi
h 
on
ludes the proof.3.2 The density of the set of anglesIn this se
tion, we further des
ribe the set of angles I(n, N) � whi
h happenedto be a key tool in the previous proof � in the mono
hromati
 
ase. Weprove that (
onditionally on the existen
e of j disjoint bla
k arms) Ī(n, N) isalways an interval, as in the poly
hromati
 
ase. For that, we use the followingdeterministi
 statement that I(n, N) does not have large �holes�:Proposition 7. Let j > 1 and σ = B . . . BB of length j. Let α, α′ ∈ Ij,σ(n, N)with α < α′; then there exists a sequen
e (αi)06i6r of elements of Ij,σ(n, N),satisfying the following two properties:
• α = α0 < α1 < · · · < αr = α′;
• for every i ∈ {0, . . . , r − 1}, αi+1 − αi < 2π.This result dire
tly implies that Ī(n, N) is an interval, and the 
onstru
tionof the previous sub-se
tion, 
reating extra turns (step 2 of the proof), gives alower bound on the diameter of Ī(n, N): We hen
e get that for σ 
onstant,there exists some ε > 0 (depending only on j) su
h that Ī(n, N) is an intervalof length at least ε log(N/n) with probability tending to 1 as N/n gets large.The main step in the proof of the density result is the following topologi
allemma:Lemma 8. Let j > 0, and let γ1, . . . , γj be j disjoint Jordan 
urves 
ontainedin the (
losed) annulus {n 6 |z| 6 N}, ea
h having its starting point on the
ir
le of radius n and its endpoint on the 
ir
le of radius N . For ea
h k ∈

{1, . . . , j}, let αk be the winding angle of γk (as de�ned above) and let δk be theray [ne2iπk/j , Ne2iπk/j ]. Assume that, for ea
h pair (k, k′), the interse
tion of
γk and δk′ is �nite. Then, provided all the αk are larger than 2π(1 + 2/j), theunion of all the paths γk and δk 
ontains j disjoint paths δ̃1, . . . , δ̃j , all havingangle 2π/j.In other words: starting from two 
olle
tions of paths, if their angles di�erenough, one 
an �
orre
t� the one with the smaller angle in su
h a way as tomake it turn a little bit more. 12



Proof. We shall 
onstru
t the paths δ̃k expli
itly. The �rst step is to redu
e thesituation to one of lower 
ombinatorial 
omplexity, namely to the 
ase wherethe starting points of the γk are separated by those of the δk. For ea
h k 6 j,let τk = inf{t : γk(t) ∈ [neiπ(2k−1)/j , Neiπ(2k−1)/j ]} (whi
h is always �nite byour hypotheses), and let
Γ :=

j
⋃

k=1

{γk(t) : 0 6 t 6 τk}.

Γ interse
ts ea
h of the δk �nitely many times, so ea
h of the δk \ Γ has �nitelymany 
onne
ted 
omponents: let ∆ be the union of those 
omponents that donot interse
t the 
ir
le of radius N , and let
Ω0 := {n 6 |z| 6 N} \ (Γ ∪ ∆).Let Ω be the 
onne
ted 
omponent of Ω0 having the 
ir
le of radius N asa boundary 
omponent. Ω is homeomorphi
 to an annulus, and for ea
h k,the point γk(τk) is on its boundary; by 
onstru
tion, the γk(τk) are intertwinedwith the (remaining portions of the) rays of angles 2πk/j. We will perform our
onstru
tion of the δ̃k inside Ω; 
ontinuing them with the δk outside of Ω thenprodu
es j disjoint paths satisfying the 
onditions we need.Up to homeomorphism, we 
an now assume without loss of generality thatfor ea
h k, γk(0) = neiπ(2k−1)/j . The only thing we lose in the above redu
tionis the assumption on the angles of the γk; but sin
e it takes at most one turnfor ea
h of the γk to rea
h the appropriate argument, we 
an still assume thatthe remaining angles are all larger than 4π/j. In parti
ular, ea
h of the γk will
ross the wedge between angles 2πk/j and 2π(k + 1)/j in the positive dire
tionbefore hitting the 
ir
le of radius N .For every k 6 j, let θk(t) be the 
ontinuous determination of the argumentof γk(t) satisfying θk(0) = (2k − 1)π/j, and let

Tk :=

{

t > 0 :
2πk

j
< θj(t) <

2π(k + 1)

j

}

and Γ̃k = {γk(t) : t ∈ Tk}.We now des
ribe informally the 
onstru
tion of δ̃k. Start from the point
ne2iπk/j , and start following δk outwards, until the �rst interse
tion of δk with
Γ̃k. Then, follow the 
orresponding 
onne
ted 
omponent of Γ̃k, until interse
t-ing either δk or δk+1; follow that one outwards until it interse
ts either Γ̃k orthe 
ir
le of radius N ; iterating the 
onstru
tion, one �nally obtains a Jordanpath joining ne2πk/j to Ne2π(k+1)/j , and 
ontained in the union of δk, δk+1 and
Γ̃k (see Figure 4).All that remains is to prove that the δ̃k are indeed disjoint; by symmetry, itis enough to do so for δ̃1 and δ̃2. Besides, be
ause the γk are themselves disjoint,any interse
tion point between δ̃1 and δ̃2 has to o

ur on δ2 (at least in the 
ase
j > 2 � but the 
ase j = 2, where they 
ould also interse
t along δ1, againfollows by symmetry).The interse
tion of δ̃1 with δ2 
onsists in a �nite 
olle
tion (Im) of 
ompa
tintervals; besides, the points of the interse
tion are visited by δ̃1 in order ofin
reasing distan
e to the origin. Similarly, the interse
tion of δ̃2 with δ2 
onsistsin a �nite 
olle
tion (Jl) of 
ompa
t intervals, whi
h are also visited in order ofin
reasing distan
e to the origin. 13



Figure 4: The 
onstru
tion of the δ̃k (in the 
ase j = 5). The dotted linesare the paths γk, and the strong lines are the δ̃k obtained at the end of the
onstru
tion.Suppose that ⋃

Ip and ⋃

Jp have a non-empty interse
tion; and let z0 bethe interse
tion point lying 
losest to the origin. Let p0 and q0 be su
h that
z0 ∈ Ip0

∩ Jq0
; noti
e that z0 is the endpoint 
losest to the origin of either Ip0or Jq0

. A

ording to the order in whi
h γ1 (resp. γ2) visits the endpoints of Ip0(resp. Jq0
), this gives rise to eight possible 
on�gurations; it is straightforwardin all 
ases to apply Jordan's theorem to prove that γ1 and γ2 then have tointerse
t, thus leading to a 
ontradi
tion.For the purpose of the proof of Proposition 7, we will need a slight variation ofthe lemma, where the hypothesis of �niteness of the interse
tions between pathsis repla
ed with the assumption that the paths 
onsidered are all polygonal lines.The proof is exa
tly the same though, and does not even require any additionalnotation: whenever two paths, say γk and δk′ , 
oin
ide along a line segment, thede�nition of Γk amounts to 
onsidering some of the endpoints of this segment asinterse
tions, whi
h in other words is equivalent to shifting γk by an in�nitesimalamount towards the exterior of the wedge used to de�ne Tk in order to re
over�niteness.Proof of Proposition 7. The previous Lemma is stated with parti
ular 
urveson whi
h a surgery 
an be dons, but it 
an obviously be applied to more general
ases through a homeomorphism of the annulus. The general statement is thenthe following (roughly speaking): Assuming the existen
e of two families of

j arms with di�erent enough winding angles, it is possible to produ
e a third14



family using the same endpoints as the �rst one but with a slightly larger windingangle.We are now ready to prove Proposition 7. Consider a 
on�guration in whi
hone 
an �nd two families of 
rossings, say (λk) and (λ′

k), in su
h a way thatfor every k, the di�eren
e between the winding angles of λk and λ′

k is at least
2π. Let α0 be the minimal angle in the �rst family, and apply the topologi
allemma with δk = λk and γk = λ′

k: One obtains a new family of pairwise disjointpaths (λ1
k), whi
h share the same family of endpoints as the (λk), the endpointof λ1

k being that of λk+1 (with the obvious 
onvention that j + 1 = 1).One 
an then iterate the pro
edure, applying the topologi
al lemma withthis time δk = λ1
k, and still letting γk = λ′

k; one gets a new family (λ2
k) with theendpoints again shifted amongst the paths in the same dire
tion. Continuing aslong as the winding angle di�eren
e is at least 2π, this 
onstru
tion produ
es asequen
e (λi

k) of j-tuples of disjoint paths, the winding angles of whi
h vary byless than 2π at ea
h step. Besides, the 
onstru
tion ends in �nitely many steps,for after j steps, ea
h of the winding angles has in
reased by exa
tly 2π. Thisreadily implies our 
laim.Remark 9. Noti
e that, as early as the se
ond step of the pro
edure, (λn
k ) and

(λ′

k) will always 
oin
ide on a positive fra
tion of their length, whi
h is why weneeded the above extension of the lemma.4 Existen
e of the mono
hromati
 arm exponentsWe now prove Theorem 4, stating the existen
e of the mono
hromati
 exponents
α′

j . For that, we use a rather 
ommon argument, as presented e.g. in [16℄:sin
e the quasi-multipli
ativity property holds (item 2. above), it is a
tuallyenough to 
he
k that there exists a fun
tion fj (whi
h will automati
ally besub-multipli
ative itself � one 
an take C2 = 1 in the quasi-multipli
ativityproperty) su
h that, for every R > 1,
P (Aj,B...BB(n, Rn)) → fj(R) (4.1)as n → ∞ � noti
e that RSW-type estimates provide both the fa
t that theleft-hand term in bounded above and below by 
onstants for �xed R as n → ∞,and a priori estimates on any (potentially subsequential) limit, of the form

R−εj 6 fj(R) 6 R−1/εjwhere εj depends only on j.By Menger's theorem (see [5℄), the 
omplement of the event Aj,B...BB(n, N)
an be written as
Dj(n, N) = {There exists a 
ir
uit in Sn,N that surrounds ∂Snand 
ontains at most j − 1 bla
k sites}.This makes it possible to express the event Aj,B...BB(n, N) in terms of the
olle
tion of all 
luster interfa
es (or �loops�): It is just the event that theredoes not exist a �ne
kla
e� of at most (j − 1) loops, with white verti
es on theirinner boundary and bla
k ones on their outer boundary, forming a 
hain around

∂Sn and su
h that two 
onse
utive loops are separated by only one bla
k site.15



Standard arguments show that the probability that two interfa
es tou
h inthe s
aling limit is exa
tly the asymptoti
 probability that they �almost tou
h�(in the sense that they are separated by exa
tly one vertex) on dis
rete latti
es� it is e.g. a simple 
onsequen
e of the fa
t that the poly
hromati
 6-armexponent is stri
tly larger than 2, whi
h in turn is a 
onsequen
e of RSW-typeestimates (the fa
t that the poly
hromati
 5-arm exponent is equal to 2 beingtrue on any latti
e on whi
h RSW holds � at least for 
olors BWBWW ).What this means, is that to show 
onvergen
e of the probability in Equa-tion (4.1), it is enough to know the probability of the 
orresponding 
ontinuousevent. While we do not know the exa
t value of the limit, it is neverthelesseasy to 
he
k that the event itself is measurable with respe
t to the full s
alinglimit of per
olation, as 
onstru
ted by Camia and Newman in [4℄, and that isenough for our purpose. Noti
e that the measurablility of the event in terms ofthe full s
aling limit is ensured by the exploration pro
edure des
ribed in thatpaper: It is proved there that for every ε > 0, all loops of diameter at least εare dis
overed after �nitely many steps of the exploration pro
edure.Referen
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