A Dichotomy Theorem for Polynomial Evaluation

Abstract : A dichotomy theorem for counting problems due to Creignou and Hermann states that or any nite set S of logical relations, the counting problem #SAT(S) is either in FP, or #P-complete. In the present paper we show a dichotomy theorem for polynomial evaluation. That is, we show that for a given set S, either there exists a VNP-complete family of polynomials associated to S, or the associated families of polynomials are all in VP. We give a concise characterization of the sets S that give rise to "easy" and "hard" polynomials. We also prove that several problems which were known to be #P-complete under Turing reductions only are in fact #P-complete under many-one reductions.
Type de document :
Communication dans un congrès
Mathematical Foundations of Computer Science 2009, Aug 2009, Novy Smokovec, Slovakia. Springer, pp.187-198, 2009, Lecture Notes in Computer Science. 〈10.1007/978-3-642-03816-7〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00360974
Contributeur : Irénée Briquel <>
Soumis le : mardi 15 décembre 2009 - 02:07:26
Dernière modification le : mardi 24 avril 2018 - 13:52:34
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 10:51:19

Fichiers

dichotomy_theorem_version_long...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Irénée Briquel, Pascal Koiran. A Dichotomy Theorem for Polynomial Evaluation. Mathematical Foundations of Computer Science 2009, Aug 2009, Novy Smokovec, Slovakia. Springer, pp.187-198, 2009, Lecture Notes in Computer Science. 〈10.1007/978-3-642-03816-7〉. 〈ensl-00360974v2〉

Partager

Métriques

Consultations de la notice

99

Téléchargements de fichiers

82