R. Peter and . Saulson, Thermal noise in mechanical experiments, Phys. Rev. D, vol.42, issue.8, pp.2437-2445, 1990.

H. J. Butt and M. Jaschke, Calculation of thermal noise in atomic force microscopy, Nanotechnology, vol.6, issue.1, 1995.
DOI : 10.1088/0957-4484/6/1/001

K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny et al., Quality factors in micron- and submicron-thick cantilevers, Journal of Microelectromechanical Systems, vol.9, issue.1, pp.117-125, 2000.
DOI : 10.1109/84.825786

Z. Djuric, Mechanisms of noise sources in microelectromechanical systems, Microelectronics Reliability, vol.40, issue.6, pp.919-932, 2000.
DOI : 10.1016/S0026-2714(00)00004-4

R. Lifshitz and M. L. Roukes, Thermoelastic damping in micro- and nanomechanical systems, Physical Review B, vol.61, issue.8, pp.615600-5609, 2000.
DOI : 10.1103/PhysRevB.61.5600

V. Nickolay, M. J. Lavrik, P. G. Sepaniak, and . Datskos, Cantilever transducers as a platform for chemical and biological sensors, Review of Scientific Instruments, vol.75, issue.7, pp.2229-2253, 2004.

F. Lochon, L. Dufour, D. Rebiere, U. Sampath, S. M. Heinrich et al., Effect of Viscoelasticity on Quality Factor of Microcantilever Chemical Sensors: Optimal Coating Thickness for Minimum Limit of Detection, IEEE Sensors, 2005., pp.265-268, 2005.
DOI : 10.1109/ICSENS.2005.1597687

URL : https://hal.archives-ouvertes.fr/hal-00182217

I. Gabriela, P. R. González, and . Saulson, Brownian motion of a torsion pendulum with internal friction, Physics Letters A, vol.201, issue.1, pp.12-18, 1995.

M. Kajima, N. Kusumi, S. Moriwaki, and N. Mio, Wide-band measurement of mechanical thermal noise using a laser interferometer, Physics Letters A, vol.263, issue.1-2, pp.21-26, 1999.
DOI : 10.1016/S0375-9601(99)00636-2

K. Numata, M. Ando, K. Yamamoto, S. Otsuka, and K. Tsubono, Wide-Band Direct Measurement of Thermal Fluctuations in an Interferometer, Physical Review Letters, vol.91, issue.26, p.91260602, 2003.
DOI : 10.1103/PhysRevLett.91.260602

S. Rowan, J. Hough, and D. R. Crooks, Thermal noise and material issues for gravitational wave detectors, Physics Letters A, vol.347, issue.1-3, pp.25-32, 2005.
DOI : 10.1016/j.physleta.2005.06.055

D. Crooks, . Sneddon, . Cagnoli, . Hough, M. Rowan et al., Excess mechanical loss associated with dielectric mirror coatings on test masses in interferometric gravitational wave detectors, Classical and Quantum Gravity, vol.19, issue.5, pp.883-896, 2002.
DOI : 10.1088/0264-9381/19/5/304

P. G. Datskos, N. V. Lavrik, and S. Rajic, Performance of uncooled microcantilever thermal detectors, Review of Scientific Instruments, vol.75, issue.4, pp.1134-1148, 2004.
DOI : 10.1063/1.1667257

R. Sandberg, . Mølhave, W. Boisen, and . Svendsen, -factor of a resonant cantilever, Journal of Micromechanics and Microengineering, vol.15, issue.12, pp.2249-2253, 2005.
DOI : 10.1088/0960-1317/15/12/006

URL : https://hal.archives-ouvertes.fr/in2p3-00608259

B. Herbert, R. F. Callen, and . Greene, On a theorem of irreversible thermodynamics, Phys. Rev, vol.86, issue.5, pp.702-710, 1952.

J. Elie and S. , Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, Journal of Applied Physics, vol.84, issue.1, pp.64-76, 1998.

C. Zener, Internal Friction in Solids. I. Theory of Internal Friction in Reeds, Physical Review, vol.52, issue.3, pp.230-235, 1937.
DOI : 10.1103/PhysRev.52.230

C. Zener, Internal Friction in Solids II. General Theory of Thermoelastic Internal Friction, Physical Review, vol.53, issue.1, pp.90-99, 1938.
DOI : 10.1103/PhysRev.53.90

C. Zener, W. Otis, and R. Nuckolls, Internal Friction in Solids III. Experimental Demonstration of Thermoelastic Internal Friction, Physical Review, vol.53, issue.1, pp.100-101, 1938.
DOI : 10.1103/PhysRev.53.100

K. Yamamoto, S. Otsuka, M. Ando, K. Kawabe, and K. Tsubono, Experimental study of thermal noise caused by an inhomogeneously distributed loss, Physics Letters A, vol.280, issue.5-6, pp.5-6289, 2001.
DOI : 10.1016/S0375-9601(01)00085-8

A. L. Kimball and D. E. Lovell, Internal Friction in Solids, Physical Review, vol.30, issue.6, pp.948-959, 1927.
DOI : 10.1103/PhysRev.30.948

H. Walther, Internal friction in solids, Scientific monthly, vol.41, p.275, 1935.

R. Peter, R. T. Saulson, F. D. Stebbins, S. E. Dumont, and . Mock, The inverted pendulum as a probe of anelasticity, Review of Scientific Instruments, vol.65, issue.1, pp.182-191, 1994.

C. Speake, T. J. Quinn, R. Davis, and S. Richman, Experiment and theory in anelasticity, Measurement Science and Technology, vol.10, issue.6, pp.430-434, 1999.
DOI : 10.1088/0957-0233/10/6/303

L. Bellon, Thermal noise of microcantilevers in viscous fluids, Journal of Applied Physics, vol.104, issue.10, p.104906, 2008.
DOI : 10.1063/1.3021102

URL : https://hal.archives-ouvertes.fr/ensl-00340267

L. Bellon and P. Paolino, Procédé de mesure de la déflexion d'un levier de microscopè a force atomique, 2008.

P. Paolino and L. Bellon, Quadrature phase interferometer for AFM measurements

C. Schonenberger and S. F. Alvarado, A differential interferometer for force microscopy, Review of Scientific Instruments, vol.60, issue.10, pp.3131-3134, 1989.
DOI : 10.1063/1.1140543

L. Bellon, S. Ciliberto, H. Boubaker, and L. Guyon, Differential interferometry with a complex contrast, Optics Communications, vol.207, issue.1-6, pp.49-56, 2002.
DOI : 10.1016/S0030-4018(02)01475-X

URL : https://hal.archives-ouvertes.fr/ensl-00179781

K. F. Graff, Wave motion in elastic solids, 1975.

W. M. James, P. Chon, J. E. Mulvaney, and . Sader, Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids, Journal of Applied Physics, vol.87, issue.8, pp.3978-3988, 2000.

A. Maali, C. Hurth, R. Boisgard, C. Jai, T. Cohen-bouhacina et al., Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids, Journal of Applied Physics, vol.97, issue.7, p.97074907, 2005.
DOI : 10.1063/1.1873060

T. Murali-krishna-ghatkesar, V. Braun, J. Barwich, C. Ramseyer, M. Gerber et al., Resonating modes of vibrating microcantilevers in liquid, Applied Physics Letters, vol.92, issue.4, p.43106, 2008.
DOI : 10.1063/1.2838295

O. Marti, A. Ruf, M. Hipp, H. Bielefeldt, J. Colchero et al., Mechanical and thermal effects of laser irradiation on force microscope cantilevers, Ultramicroscopy, vol.42, issue.44, pp.42-44345, 1992.
DOI : 10.1016/0304-3991(92)90290-Z

K. Kim and S. Lee, Self-oscillation mode induced in an atomic force microscope cantilever, Journal of Applied Physics, vol.91, issue.7, pp.4715-4719, 2002.
DOI : 10.1063/1.1454225

C. Hohberger, M. , and K. Karrai, Cavity cooling of a microlever, Nature, vol.432, issue.12, pp.1002-1005, 2004.

S. Benjamin, M. B. Sheard, . Gray, M. Conor, D. E. Mow-lowry et al., Observation and characterization of an optical spring, Phys. Rev. A, vol.69, issue.5, p.51801, 2004.

S. R. De-groot and P. Mazur, Non-equilibrium thermodynamics, 1984.

B. Schnurr, F. Gittes, F. C. Mackintosh, and C. F. Schmidt, Determining Microscopic Viscoelasticity in Flexible and Semiflexible Polymer Networks from Thermal Fluctuations, Macromolecules, vol.30, issue.25, pp.307781-7792, 1997.
DOI : 10.1021/ma970555n

A. K. Jonscher, The ???universal??? dielectric response, Nature, vol.11, issue.5613, pp.673-679, 1977.
DOI : 10.1039/tf946420a056