P. Abry, S. Jaffard, and B. Lashermes, Wavelet leaders in multifractal analysis Wavelet Analysis and Applications Applied and Numerical Harmonic Analysis, pp.201-246, 2006.

P. Abry, B. Lashermes, and S. Jaffard, <title>Revisiting scaling, multifractal, and multiplicative cascades with the wavelet leader lens</title>, Wavelet Applications in Industrial Processing II, pp.103-117, 2004.
DOI : 10.1117/12.581234

P. Abry, B. Lashermes, and S. Jaffard, Wavelet leader based multifractal analysis, Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing

A. Arneodo, B. Audit, N. Decoster, J. Muzy, and C. Vaillant, Wavelet Based Multifractal Formalism: Applications to DNA Sequences, Satellite Images of the Cloud Structure, and Stock Market Data, pp.27-102, 2002.
DOI : 10.1007/978-3-642-56257-0_2

E. Bacry, J. Delour, and J. F. , Multifractal random walk, Physical Review E, vol.64, issue.2, pp.26103-026106, 2001.
DOI : 10.1103/PhysRevE.64.026103

URL : https://hal.archives-ouvertes.fr/hal-00012439

G. Brown, G. Michon, and J. Peyrì-ere, On the multifractal analysis of measures, Journal of Statistical Physics, vol.59, issue.2, pp.775-790, 1992.
DOI : 10.1007/BF01055700

A. P. Calderòn and A. Zygmund, Singular Integral Operators and Differential Equations, American Journal of Mathematics, vol.79, issue.4, pp.901-921, 1957.
DOI : 10.2307/2372441

A. B. Chhabra, C. Meneveau, R. V. Jensen, and K. Sreenivasan, Direct determination of the f(??) singularity spectrum and its application to fully developed turbulence, Physical Review A, vol.40, issue.9, pp.5284-5294, 1989.
DOI : 10.1103/PhysRevA.40.5284

A. Cohen, I. Daubechies, and J. Fauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.10, issue.5, pp.485-560, 1992.
DOI : 10.1002/cpa.3160450502

J. P. Christensen, On sets of Haar measure zero in abelian polish groups, Israel Journal of Mathematics, vol.28, issue.3-4, pp.255-260, 1972.
DOI : 10.1007/BF02762799

A. Fraysse and S. , Jaffard How smooth is almost every function in a Sobolev space? Rev, Matem. Iberoamer, vol.22, issue.2, pp.663-682, 2006.

T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Physical Review A, vol.33, issue.2, pp.1141-1151, 1986.
DOI : 10.1103/PhysRevA.33.1141

Y. Heurteaux and S. , Jaffard Multifractal analysis of images: New connexions between analysis and geometry, Proceedings of the NATO-ASI Conference on Imaging for Detection and Identification, 2007.

B. Hunt, The prevalence of continuous nowhere differentiable functions, Proceedings of the American Mathematical Society, vol.122, issue.3, pp.711-717, 1994.
DOI : 10.1090/S0002-9939-1994-1260170-X

B. Hunt, T. Sauer, and J. Yorke, Prevalence, Bull. A.M.S, vol.27, pp.217-238, 1992.
DOI : 10.1016/S1874-575X(10)00310-3

S. Jaffard, Exposants de Hölder en des points donnés et coefficients d'ondelettes, C. R. Acad. Sci. Sér. I Math, vol.308, pp.79-81, 1989.

S. Jaffard, Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of Beno??tBeno??t Mandelbrot, M. Lapidus et M. van Frankenhuijsen Eds, Proceedings of Symposia in Pure Mathematics, AMS, pp.91-152, 2004.

S. Jaffard, Wavelet techniques for pointwise regularity, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.15, issue.1, pp.3-33, 2006.
DOI : 10.5802/afst.1111

S. Jaffard, Pointwise regularity associated with function spaces and multifractal analysis, Approximation and Probability, pp.93-110, 2006.
DOI : 10.4064/bc72-0-7

S. Jaffard, Hölder width and directional smoothness of nonharmonic Fourier series, preprint, 2007.

S. Jaffard and C. Melot, Wavelet Analysis of Fractal Boundaries. Part 1: Local Exponents, Communications in Mathematical Physics, vol.109, issue.3, pp.513-539, 2005.
DOI : 10.1007/s00220-005-1354-1

URL : https://hal.archives-ouvertes.fr/hal-01071366

S. Jaffard and Y. Meyer, Wavelet methods for pointwise regularity and local oscillations of functions, Memoirs of the American Mathematical Society, vol.123, issue.587, 1996.
DOI : 10.1090/memo/0587

B. Lashermes and S. Roux, Abry and S. Jaffard Comprehensive multifractal analysis of turbulent velocity using wavelet leaders, p.preprint, 2007.

J. Lévy-véhel and S. Seuret, The local Hölder function of a continuous function, 2001.

B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, Journal of Fluid Mechanics, vol.15, issue.02, pp.331-358, 1974.
DOI : 10.1063/1.1693226

B. Mandelbrot, A Multifractal Walk down Wall Street, Scientific American, vol.280, issue.2, pp.70-73, 1999.
DOI : 10.1038/scientificamerican0299-70

P. Mattila, Geometry of sets and measures in Euclidean Spaces, 1995.
DOI : 10.1017/CBO9780511623813

S. Orey and S. J. , Taylor How often on a Brownian path does the law of iterated logarithm fail?, Proc. London Math. Soc. (3), pp.174-192

G. Parisi and U. Frisch, On the singularity structure of fully developed turbulence; appendix to Fully developed turbulence and intermittency, by U. Frisch, Proc. Int. Summer school Phys. Enrico Fermi, pp.84-88, 1985.

C. Tricot, Two definitions of fractional dimension, Proc. Cambridge Philos. Soc, pp.57-74, 1982.
DOI : 10.1093/qmath/19.1.301

C. Tricot, Function Norms and Fractal Dimension, SIAM Journal on Mathematical Analysis, vol.28, issue.1, pp.189-212, 1997.
DOI : 10.1137/S0036141094278791

H. Wendt, P. Abry, and S. Jaffard, Bootstrap for Emperical Multifractal Analysis IEEE Signal Proc, Mag, vol.24, issue.4, pp.38-48, 2007.

H. Wendt, S. Roux, P. Abry, and S. Jaffard, Bootstrapped wavelet leaders for multifractal analysis of images preprint, 2008.