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Abstract. Finite objects and more specifically finite games are formal-
ized using induction, whereas infinite objects are formalized using coin-
duction. In this article, after an introduction to the concept of coinduc-
tion, we revisit on infinite (discrete) extensive games the basic notions
of game theory. Among others, we introduce a definition of Nash equilib-
rium and a notion of subgame perfect equilibrium for infinite games. We
use those concepts to analyze well known infinite games, like the dollar
auction game and the centipede game and we show that human behaviors
that are often considered as illogic are perfectly rational, if one admits
that human agents reason coinductively.

1 Introduction

Finite extensive games have been introduced by Harold Kuhn [17]. But many
interesting extensive games are infinite and therefore the theory of infinite ex-
tensive games play an important role in game theory, with examples like the
dollar auction game [35,6,15,29] or the generalized centipede game.1 But, from
a formal point of view, they are not appropriately treated in papers and books.
In particular, there is no clear notion of Nash equilibrium and the gap between
finiteness and infiniteness is not correctly understood. Instances of vague defini-
tions related to infiniteness are in [30] p. 157 and in [29] p. 90, where the authors
speak about the length of the longest history without guaranteeing that such a
longest history exists. More precisely, Osborne in [30] writes: If the length of the
longest derivation is [...] finite, we say that the game has a finite horizon. Even a
game with a finite horizon may have infinitely many terminal histories, because
some player has infinitively many actions after some history. If a game has only
finite histories, but has infinitely many such finite histories of increasing length,
the length of the longest history does not exist and it is not clear whether such
a game should be considered to have a finite horizon or not.

Another common mistake arises in escalation [35]. It is to believe that results
on infinite games can be obtained as the limit of results on finite games. It is
notorious that there is a threshold (a wall) between finiteness and infiniteness,

⋆ This research has been supported by Région Ile de France.
1 Here “generalized” means that the game has an infinite “backbone”.
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a fact known to model theorists [13,12] and to specialists of real variable func-
tions, as shown by the Weierstrass function, a counterexample of the fact that
a finite sum of functions differentiable everywhere is differentiable everywhere
whereas an infinite sum can be differentiable nowhere. In this kind of inadequate
reasoning, people study finite games that are the infinite games truncated at a
finite bound, then they extrapolate their results to infinite games by increasing
the size to infinity. But this says nothing since the infiniteness is not the limit of
finiteness. They use this to conclude that humans are wrong in their reasoning.
But clearly, if there would be a limit, then there would be no escalation. In other
words, if there is an escalation, then the game is infinite, then the reasoning must
be specific to infinite games, i.e., based on coinduction and this is only on this
basis that one can conclude that humans are rational or irrational and for us it
turns out that agents are rational in escalating. In short, Macbeth is rational.

In this paper we address these issues and the games we consider may have
arbitrary long histories as well as infinite histories. In our games there are two
choices at each node, this is without loss of generality, since we can simulate
finitely branching games in this framework. By König’s lemma, finitely branch-
ing, specifically binary, infinite games have at least an infinite history. We are
taking the problem of defining formally infinite games, infinite strategy profiles,
and infinite histories extremely seriously. Another important issue which is not
considered in the literature is how the utilities associated with an infinite history
are computed. To be formal and rigorous, we expect some kinds of recursive def-
initions, more precisely co-recursive definitions, but then comes the questions of
what the payoff associated with an infinite strategy is and whether such a payoff
exists.

Finite extensive games are represented by finite trees and are analyzed through
induction. For instance, in finite extensive games, a concept like subgame perfect
equilibrium is defined inductively and receives appropriately the name of back-
ward induction. Similarly convertibility (an agent changes choices in his strat-
egy) has also an inductive definition and this concept is a key for this of Nash
equilibrium which is not itself given by an inductive definition. But induction,
which has been designed for finitely based objects, no more works on infinite2

games, i.e., games represented by infinite trees. Logicians have proposed a tool,
which they call coinduction, to reason on infinite objects. In short, since objects
are infinite and their construction cannot be analyzed, coinduction “observes”
them, that is looks at how they “react” to operations (see Section 2 for more
explanation). In this paper, we formalize with coinduction, the concept of infi-
nite game, of infinite strategy profile, of equilibrium in infinite games, of utility
(payoff), and of subgame and we verify on the proofs assistant Coq that every-
thing works smoothly and yields interesting consequences. Thanks to coinduc-
tion, some examples of apparently paradoxical human behavior are explained
logically, demonstrating a rational behavior.

2 In this paper, infinite means infinite and discrete. For us, an infinite extensive game
is discrete and has infinitely many nodes.
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Induction vs coinduction. To formalize structured finite objects, like finite
games, one uses induction, i.e., a definition of basic objects (in the case of finite
games they are leafs or terminal nodes) and a definition of the way to build new
objects (in the case of finite games induction provides an operation to build a
game from subgames). In the case of infinite objects like infinite games, this no
more works and one characterizes infinite objects by their behavior. But this
raises two questions: what happens if I query the utility (payoff) of an infinite
strategy profile? What happens if I ask for a subgame of an infinite game? This
characterization by “observation” is called coinduction. Whereas induction is
associated with the least fixed point of a definition, coinduction is associated
with the greatest fixed point. The proof assistant Coq offers a framework for
coinductive definitions and reasonings which are keys of our formalization.

Structure of the paper. Deconstruction is a sketch of what coinduction does,
but we can say that in this paper we undertake a deconstruction of the concept
of infinite games using coinduction, which was made possible by the extreme
rigor and discipline imposed by the proof assistant Coq. The proof assistant
Coq was indeed crucial for the author, but this paper tries to hide this aspect.

The paper is structured as follows. First we present the notion of infinite ob-
ject using this of history (Section 2), we use this example to introduce the concept
of coinduction. Then we explore the notions of infinite game (Section 3) and in-
finite strategy (the word we use for strategy profile) (Section 4). The concept of
convertibility (Section 6) allows us to introduce the concepts of equilibrium (Sec-
tion 7). We apply those concepts to two infamous examples (Section 8), namely
the dollar auction game and the centipede game and we say a few words about
human reasoning versus coinductive reasoning (Section 8.3). In Section 9 we tell
how coinduction is implemented in Coq and how it is used.3 Related works are
presented in Section 10. Appendix gives formal version of the definitions that are
given in the paper, they are also for the reader interested by the formal aspects.

Coq scripts. The documentation of the Coq scripts containing only statements
of definitions and lemmas is given in

http://perso.ens-lyon.fr/pierre.lescanne/COQ/INFGAMES/

It contains what has been proved without the proofs themselves. The Coq

scripts, i.e., the detail of the proofs, are in

http://perso.ens-lyon.fr/pierre.lescanne/COQ/INFGAMES/SCRIPTS/

This part is meant for those with some expertise in Coq and who are interested
by the correction of the logical arguments.

3 This section can be dropped by readers less interested by the behavior of Coq.

http://perso.ens-lyon.fr/pierre.lescanne/COQ/INFGAMES/
http://perso.ens-lyon.fr/pierre.lescanne/COQ/INFGAMES/SCRIPTS/
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2 An example of infinite objects: histories

Infinite objects have peculiar behaviors. To start with a simple example, let
us have a look at histories in games. In a game, agents make choices. In an
infinite game, agents can make finitely many choices before ending, if they reach
a terminal node, or infinitely many choices, if they run forever. Choices are
recorded in a history in both cases. A history is therefore a finite or an infinite
list of choices. In this paper, we consider that there are two possible choices: ℓ and
r (ℓ for “left” and r for “right”). Since a history is a potentially infinite object, it
cannot be defined by structural induction.4 On the contrary, the type5 History
has to be defined as a CoInductive, i.e., by coinduction. Let us use the symbol [ ]
for the empty history and the binary operator :: for non empty histories. When
we write c :: h we mean the history that starts with c and follows with the
history h. To define histories coinductively we say the following:

A coinductive history (or a finite or infinite history) is

– either the empty history [ ],
– or a history of the form c :: h, where c is a choice and h is a history.

The word “coinductive” says that we are talking about finite or infinite objects.
This should not be mixed up with finite histories which will be defined induc-
tively as follows:

An inductive history (or a finite history) is built as

– either the empty history [ ],
– or a finite non empty history which is the composition of a choice c

with a finite history ℓ to make the finite history c :: ℓ.

Notice the use of the participial “built”, since in the case of induction, we say
how objects are built, because they are built finitely. Let us now consider four
families of histories:

H0 The family of finite histories

H1 The family of finite histories or of histories which ends with an infinite sequence of ℓ’s

H2 The family of finite histories or infinite histories which contains infinitely many ℓ’s

H∞ The family of finite or infinite histories

We notice that H0 ⊂ H1 ⊂ H2 ⊂ H∞. If H is a set of histories, we write
c :: H the set {h ∈ H∞ | ∃h

′ ∈ H, h = c :: h′}. We notice that H0, H1, H2 and
H∞ are solutions of the fixpoint equation :

H = {[ ]} ∪ ℓ :: H ∪ r :: H.

4 In type theory, a type of objects defined by induction is called an Inductive, a short-
hand for inductive type.

5 Since we are in type theory, the basic concept is this of “type”. Since we are using
only a small part of type theory, it would not hurt to assimilate naive types with
naive sets.
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in other words

H0 = {[ ]} ∪ ℓ :: H0 ∪ r :: H0

H1 = {[ ]} ∪ ℓ :: H1 ∪ r :: H1

H2 = {[ ]} ∪ ℓ :: H2 ∪ r :: H2

H∞ = {[ ]} ∪ ℓ :: H∞ ∪ r :: H∞

Among all the fixpoints of the above equation, H0 is the least fixpoint and
describes the inductive type associated with this equation, that is the type of
the finite histories and H∞ is the greatest fixpoint and describes the coinductive
type associated with this equation, that is the type of the infinite and infinite
histories. The principle that says that given an equation, the least fixpoint is
the inductive type associated with this equation and the greatest fixpoint is the
coinductive type associated with this equation is very general and will be used
all along this paper.

In the Coq vernacular, we are more talkative, but also more precise to de-
scribe the CoInductive type History, (see appendix B for the definition.). Recall
the definition

A coinductive history (or a finite or infinite history) is
– either the empty history [ ],
– or a history of the form c :: h, where c is a choice and h is a history.

which says that a history is either the null history or a history which is a his-
tory, finite or infinite, increased by a choice at its head. The word coinductive

guarantees that we define actually infinite objects and attach to the objects of
type History a specific form of reasoning, called coinduction. In coinduction, we
assume that we “know” an infinite object by observing it through its definition,
which is done by a kind of peeling. Since on infinite objects there is no concept
of being smaller, one does not reason by saying “I know that the property holds
on smaller objects let us prove it on the object”. On the contrary one says “Let
us prove a property on an infinite object, for that peel the object, assume that
the property holds on the peeled object and prove that it holds on the whole
object”. One does not say that the object is smaller, just that the property holds
on the peeled object. The above presentation is completely informal, but it has
been, formally founded in the theory of Coq, after the pioneer works of David
Park [32] and Robin Milner [24], using the concept of greatest fixpoint in type
theory [7]. Bertot and Castéran [4] present the concepts in Chapter 13 of their
book.

By just observing them, one cannot prove that two objects which have exactly
the same behavior are equal, we can just say that they are observably equivalent.
Observable equivalence is a relation weaker than equality6, called bisimilarity
and defined on History as a CoInductive (see appendix for a fully formal definition
in the Coq vernacular):

6 We are talking here about Leibniz equality, not about extensional equality see ap-
pendix A.
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ℓ r ℓ r c(n) c(n+1) ℓ r ℓ r ℓ r

α0 β0

Fig. 1. The picture of two bisimilar histories

Bisimilarity ∼h on histories is defined coinductively as follows:
– [ ] ∼h [ ],
– h ∼h h′ implies ∀a : Agent, a :: h ∼h a :: h′.

This means that two histories (why not infinite) are bisimilar if both are
null or for composed histories, if both have the same head and the rests of
both histories are bisimilar. One can prove that two objects that are equal are
bisimilar, but not the other way around, because for two objects to be equivalent
by observation, does not mean that they have the same structure. To illustrate
the difference between bisimilarity and equality of infinite objects let us consider
for example two infinite histories α0 and β0 that are obtained as solutions of two
equations, more precisely as two cofixpoints. Let αn = c(n) :: αn+1, where c(n)
is (if even(n) then ℓ else r), and βp is ℓ :: r :: βp+1. We know that if we ask for
the 5th element of α0 and β0 we will get ℓ in both cases, and the 2pth element
will be r in both cases, but we have no way to prove that α0 and β0 are equal,
i.e., have exactly the same structure. Actually the picture in Figure 1 shows that
they look different and there is no hope to prove by induction, for instance, that
they are the same, since they are not well-founded.

3 Infinite Games

In classical textbooks, finite and infinite games are presented through their his-
tories. But in the framework of a proof assistant or just to make rigorous proofs,
it makes sense to present them structurally. Therefore, games are rather natu-
rally seen as either a leaf to which a utility function (a function that assigns a
utility to each agent, aka an outcome) is attached or a node which is associated
to an agent and two subgames. If agents are Alice and Bob and utilities are
natural numbers, a utility function can be the function {Alice 7→ 3,Bob 7→ 2}.
In Section 8.2, we focus on centipede games which are games in which the right
part is always a leaf and in which the left subgame is always a composed game.
Actually we study games that “can” be infinite and “can” have finite or infinite
branches.

The type of Games is defined as a coinductive as follows:
– a Utility function makes a Game,
– an Agent and two Games make a Game.

A Game is either a leaf (a terminal node) or a composed game made of an
agent (the agent who has the turn) and two subgames (the formal definition in
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the Coq vernacular is given in the appendix B). We use the expression gLeaf f

to denote the leaf game associated with the utility function f and the expression
gNode a gl gr to denote the game with agent a at the root and two subgames gl

and gr. For instance, the game we would draw:

Alice

Bob
Alice 7→ 1,Bob 7→ 2

Alice 7→ 3, Bob 7→ 2 Alice 7→ 2, Bob 7→ 2

is represented by the term:
(gNode Alice (gLeaf Alice 7→ 1,Bob 7→ 2 )

(gNode Bob (gLeaf Alice 7→ 2, Bob 7→ 2) (gLeaf Alice 7→ 3, Bob 7→ 2))

Hence one builds a finite game in two ways: either a given utility function f

is encapsulated by the operator gLeaf to make the game (gLeaf f ), or an agent
a and two games gl and grare given to make the game (gNode a gl gr). Notice
that in such games, it can be the case that the same agent a has the turn twice
in a row, like in the game (gNode a (gNode a g1 g2) g3).

Concerning comparisons of utilities we consider a very general setting where
a utility is no more that a type (a “set”) with a preference which is a preorder,
i. e., a transitive and reflexive relation, and which we write �. A preorder is
enough for what we want to prove. We assign to the leaves, a utility function
which associates a utility to each agent.

We can also tell how we associate a history with a game or a history and a
utility function with a game (see the Coq script). We will see in the next section
how to associate a utility with an agent in a game, this is done in the frame of
a strategy, which is described now.

4 Infinite Strategies

The main concept of this paper is this of infinite strategy7 which is a coinductive.
More specifically, in this paper, we focus on infinite binary strategies associated
with infinite binary games.

The type of Strategies is defined as a coinductive as follows:
– a Utility function makes a Strategy.

7 Authors call it a strategy profile, but in this paper, following Vestergaard [38], we
call it a strategy for convenience in the formal development and we give it a formal
definition.
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– an Agent, a Choice and two Strategies make a Strategy.

Basically8 an infinite strategy which is not a leaf is a node with four items: an
agent, a choice, two infinite strategies. A strategy is the same as a game, except
that there is a choice. In what follows, since we consider equilibria, we only
address strategies. Strategies of the first kind are written ≪f≫ and strategies
of the second kind are written ≪ a, c, sl, sr ≫. In other words, if between the
“≪” and the “≫” there is one component, this component is a utility function
and the result is a leaf strategy and if there are four components, this is a node
strategy. For instance, with the game of page 7 one can associate at least the
following strategies:

Alice

Bob
Alice 7→ 1,Bob 7→ 2

Alice 7→ 3, Bob 7→ 2 Alice 7→ 2, Bob 7→ 2

Alice

Bob

Alice 7→ 1,Bob 7→ 2

Alice 7→ 3, Bob 7→ 2 Alice 7→ 2, Bob 7→ 2

which correspond to the expressions

≪Alice,r,≪ Alice 7→ 1,Bob 7→ 2≫,
≪Bob,ℓ,≪Alice 7→ 2, Bob 7→ 2≫,≪Alice 7→ 3, Bob 7→ 2≫≫

and

≪Alice,ℓ,≪Alice 7→ 1,Bob 7→ 2≫,
≪Bob,ℓ,≪Alice 7→ 3, Bob 7→ 2≫,≪Alice 7→ 2, Bob 7→ 2≫,≫.

To describe an infinite strategy one uses most of the time a fixpoint equation
like:

t = ≪Alice, ℓ,≪Alice 7→ 0,Bob 7→ 0≫,≪Bob, ℓ, t, t≫≫

8 The formal definition in the Coq vernacular is given in appendix B.
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which correspond to the pictures:

t =

Alice

Alice 7→ 0,Bob 7→ 0

Bob

t t

Other examples of infinite strategies are given in Section 8. Usually an infinite
game is defined as a cofixpoint, i.e., as the solution of an equation, possibly a
parametric equation.

Whereas in the finite case one can easily associate with a strategy a utility
function, i.e., a function which assigns a utility to an agent, as the result of a
recursive evaluation, this is no more the case with infinite strategies. One reason
is that one is not sure that such a utility function exists for the strategy. This
makes the function partial, which cannot be defined as inductive or coinductive.
Therefore s2u (an abbreviation for strategy-to-utility) is a relation between a
strategy and a utility function, which is also a coinductive; s2u appears in ex-
pression of the form (s2u s a u) where s is a strategy, a is an agent and u is a
utility. It reads “u is a utility of the agent a in the strategy s”.

s2u is a predicate defined coinductively as follows:
– s2u≪f≫ a (f(a)) holds,
– if s2u sl a u holds then s2u ≪a′, ℓ, sl, sr≫ a u holds,
– if s2u sr a u holds then s2u ≪a′, r, sl, sr≫ a u holds.

This means the utility of a for the leaf strategy≪f≫ is f(a), i.e., the value
delivered by the function f when applied to a. The utility of a for the strategy
≪a′, ℓ, sl, sr≫ is u if the utility of a for the strategy sl is u. If one call s0 the first
above strategy, one has s2u s0 Alice 2, which means that, for the strategy s0,
the utility of Alice is 2. In order to insure that s2u has a result we define an
operator “leads to a leaf” that says that if one follows the choices shown by the
strategy one reaches a leaf, i.e., one does not go forever.

The predicate “leads to a leaf” is defined inductively as
– the strategy ≪f≫ “leads to a leaf”,
– if sl “leads to a leaf”, then ≪a, l, sl, sr≫ “leads to a leaf”,
– if sr “leads to a leaf”, then ≪a, r, sl, sr≫ “leads to a leaf”.

This means that a strategy which is itself a leaf “leads to a leaf” and if the
strategy is a node, if the choice is ℓ and if the left substrategy “leads to a leaf”
then the whole strategy “leads to a leaf” and similarly if the choice is r. We
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claim that this gives a good notion of finite horizon which seems to be rather a
concept on strategies than on games.

If s is a strategy that satisfies the predicate “leads to a leaf” then the utility
exists and is unique, in other words:

• For all agent a and for all strategy s, if s “leads to a leaf” then there exists
a utility u which “is a utility of the agent a in the strategy s”.
• For all agent a and for all strategy s, if s “leads to a leaf”, if “u is a utility

of the agent a in the strategy s” and “v is a utility of the agent a in the
strategy s” then u = v.

We also consider a predicate “always leads to a leaf” which means that every-
where in the strategy, if one follows the choices, one leads to a leaf. This property
is defined everywhere on an infinite strategy and is therefore coinductive.

The predicate “always leads to a leaf” is defined coinductively

– the strategy ≪f≫ “always leads to a leaf”,
– for all choice c, if≪a, r, sl, sr≫ “leads to a leaf”, if sl “always leads

to a leaf”, if sr “always leads to a leaf”, then≪a, r, sl, sr≫ “always
leads to a leaf”.

This says that a strategy, which is a leaf, “always leads to a leaf” and that
a composed strategy inherits the predicate from its substrategies provided it-
self “leads to a leaf”. We define also bisimilarity between games and between
strategies. For strategies, this is defined by:

The bisimilarity ∼s on strategies is defined coinductively as follows:
– ≪f≫ ∼s ≪f≫,
– if sl ∼s s′l and sr ∼s s′r then ≪a, c, s,l sr≫ ∼s ≪a, c, s′l, s

′

r≫.

This says that two leaves are bisimilar if and only if they have the same
utility function and that two strategies are bisimilar if and only if they have the
same head agent, the same choice and bisimilar substrategies.

5 Histories of strategies and finite strategies

In this short section, we present concepts that are not directly connected with
equilibria, but that are of interest. For a finite or infinite history to be one of the
histories of a game is characterized by a predicate. We define also the history
of a strategy which is the history that consists in following the choices and
which is typically obtained by a function. This function is a function on infinite
objects since it associates an infinite object (a history) with an infinite object
(a strategy). This kind of functions are defined as cofixpoints and are specific to
infinite objects. Without surprise, the history of a strategy “is a history of” the
game associated with that strategy. For a strategy to be finite is characterized
by a unary predicate. If the history of a strategy is infinite then the strategy
itself is infinite.
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6 Convertibility

To speak about equilibria, one needs to speak first about a relation between
strategies which is called convertibility. In classical game theory, a strategy s is
given and a convertible strategy (ra, s−a) is the strategy in which agent a chooses
ra while other agents b choose sb. We call the relation that relates s with (ra, s−a)
convertibility and we write it ⊢a⊣. Basically two convertible strategies have the
same “skeleton”, i.e., the same underlying structure.

The relation ⊢a⊣ is defined inductively as follows:
– ⊢a⊣ is reflexive, i.e., for all s, s⊢a⊣ s.
– If the node has the same agent as the agent in ⊢a⊣ then the choice

may change, i.e.,

s1 ⊢a⊣ s′1 s2 ⊢a⊣ s′2

≪a, c, s1, s2≫ ⊢a⊣ ≪a, c′, s′1, s
′

2≫

– If the node does not have the same agent as in ⊢a⊣, then the choice
has to be the same:

s1 ⊢a⊣ s′1 s2 ⊢a⊣ s′2

≪a′, c, s1, s2≫ ⊢a⊣ ≪a′, c, s′1, s
′

2≫

Since the relation is defined inductively it compares only a finite part of the
strategies. Moreover convertibility preserves the predicate AlwLeadsToLeaf. This
is illustrated by the following lemma:

For all a, s, s′, if s “always leads to a leaf” and s⊢a⊣ s′′ then s′

“always leads to a leaf”.

Actually there is another convertibility which we write ←←a→→:

The relation ←←a→→ is defined coinductively as follows:
– A leaf is only convertible to itself.
– For nodes, one has basically the rules:

s1←←a→→ s′1 s2←←a→→ s′2

≪a, c, s1, s2≫ ←←a→→ ≪a, c′, s′1, s
′

2≫

s1←←a→→ s′1 s2←←a→→ s′2

≪a′, c, s1, s2≫ ←←a→→ ≪a′, c, s′1, s
′

2≫

From their definition, one can prove that both convertibilities are equivalence
relations. The difference between the two convertibilities appears only in the Coq

script and shows typically the difference between induction and coinduction. It
can be sketched as follows: ←←a→→ traverses the whole strategies and can accept
infinitely many changes in choices, whereas ⊢a⊣ inspects only finite parts of
the strategies, i.e., finitely many choices. We claim that human agents apply
the convertibility ⊢a⊣ as they can only carry a finite amount of reasoning and
comparison. Notice that when two strategies are convertible there underlying
games are bisimilar.
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7 Equilibria

7.1 Nash equilibria

The notion of Nash equilibrium is translated from the notion in textbooks. Since
we have two concepts of convertibility, we might have two concepts of Nash
equilibria, but as said we focus only on the inductive notion of convertibility
⊢a⊣. The concept of Nash equilibrium is based on a comparison of utilities;
this assumes that an actual utility exists and therefore this requires convertible
strategies to “lead to a leaf”. s is a Nash equilibrium if the following implication
holds: if s “leads to a leaf” and for all agent a and for all strategy s′ which is
convertible to s, i.e., s⊢a⊣ s′, and which “leads to a leaf”, if u is the utility of s

for a and u′ is the utility of s’ for a, then u′ � u.

7.2 Subgame Perfect Equilibria

Let us consider now subgame perfect equilibria, which we write SGPE. SGPE

is a property of strategies. It requires the substrategies to fulfill coinductively
the same property, namely to be a SGPE, and to insure that the strategy with
the best utility for the node agent to be chosen. Since both the strategy and
its substrategies are infinite, it makes sense to make the definition of SGPE

coinductive.

SGPE is defined coinductively as follows:
– SGPE ≪f≫,
– if≪a, ℓ, sl, sr≫ “always leads to a leaf”, if SGPE(sl) and SGPE(sr),

if s2u sl a u and s2u sr a v, if v ≤ u then SGPE ≪a, ℓ, sl, sr≫,
– if≪a, r, sl, sr≫ “always leads to a leaf”, if SGPE(sl) and SGPE(sr),

if s2u sl a u and s2u sr a v, if u ≤ v then SGPE ≪a, r, sl, sr≫,

It means that a strategy, which is a leaf, is a subgame perfect equilibrium
(condition SGPE Leaf ). Moreover if the strategy is a node, if the strategy “al-
ways leads to a leaf”, if it has agent a and choice ℓ, if both substrategies are
subgame perfect equilibria and if the utility of the agent a for the right sub-
strategy is less than this for the left substrategy then the whole strategy is a
subgame perfect equilibrium and vice versa (condition SGPE left). If the choice
is r (condition SGPE right) this works similarly.

Notice that since we require that the utility can be computed not only for
the strategy, but for the substrategies and for the subsubstrategies and so on,
we require these strategies no only to “lead to a leaf” but to “always lead to a
leaf”.

8 Two infinite games with centipede shape

In this section we study two kinds of games that have some analogies, especially
they have a centipede shape, since they have an infinite backbone (on the “left”)
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Alice Bob Alice Bob

2n+1,2n 2n+1,2n+2 2n+3,2n+2 2n+3,2n+4

Fig. 2. The strategy “never give up” for the dollar auction game (payoffs are
100v minus the numbers)

and all the right subgames are leaves. In both cases, the utilities go to infinity,
but in the first (dollar auction game) the utilities go to (−∞,−∞) (costs, i.e., the
opposites of utilities, go to (+∞, +∞)), whereas in the second, (centipede game)
the utilities go to (+∞, +∞). One common mistake in analyzing those games is
to believe that results on the infinite game can be obtain as the limit of partial
results on the finite games, which is not the case (see [13] for the perspective of
a model theorist).

8.1 The “Illogic of Conflict Escalation”

The above development has been applied to an example called the dollar auction
game by Shubik [35] and the illogic conflict of escalation by Gintis [15]. Recall
its principle. Two agents Alice and Bob compete in an auction for an object of a
value v $ (100v ¢). The two agents bid 2 ¢, one after the other. We assume that
there is no limit on the bids, i.e., the bankroll of the agents is not limited. This
generalization is possible because we reason on infinite games. By the way, if
there would be a limit on the bids, there would be no escalation. If one agent
gives up, the highest bidder gets the object, but the second bidder pays also
for his (her) bid. As Shubik noted, this game may never cease, due to what
Colman [6] calls the Macbeth effect. We have closely studied only two infinite
strategies: a strategy called always give up (agu in short) (see Figure 2) and a
strategy called never give up (ngu in short) (see Figure 3). In the strategy agu,
both agents leave the auction at each step, when in the strategy ngu, the agents
keep bidding, this is the escalation. agu and ngu are solutions of parametric
equations. For instance agu is solution of the equation (cofixpoint):

agun = ≪Alice, ℓ,≪Bob, ℓ, agun+1, [2n + 1, 2n + 2]≫, [2n + 1, 2n]≫ .

where [x, y] stands for ≪Alice 7→ x, Bob 7→ y≫. We are able to prove in Coq

that agu is a subgame perfect equilibria and that both agu and ngu are Nash
equilibria. The proof of agu being a subgame perfect equilibrium is based on a
coinductive argument, whereas the proof of agu being a Nash equilibrium is by
case; ngu is a Nash equilibrium because it does not “lead to a leaf”, this last
fact comes from a coinductive argument.
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8.2 Centipede

The centipede games have been introduced by [33] (see also [5,29]), but only as
finite games. The paradox is that the subgame perfect equilibrium is when the
player do not enter the game, whereas clearly if they would enter the game, they
would get a better payoff. In this development, we consider an infinite game and
show that the strategy that never stops is also a Nash equilibrium; in other words
if players enter the game they should not stop. Payoffs are given in Figure 4.
Like for the dollar auction game, we consider two strategies, namely a strategy
always give up and a strategy never give up and we can prove by coinduction
that the first is both a subgame perfect equilibrium and a Nash equilibrium and
that the second is a Nash equilibrium. The proofs are very similar to this for
the dollar auction game. The strategy never give up is a Nash equilibrium, for
the same reason: the agent cannot compute the payoff, but there is a difference,
whereas the payoff cannot be computed in the dollar auction game because it
goes to −∞, in the case of the centipede game it cannot be computed because
it goes to +∞.

8.3 Human and formal reasoning

Literature (see [6] Section 9.3 for a detailed review) cites many experiments
which have been used to compare human reasoning and formal reasoning and
in the so called illogic conflict of escalation like in the centipede game, it is
advocated that humans are illogic (see for instance [28,19]). Our work shows
that this is not the case as we are able to prove that the infinite escalation is
also a Nash equilibrium.9 In other words when an agent decides to enter the
game, then he (she) has no other rational solution but to bid forever (Macbeth
effect) and acting so makes perfect sense from the theoretical point of view of
coinduction10, despite when it applies to war, it is scaring. So the advice should

9 We have not been able to prove formally in Coq that always give up and never give
up are the only Nash equilibria, but this seems very likely.

10 We propose to call this the Jourdain effect, from the character of Molière’s play the
Bourgeois genthilhomme (The middle-class gentleman), delighted to learn that he

Alice Bob Alice Bob

2n+1,2n 2n+1,2n+2 2n+3,2n+2 2n+3,2n+4

Fig. 3. The strategy “always give up” for the dollar auction game (payoffs are
100v minus the numbers)
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Alice Bob Alice Bob

2n,2n 2n−1,2n+3 2n+2,2n+2 2n+1,2n+5

Fig. 4. The centipede game

be: “Never enter such a game, otherwise logic will push you to escalation”. In
games involving money, he (she) will then face bankruptcy, but this is another
story. In both games, assuming that the agents commonly believe that the game
is infinite, they have two possibilities, either not entering the game or entering
it and running forever as both strategies are Nash equilibria.

9 Coinduction in Coq

As we have said the proof assistant Coq [22] plaid a central role in this research.

Why should we formalize a concept in a proof assistant? To answer this
question we like to cite Donald Knuth [36]:

People have said you don’t understand something until you’ve taught
it in a class. The truth is you don’t really understand something until
you’ve taught it to a computer, until you’ve been able to program it.

We claim that we can appropriately replace the last sentence by “until you’ve
taught it to a proof assistant, until you’ve code it into Coq [22], Isabelle [26],
or PVS [31]” as it seems even more demanding to “teach” a proof assistant
like Coq than to write a program on the same topics. Actually without Coq,
we would not have been able to capture the concepts of Nash equilibrium and
Subgame Perfect equilibria presented in this paper. This is indeed the result of
formal deduction, intuition and try and error in Coq since proving properties of
infinite games and infinite strategy profiles is extremely subtle (see Section 9).
Moreover by relying on a proof assistant, we can free this article from formal
developments and tedious and detailed proofs, knowing anyway that they are
correct in any detail and that the reader will refer to the Coq script in case
of doubt. Therefore, we can focus on informal explanation. However, Coq pro-
poses a readable, rigorous, and computer checked syntax, the vernacular, for

has been speaking prose all his life without knowing it. “For more than forty years
I have been speaking prose without knowing anything about it.”(act II, scene 5) [25].
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definitions, lemmas and theorems and when we provide definitions in this pa-
per, they are associated with expressions stated in the vernacular provide in the
appendix. The vernacular should be seen as a XXIst century version of Leibniz’
characterica universalis or Frege’s Begriffsshrift [14].

Decomposing an object The principle of coinduction is based on the greatest
fixpoint of the definition, that is a coinduction defines a greatest fixpoint (see [4]).
There are two challenges when one works with such a principle: the difficulty of
decomposing infinite objects and the invocation of coinduction. They are both
presented in detail in [4], but let us describe them in few words. For the first
problem, suppose one has a strategy s, which is not a leaf; one knows that s is
of the form ≪a, c, sl, sr≫ for some agent a, some choice c and some strategies
sl and sr. To obtain such a presentation, one uses a mechanism which consists
in defining a function identity on strategy which is a “clone” of fun s⇒ s end:

Definition Strategy identity (s :Strategy): Strategy :=
match s with
— ≪f≫ ⇒ ≪f≫
— ≪a,c,sl,sr≫ ⇒ ≪a,c,sl,sr≫
end.

In other words, the strategy identity function is, computationally speaking, the
function which associates≪f≫ with≪f≫ and≪a,c,sl,sr≫ with≪a,c,sl,sr≫ and
not the function which associates s with s. We can prove the strategy decompo-
sition lemma:

Lemma Strategy decomposition: ∀ s : Strategy,
Strategy identity s = s.

Thus when one wants to decompose a strategy s, one replaces s by Strat-
egy identity s and one simplifies the expression, and one gets ≪a, c, sl, sr≫ for
some a, c, sl and sr.

Invoking coinduction The principle of coinduction is based on a tactic11

called cofix. It consists in assuming the proposition one wants to proof, provided
one applies it only on strict sub-objects. In the current implementation of Coq,
the user has to ensure that he invokes it on “strict” sub-objects. This is not
always completely trivial and requires a good methodology. However the proof
checker (a piece of software which accepts only correct proofs) verifies that this
constraint is fulfilled at the time of checking the proof.

10 Related works

This work started after this of Vestergaard [38] on finite games and finite strate-
gies. We first developed proofs on finite strategies, but unlike Vestergaard who

11 A tactic is a tool in Coq used to build proofs without using the most elementary
constructions.
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based his formalization on fixpoint definitions of predicates, we used only induc-
tive definitions of predicates. Like Vestergaard, we were able to prove the main
lemma of finite extensive games, namely that backward induction strategy pro-
files are Nash equilibria; the script is available at http://perso.ens-lyon.fr/
pierre.lescanne/COQ/INFGAMES/SCRIPTS/finite games.v. Overall, this “in-
duction based” presentation allowed us to switch more easily to coinduction on
infinite games. Beside this, a development in Coq of finite games with an ar-
bitrary number of choices at any node has been made by Le Roux [34] (p. 83
and following) and an exploration of common knowledge, induction and Au-
mann’s theorem on rationality has been proposed by Vestergaard, Ono and the
author [39]. In [20], there is a presentation of a somewhat connected development
in Coq, namely this of the logic of common knowledge.

Since we are talking about some computational aspects of games, people may
make some analogies with other works, let us state what extensive games are
not.

– Extensive games are not semantic games as presented in [1,37,21,16].
– Extensive games are not logical games used in proving properties of automata

and protocols [23,2].
– This work has only loose connection with algorithmic game theory [27,10],

which is more interested by the complexity of the algorithms, especially those
which compute equilibria, than by their correction, and does not deal with
infinite games.

Three published examples of Coq developments with coinduction are this
on real numbers by Bertot [3], this on temporal logic by Coupet-Grimal [8] and
this on hardware verification by Coupet-Grimal and Jakubiec [9]. The book [11]
by Dowek gives a philosophical perspective of using a proof assistant based on
type theory in mathematics.
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11 Conclusion

Thanks to coinduction, we have reconciled human reasoning with rational rea-
soning in infinite extensive games. In other words, we claim that human agents
reason actually by coinduction when faced to infinite games and are rational.
Moreover we have shown once more the threshold between finiteness and in-
finiteness and that reasoning on infinite objects is not the limit when the size
goes to infinity of reasoning on finite objects.

http://perso.ens-lyon.fr/pierre.lescanne/COQ/INFGAMES/SCRIPTS/finite_games.v
http://perso.ens-lyon.fr/pierre.lescanne/COQ/INFGAMES/SCRIPTS/finite_games.v


18 – April 28, 2009

References

1. S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59:543–574, 1994.

2. Reynald Affeldt, Miki Tanaka, and Nicolas Marti. Formal proof of provable security
by game-playing in a proof assistant. In Willy Susilo, Joseph K. Liu, and Yi Mu,
editors, ProvSec, volume 4784 of Lecture Notes in Computer Science, pages 151–
168. Springer, 2007.

3. Yves Bertot. Affine functions and series with co-inductive real numbers. Mathe-
matical Structures in Computer Science, 17(nn):37–63, 2007.
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A Equalities

Leibniz equality says that x = y if and only if, for every predicate P , P (x) implies
P (y). Extensional equality says that f = g if and only if, for all x, f(x) = g(x).
In general, knowing a (recursive) definition of f and a (recursive) definition of g

is not enough to decide whether f = g or f 6= g. For instance, no one knows how
to prove that the two functions:

f(1) = 1

f(2x) = f(x)

f(2x + 1) = f(3x + 2).
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and
g(x) = 1

are equal, despite it is more likely that they are. More generally, there is no
algorithm (no rigorous reasoning) which decides whether a given function h is
equal to the above function g or not. Thus extensional equality is not decidable.
Saying that two sequences that have equal elements are equal requires extensional
equality and it makes sense to reject such an equality when reasoning finitely
about infinite objects, like human agents would do.

B Some definition and proposition in Coq vernacular

The notation of functions in the Coq vernacular. In traditional mathe-
matics, the result of applying a function f to the value x is written f(x) and the
result of applying f to x and y is written f(x, y), this can be considered as the
result of applying f to x then to y and written f(x)(y). In the Coq vernacular,
as in type theory, one writes f x instead of f(x) and f x y instead f(x)(y) or
instead of f(x, y) and f x y z instead f(x)(y)(z) or f(x, y, z), because this saves
parentheses and commas and because functions are everywhere as the core of
the formalization. But after all, this is not deep, just a matter of style and Coq

accepts syntactic shorthands to avoid these notations when others are desirable.

The definitions The following definition are in the Coq vernacular.
The definition of History is

CoInductive History: Set :=
— HNil : History
— HCons : Choice → History → History.

The definition of bisimilarity in the Coqis (Notice the use of the notation
(HCons a h) for HCons(a)(h)):

CoInductive hBisimilar : History →History → Prop :=
— bisim HNil : hBisimilar HNil HNil
— bisim HCons : ∀ (a:Choice)(h h’ :History),

hBisimilar h h’ → hBisimilar (HCons a h) (HCons a h’).

The definition of Game is:

CoInductive Game : Set :=
— gLeaf : Utility fun → Game
— gNode : Agent → Game → Game → Game.

The definition of Strategy is:

CoInductive Strategy : Set :=
— sLeaf : Utility fun → Strategy
— sNode : Agent → Choice → Strategy → Strategy → Strategy.

The function s2u is defined as
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CoInductive s2u : Strategy → Agent → Utility → Prop :=
— s2uLeaf : ∀ a f, s2u (≪ f≫) a (f a)
— s2uLeft : ∀ (a a’ :Agent) (u:Utility) (sl sr :Strategy),

s2u sl a u → s2u (≪ a’,l,sl,sr≫) a u
— s2uRight : ∀ (a a’ :Agent) (u:Utility) (sl sr :Strategy),

s2u sr a u → s2u (≪ a’,r,sl,sr≫) a u.

LeadstoLeaf is an inductive.

Inductive LeadsToLeaf : Strategy → Prop :=
— LtLLeaf : ∀ f, LeadsToLeaf (≪ f≫)
— LtLLeft : ∀ (a:Agent)(sl : Strategy) (sr :Strategy),

LeadsToLeaf sl → LeadsToLeaf (≪ a,l,sl,sr≫)
— LtLRight : ∀ (a:Agent)(sl : Strategy) (sr :Strategy),

LeadsToLeaf sr → LeadsToLeaf (≪ a,r,sl,sr≫).

Two lemmas about LeadsToLeaf and s2u:

◦ ∀a s, LeadsToLeaf s→ ∃u : Utility, s2u s a u.
◦ ∀a u v s, LeadsToLeaf s→ s2u s a u→ s2u s a v → u = v.

The predicate which we called “always leads to a leaf” is formally defined in
the vernacular as follows:

CoInductive AlwLeadsToLeaf : Strategy → Prop :=
— ALtLeaf : ∀ (f :Utility fun), AlwLeadsToLeaf (≪f≫)
— ALtL : ∀ (a:Agent)(c:Choice)(sl sr :Strategy),

LeadsToLeaf (≪a,c,sl,sr≫) → AlwLeadsToLeaf sl →AlwLeadsToLeaf sr →
AlwLeadsToLeaf (≪a,c,sl,sr≫).

Bisimilarity of strategies is defined coinductively:

CoInductive sBisimilar : Strategy → Strategy → Prop :=
— bisim sLeaf : ∀ f, sBisimilar (≪f≫) (≪f≫)
— bisim sNode: ∀ a c sl sl’ sr sr’,

sBisimilar sl sl’ → sBisimilar sr sr’ → sBisimilar (≪a,c,sl,sr≫) (≪a, c,sl’,sr’≫).

SGPE is defined coinductively as follows:

CoInductive SGPE : Strategy → Prop :=
— SGPE leaf : ∀ f :Utility fun, SGPE (≪f≫)
— SGPE left : ∀ (a:Agent)(u v : Utility) (sl sr : Strategy),

AlwLeadsToLeaf (≪a,l,sl,sr≫) →
SGPE sl → SGPE sr →
s2u sl a u → s2u sr a v → (v �u) →
SGPE (≪a,l,sl,sr≫)

— SGPE right : ∀ (a:Agent) (u v :Utility) (sl sr : Strategy),
AlwLeadsToLeaf (≪a,r,sl,sr≫) →
SGPE sl → SGPE sr →
s2u sl a u → s2u sr a v → (u �v) →
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SGPE (≪a,r,sl,sr≫).

Lemma AlwLeadsToLeaf Preservation: ∀ (a:Agent)(s s’ :Strategy),
AlwLeadsToLeaf s → s ⊢a⊣s’ → AlwLeadsToLeaf s’.

Definition NashEq (s : Strategy): Prop :=
∀ a s’ u u’, s’⊢a⊣s →

LeadsToLeaf s’ → (s2u s’ a u’) →
LeadsToLeaf s → (s2u s a u) →
(u’ �u).


