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Abstract

In this paper, we deal with the problem of scheduling streanaipplications on unreliable heterogeneous plat-
forms. We use the realistic one-port model with full compiot@communication overlap. We deal with three op-
timization objectives. The first two, latency and throughpare performance-related while the third, tolerating a
given number of processor failures, is reliability-orietht The major contribution of this paper is the design of a new
scheduling algorithm to minimize latency under both thigug and reliability constraints. We provide a compre-
hensive set of experimental results, that fully demonstiia¢ usefulness of the proposed algorithm.



1 Introduction

Pipelined workflows are a popular programming paradigm fieeasning applications like video and audio encoding
and decoding, DSP applications, etc [11, 5]. Streamingiegdns are becoming increasingly prevalent, and many
languages are being continually designed to support thisdeations. In these languages, the programmer expresses
programs by creating workflow graph and the system maps this workflow graph on a target machineoriflow
graph contains severtdsks and these tasks are connected to each other using firsstofitchannels Data sets

are input into the graph using input channel(s) and the dsitate produced on the output channel(s). Since data
continually flows through these streaming applications,gbal of a scheduler is often to decreaselatiencyand/or
increase théhroughput Here the latency, or response time, is defined as the timedorgle data item to traverse the
graph, that is, to execute all the tasks of the applicati@teihcy is typically important for the end-user who is wajtin
for the results. The throughput is the aggregate rate athwthie input data stream is processed. The inverse of the
throughputis the period, defined as the time-interval betvie/o consecutive data sets entering the system. Achieving
a high throughput is a typical requirement for real-time laygions and usually leads to an efficient utilization of
hardware resources.

Latency and throughput are the main performance-relateebsding objectives, and they are conflicting criteria.
Indeed, in the absence of throughput constraints, the dgtenthe longest path in the execution graph: then an
optimal strategy for latency minimization is to map the whgtaph onto the fastest processor, thereby eliminating all
communications and reducing the computing cost as muchssifj@. But then the period is equal to the latency, and
the throughput may well become dramatically low. Realflifeblems often call for bi-criteria optimization problems
such as minimizing the latency while enforcing a minimunotighput. With the advent of large-scale heterogeneous
platforms, another important objective is to achieve at#é execution. This objective is not related to perforneanc
contrarily to latency/throughput optimization. Inste#ttg goal is tolerate a given number of processor failures. Ou
approach is based on an active replication scheme, capalportings arbitrary fail-silent (a faulty processor does
not produce any output) and fail-stop (no processor regyeocessor failures.

Here is an example to illustrate several execution scesaaiud to outline the differences between task and data
parallelism for an application graph, and pipelined exiecLnf successive instances of the same graph. The workflow
is shown in Fig. 1(a). All task computation times are equadltcand all edges have a communication volume equal to
2. We have four processof3 to P, whose speeds akg = s3 = 1.5 andsy = s4 = 1. All links have unit bandwidth.

The fault tolerance degreeds= 1, so that each task is replicated ont;ié? represents the first copy of task while

tz(.Q) is the second copy, which is always executed but turns odtlusaly if a failure occurs.

i) Task parallelism— To minimize the makespan of the DAG graph, we use classigiastiheduling techniques [9],
leading to the assignment of Fig. 1(b). In streaming modmatng the execution for incoming data sets, we obtain a
latencyL = 39 and a throughpul’ = 1/39.

ii) Data parallelism— All tasks in the DAG are mapped to a single processor, we makeréplicas, and consecutive
instances of the input stream are distributed to the procgss round-robin fashion (Fig. 1(c)). In the absence of
failures, the maximum throughput® = 2/40 = 1/20. However, this technique requires that the processing ef on
data item is independent of the results obtained for theipuewdata item, a drastic assumption that we do not make.
i) Pipelined execution—Fig. 1(d) shows a mapping with = 2 synchronous stag€s;, t3) and(¢2,t4) which are
executed in parallel once the pipeline is filled. The thrqughis 7 = 1/30 and the latency i€ = 257*1 =90
(see Section 4 for an explanation of this value). The adgmntd this technique is that it can be applied to either
dependent or independent data items. It is the one used ilitahegure for streaming applications (see the related
work in Section 3), and we use it in the following too.

After some definitions and notations in Section 2, we presefection 3 a brief survey of heuristics proposed
in the literature to optimize latency under throughput ¢@ists. These heuristics target homogeneous platforishs an
assume unlimited network capacity. Instead, we suggessdcaurealistic communication model, the bi-directional
one-port model with full computation/communication oegrl In addition, we introduce a third, reliability-oriedte
objective, that of tolerating a given numheof processor failures. The major contribution of this papehe design
of a new scheduling algorithm to minimize latency under kbtoughput and reliability constraints (Section 4). We
provide in Section 5 a comprehensive set of experimentaltegshat fully demonstrate the usefulness of the proposed
algorithm. Finally we give concluding remarks in Section 6.
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Figure 1: Different Mappings.



2 Framework

The application graph is a weighted Directed Acyclic GrdpAG) G = (V, E), whereV is the set of nodes, or tasks,
andF is the set of edges corresponding to precedence relatiawede tasksy = |V| is the number of nodes, and

e = |E| is the number of edges. In a DAG, a node without any predecéssalled arentry node, while a node
without any successor is axitnode. For a taskin G, £(¢;) is its execution time]"~(¢) is the set of its immediate
predecessors and™ (¢) the set of its immediate successors. A task is cattedlyif it is unscheduled and all of its
predecessors are scheduled. We target a heterogenedosnplafth m processor® = {Py, P,..., Py}, fully
interconnected. The speed Bf is s;. The link between processofs and P, is denoted by, and has bandwidth
din,- Note that we do not need physical links between processay, pege may have a switch, or even a path composed
of several physical links to interconndg{ and P;,; in the latter case we would retain the bandwidth of the skiviek

in the path for the bandwidth éf;,. We use the bi-directional one-port architectural modgere each processor
can communicate (send and/or receive) with at most one ptioeessor at a given time-step. In other words, a given
processor can simultaneously send a message, receiveanmabsage, and perform some (independent) computation.

For a given grapld and processor s@&, g(G, P) is thegranularity, i.e., the ratio of the sum of slowest computa-
tion times of each task, to the sum of slowest communicatinaes along each edg@t(¢) is the head function which
returns the first replica/task from a sorted listivhere the list is sorted according to replicas/tasks iigsr(ties are
broken randomly). The number of tasks that can be simuliasigoeady at each step in the scheduling process is
bounded by the widthy of the task graph (the maximum number of tasks that are intbgre inG). This implies
that|¢| < w. The mapping matri¥’ is av x m binary matrix representing the mapping of th&asks ofG to them
processors. Elemedt;, is equal tol if a copy of taski; has been mapped to procesghr and0 otherwise.

Task priorities are determined b§(t) + bl(t), wheret((t) andbl(t) are respectively thiop leveland thebottom
levelof taskt. The top level is the length of the longest path from an erttyg)(node tat (excluding the execution
time of t) in the current partially clustered DAG. The topdéwef an entry node is zero. The bottom level is the length
of the longest path starting at tasko an exit node in the graph. The bottom level of an exit nodeqgsal to its
execution time. Path lengths are defined as the average sedgefweights and node weights [9].

The scheduling algorithms are designed to tolerate anrarpitout given, number of processor failures. Our
approach is based on an active replication scheme, whendasicis replicated times, and executed+ 1 times. We
enforce the rule that valid results will be provided evenjifrocessors fail, which calls for replicating communicatio
as well as tasks. But communicating between any task repéagas often useless, and minimizing communication
overhead while guaranteeing valid results is a key objeafthe mapping procedures described in Section 4.

3 Related work

As stated above, the following heuristics from the literatall target homogeneous platforms. This greatly simglifie
all estimations of computing times and path lengths. Intaldithey do not limit the number of simultaneous com-
munications that a processor can be involved in, which afeplgies the mapping process. Still, these heuristics are
insightful for our framework, namely heterogeneous platfe under the realistic one-port model.

The algorithm in [4] aims at satisfying a prescribed througtrequirement by minimizing inter-processor com-
munications when assigning tasks to processors. It is baséle pre-clustering method similar to that in [7]. Com-
munication edges are sorted by data volume and dealt wigtdgye At each step, the algorithm attempts to match
the processor executing the edge source and the processartieg the edge sink. Remaining unassigned tasks are
assigned to clusters on a first-fit basis. The pre-clustegphmase is followed by two refinement phases to reduce
communication overhead.

The EXPERT algorithm [3] considers all paths in the appilaragraph, and sorts them by execution time. Paths
are then processed greedily. At each step, the algorithnetses for sub-paths whose tasks fit within one period,
and groups these tasks into stages. Clusters are thenfbsilintra-stages, and then across stages, with the goal of
load-balancing computations along the paths.

The TDA algorithm [11] is designed to tackle both resouragtimoughput optimization. A schedule is constructed
to achieve the desired throughput with the minimum numbearo€essors. A combination of two heuristics is used
to solve this problem. First, the ETF (Earliest Task Firgtistic [6] is used to assign tasks to processors. Then,



a top-down approach is used to partition tasks into staghsrevas before a stage is defined as a subset of tasks
whose combined execution does not exceed the period. $esfin@ment steps are performed to improve processor
utilization.

The STDP Algorithm [8] starts with one top-down and one botiep graph traversals to compute earliest and
latest execution times for each task. Task clusters aretthiétrwith the goal of minimizing communication overhead.

If some resources are still available at that point, crittagks are then duplicated in order to decrease the latency.
Finally, stages are generated through a third traversaleoftaph.

The WMSH Algorithm [10] uses a clustering procedure as it 8tep, under the assumption that there is an un-
limited number of fully interconnected processors. Therstrs are merged and scheduled on the available physical
resources. In the first phase of the process, a schedule #&is e throughput requirement is obtained, assuming
an unbounded number of processors. The second phase useessor-reduction heuristic. The third phase refines
the mapping to optimize the latency, by minimizing the comimation overhead along the critical path of the work-
flow. WSMH performs explicit task duplication to increase throughput, while aiming at keeping communication
overhead reasonably low.

The algorithm in [5] performs a binary search to find the mialiperiod, given the number of available processors.
The search repetitively calls a mapping routine that daetegmahow many processors are needed to execute the task
graph, given the current period. This routine performs adown traversal, partitioning the graph into stages.

4 Scheduling Algorithms

We need a few definitions. Tharocessor utilizatiorl/p < 1 is defined as the fraction of time each processor is
T > Xiu€(t)

active. FormallylUp, = —==* for 1 < u < m (where7 is the throughput). Thénk utilization U; is

Su

defined similarly. We denote b§(t) the set ofc + 1 replicas of a task. Also, we denote by") those replicas,
for1 <N < e+ 1. Thus,B(t) = {tM, .. t=tDY P(tN)) is the processor on which repli¢d") is scheduled.
For a current task, a processol is calledsingletonif it has only one instance/replidz{tN), 1 <4 < | (b)),

1 < N <e+1; Pis saidlockedeither if it is already involved in a communication with a liep of ¢, or it processes

itself one of these replicas. During the mapping stéps; U‘Jil(t” {P(B(t;))} is the subset of singleton processors
andP C P the subset of locked processors.

Informally, with ¢ + 1 replicas of each task, we could need ug4ot 1) communications for each edge i
hence a total ofs + 1)2e communications. To reduce this number, we use a strateghasito [1]: while there are
enough singleton processors with replicas of predeceasks twe use the one-to-one mapping procedure described

in Algorithm 4.2. This name stems from the fact that eachicagh UL’;“)‘ B(t;) should communicate to exactly
one replica in3(t). The number of time4 that the one-to-one-mapping procedure is called for sdivegithe s + 1
replicas of the current task is given &s— min(}\;), whereB(¢;) is the subset of replicas of each predecegsor

scheduled int and.\; its cardinality(\; = [B(t;)]).

The inverse of the throughput is the iteration perig which corresponds to the time-interval between the
processing of two consecutive data items. Formally, théeefime of processoP,, 1 < u < m, is defined as
A, = max (Eu, Ci/O) whereY,, is the computing load oP, andc’l/ is the input/output communication cycle

1
(B, B

To compute the latency, we borrow the notion of pipeBtegedo [4]. Intuitively, stages record processor changes
along dependence paths in the application graph. The pwstageS™V) of task/replicat™), 1 < N < e + 1
depends on stage of those predecesﬁﬁfr)s t, € I~ (t), involved in a communication with"\). Entry tasks/replicas
are mapped in the first stage. The stage of the other tasksa®js computed a8\) = max{SiN) + n}, where
n=0if P (tka ) =P (t(N>) andn = 1 otherwise. Then the latenaydepends on the total number of stageand

the desired throughpdt. Itis given [4] by L = Lgl
In the following, we present two heuristics. The first oneFL&ims at reducing the communication overhead
while the second one, Reverse LTF, also aims at keeping talemamber of stages as low as possible.

time of processoP,, 1 < u < m. The throughput achieved under the mapping 7 =



4.1 The LTF Algorithm

The LTF (Latency, Throughput, Failures) algorithm is esisdli an extended version of the Iso-Level CAFT algorithm
of [1], which tackles the combination of communication dwead reduction and fault tolerance requirements. It
differs from the initial version in the way that it takes thedughput requirement into account. Tasks are assigned
to processors not only to achieve fault tolerance and Igtesguirements, but also to satisfy the desired throughput
performance of the application. Tasks are scheduled andigaed into pipeline stages greedily. Algorithm 4.1
outlines the pseudocode of the LTF heuristic. The input efalgorithm is a task grap®i, the fault tolerance degree
¢ and a desired throughpfit

At each step of the mapping process, LTF selects a syhskteady tasks with highest priority, and simulates the
mapping of each task in the subset on all processors. Woviitihga subset rather than with a single task (as classical
list-scheduling algorithms) allows for a better load bakafi]. For each taske 3, we search for unlocked processors
which can executewithout exceeding the desired iteration period. Formally:

(T-Su <VD)A(T-CL<1)A(T-C <1)A (P ¢ P 1
1< uh<m, P(t) = wP(t.) = h, u#h, t. € T~ (1) (1)

If there are several such processors, we select the one wiilnom finish timeF. If there are none, we use other
processors, at the risk of increasing the communicatiorh@ael. The algorithm fails if no processor can accommodate
the task because of the throughput constraint. The time itypof LTF Algorithm is given below:

Theorem 1 The time complexity of LTF {8 (em(e + 1)*log(e + 1) + vlogw).

The proof is similar to that given in [1] for Iso-Level CAFTdte that < m, and that the widtlv does not exceed
v, SO we derive the upper bOUI@JI(em3 logm + vlog v).

4.2 Reverse LTF Algorithm

As stated above, we have to reduce the number of stSgesmuch as possible to optimize the pipeline lateficy
This is the goal of the R-LTF algorithm (R for Reverse) thatimteoduce now. It consists of a sequence of refinement
steps, where each step creates a new pipeline stage or gr@xistng one. Unlike LTF, the R-LTF uses a bottom-up
topological traversal of the application graph, startirg sink nodes. R-LTF mapping decisions are guided by two
main rules, which are invoked in the order below:

t.eI't(t)
e Rule 2: The number of communications induced by the replicationtraaism should be reduced as much as
possible. Ift is the current task to be scheduled ahdne of its successors, we check whether

e Rule 1: The pipeline stage numb{r max S> of the current task/replicadoes not increase when scheduling it.

(IC* @) =1) A (Vte e - ('), [T (t)] = 1, L. € @)

If this condition holds, we assign all replicastofvith the one-to-one mapping procedure.

Note that by applying the latter rule in the absence of thhpug constraints, we can reduce the number of com-
munications down te(s + 1) for any series-parallel graph (the proof is similar to thaeg in [1]). Finally, note that
the complexity of R-LTF is the same as that of LTF.

4.3 Example

In this section we work out an example to illustrate the défee between LTF and R-LTF, using the workflow graph
G of Fig. 2(a). Task executiontimes af¢t;) = E(t7) = 15, E(t3) = 20,E(t2) = E(ts) = 6 andE(ty) = E(t5) = 5.

For simplicity, we assume that all edges have a cot tihe units to transfer a data item. We also assume a fully
homogeneous network withh = 8 processors of speed= 1. We lete = 1 and7 = 0.05, so that the maximum
allowed period i0.

(i) LTF scheduling steps: At step 1,¢; is the only ready task in = {t3*}, thus the chunk lisg = {t*} (the
superscript of a task in or 8 denotes its priority value)t; is selected and scheduled on processgrand P5 (the



Algorithm 4.1 The LTF Algorithm
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: P={P,P,...P,}; (*Set of processors*)
. A « X iteration period;

T

: Eu<—C£<—Cf3<—O, Vi<u<m;
¢ « maximum number of supported failures;
: Computeb((t) for each task in G and set/(t) = 0 for each entry task;

S=0; U=V, (*Markall tasks as unscheduled*)

a=10; (*Listof ready tasks*)
: Put entry tasks im;

S —0;B+«—m;

: while U # @ do

k=080,
while k < B and a # () do
B — BUH(c); (*Selectcritical tasks *)
P* =(); (*List of locked processors of.*)
kE=k+1;
end while
fork=0; k <|8|; k+ +do
vV 1<i<|I' ()|, compute);
0% — min(\;);
ZF =0;
end for
for N =0; N <& N ++do
for each task, € 3 do
if ZF < 0% then
One-To-One-Mapping( ., P*);

Zk = ZF 4+ 1;
else
F — o0

for each processa?, € P do
if condition (1) is verifiedhen
ComputeF*(ty);
if (F“(tx) <F) then
F — F¥(tr);
P(tk) — u;
end if
end if
end for
UpdateS andP*;
Xp(uy) < P, T
UpdateCr,,, );
UpdateCp, ), t. € I'~(t), P(t.) # P(ty);
end if
end for
end for
for each task € 5 do
Putt in S and update priority values of its successors;
Put ready successorsoin «;
U—U\t
end for

E(tx)

Su

50: end while




Algorithm 4.2 One-To-One-Mapping(P)
1. for u=0;v<m;u+-+ do
2: if condition 1 is verifiedhen

3: V 1 <i < |I'~(t)], sort the seB(t;) by non-decreasing order of their communication finish tiftés, /)
on the links;
& T Ui H(B(ti));
5: Simulate the mapping afon processoP, as well as the communications induced by the replicas ofghe s
T to the links;
end if

6

7: end for

8: Select the (task, processor) pair that allows for the esttfiieish time oft;

9: Schedule onto the corresponding processor (calPit) and the incoming communications to the corresponding
links;

10: UpdateS;

11: Y px «— Xps +

12: UpdateC{D(tk);

13: UpdateCp, ), t« € I'~(t), P(t.) # P(ty);

14: Update the seP

P—PUP*U { UL, @ P(H(B(n)))}

15: Update each sorted lig(t);
v 1< <P () Blt) < Blt:) \ H(B(t))

).

L

task is replicated once to resist to one failure). At step 2 {t3*, 32}, 8 = {t3*,5%}. t, andt; are scheduled in the
order of their replica$§,1), tél), t§2), t§2) on P, Fs, P3 and P; according to condition (1) and their minimum finish
times. At step 2o = {t33,¢23}, 3 = {133, 33}. Similarly the replicas of the two tasks are scheduled inottter on
Ps, P, P; and Ps. Atstep 6,0 = {33}, 8 = {t33}. The two replicas(" and:{® of the task are scheduled dn
andPs respectively since these processors do not exceed thedateperiod and allow for the minimum finish time of
the task. After that step, we hayg = Y5 = 15, 35 = 3¢ = 20, X3 = X7 = 10, X4 = Xg = 10. So the remaining
taskt; cannot be scheduled without violating the desired througtamd LTF fails to schedule the workflow. In fact,
it needs two additional processors to succeed, as shownuref(b): four pipeline stages are generated With
processors, and the latencyds= 140.

(i) R-LTF scheduling steps: At step 1,¢; is selected and scheduled éh and Ps. Thena = {t3% ¢33},
B = {t3*,t33} andS = 1. At step 2, Rule 1 is not satisfied since none of the tasks canesged witht;. Therefore,
according to Rule 2, all replicas are mapped on differentgssors’, P3, Ps and P; so that each replica will be
assigned to a separagigletonprocessor (one-to-one mapping procedure). At steps 3 aadcérding to Rule 1,
both{t4,t5} and{t¢2} are mapped withs: the pipeline stage numbér= 2 does not increase. Finall, is selected
and scheduled oR;, and Ps. Three pipeline stages are generated. This results inreclate= 100 with 8 processors.

5 Experimental Results

To evaluate the performance of our algorithms, severaéseaf simulations have been conducted. We use randomly
generated graphs, whose parameters are consistent wsthiked in the literature [1, 4, 11, 8]. The number of tasks is
chosen uniformly from the rangé(, 150]. The granularity of the task graph is varied fron to 2.0, with increments

of 0.2. The number of processors is set to 20, the desired thromgmmtowﬂrl) and we let = {1, 3}. To account

for communication heterogeneity in the system, the unitsags delay of the links and the message volume between
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two tasks are chosen uniformly from the rang@5[1] and [50, 150] respectively. Each pointin the figures represents
the mean of executions @i random graphs.

The metrics which characterize the performance of the @hgos are the latency and the overhead due to the
active replication scheme. Each algorithm is evaluatecims$ of achieved latency and fault tolerance overhead.
We run algorithms LTF and R-LTF where the superscript means that the resulting latency is the one achieved
during an execution where failures occur. Wherr = 0, we obtain LTF and R-LTP: this corresponds to an
execution where no failure has occurred, but with an algoritiesigned to tolerate up tofailures. We compare
our algorithms to a reference schedule, fhelt free schedule, defined as the schedule generated by R-LTF without
replication, assuming that the system is completely saftinge = 0. The overhead of each algorithm is computed
as Overheagl, = L'gﬂif whereL o is the latency achieved by the algorithm, afwg the latency of the fault free
schedule.

Comparing the results of LTF and R-LTF, we observe in Figsn® 4 that R-LTF gives the best performance.
It always improves the latency significantly while meetihg throughput constraint. As stated above, R-LTF incre-
mentally tries to decrease the pipeline stage number andncorcation overhead. This leads to minimize the final
pipeline latency. The reason of the poorer performance & tdn be explained by its processor selection policy:
processors are selected so that the finish time of the tasksimized. Doing so, tasks are not mapped on those
processors which would allow not to increase the pipelingeshumber. We have also compared the behavior of each
algorithm when processors crash down, by computing theeneztution time for a given schedule rather than just
bounds. Processors that fail during the schedule processhasen uniformly from the rangé,R0]. We can see on
Figures 3(b) and 4(b) that R-LFbehaves better than LTFAs expected, LTF has a bigger latency.

From Figures 3(b), it is interesting to note that when thét falerance degree is loj¢ = 1), the latency is similar
to that obtained witld crash (the lower bound). This is explained by the fact thaitkerease in the schedule length is
already absorbed by the replication done previously, irota resist to eventual failures. However, when the number
of failures gets larger (for instance with= 3 andc = 2 failures, see Figure 4(b)), we clearly see the difference in
terms of latency increase and overhead. We readily obsesue Figures 3 and 4 that we deal with two conflicting
objectives. Indeed, the fault tolerance overhead incestaggther with the number of supported failures.

As a summary of the experiments, we observe that R-LTF isiderably superior to LTF in all the cases tested
(0.2 < g(@) < 2,e = {1,3}). We also state that the pipeline stage number has a signifio@act on the latency
achieved by LTF. This experimental study assesses thelnesfof R-LTF, and shows that reducing the pipeline stage
number should be given priority to minimizing communicatmverhead.

6 Conclusion

In this paper, we have addressed the problem of multi-aissheduling for workflow applications. This a very natural
and important problem, as several conflicting objectivestrbe considered simultaneously to fulfill the requirements
of the user. We have selected three out of the most promimitatia, two performance-related (throughput and la-
tency), and one reliability-oriented (resisting to seVpracessor failures). To the best of our knowledge, the psed
algorithms are the first to address such a challengingités@ optimization problem, using realistic platform nedsl

Our approach should be extended to situations “symmetittiat of this paper, namely maximizing the through-
put for a given latency and failure number, and maximizirggytlamber of supported failures for a given latency and
throughput. Further work will also be devoted to designitgpathms involving other important objectives, such
as energy consumption (e.g., minimize the dissipated pfovex prescribed performance) and platform cost (e.g.,
minimize the ‘rental” cost of the platform while enforcinget other criteria).
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